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Temporal sequence detection with spiking neurons: towards
recognizing robot language instructions

CHRISTO PANCHEV* and STEFAN WERMTER

Centre for Hybrid Intelligent Systems School of Computing and Technology, University of Sunderland
St. Peter’s Campus, Sunderland SR6 0DD, UK

We present an approach for recognition and clustering of spatio temporal patterns based on networks of
spiking neurons with active dendrites and dynamic synapses. We introduce a new model of an integrate-
and-fire neuron with active dendrites and dynamic synapses (ADDS) and its synaptic plasticity rule. The
neuron employs the dynamics of the synapses and the active properties of the dendrites as an adaptive
mechanism for maximizing its response to a specific spatio-temporal distribution of incoming action
potentials. The learning algorithm follows recent biological evidence on synaptic plasticity. It goes
beyond the current computational approaches which are based only on the relative timing between
single pre- and post-synaptic spikes and implements a functional dependence based on the state of
the dendritic and somatic membrane potentials around the pre- and post-synaptic action potentials.
The learning algorithm is demonstrated to effectively train the neuron towards a selective response
determined by the spatio-temporal pattern of the onsets of input spike trains. The model is used
in the implementation of a part of a robotic system for natural language instructions. We test the
model with a robot whose goal is to recognize and execute language instructions. The research in
this article demonstrates the potential of spiking neurons for processing spatio-temporal patterns and
the experiments present spiking neural networks as a paradigm which can be applied for modelling
sequence detectors at word level for robot instructions.

Keywords: Spiking neurons; Active dendrites; Dynamic synapses; Synaptic plasticity; Temporal
sequence detection; Natural language; Intelligent robotics

1. Introduction

The concept of exploiting the timing of spikes as an alternative of or complementary to the
mean firing rate has provided new directions for further progress in neural computing models.
Different models of spiking neurons have been developed (Hodgkin and Huxley 1952, Rall
1989, Segev et al. 1989, Kistler et al. 1997, Panchev et al. 2002), but there is still an ongoing
debate on which are the essential properties of the biological neurons necessary to be simulated
in order to achieve the computational power of a real neural system. The work presented in
this article extends the current modelling paradigms of spiking neurons, in particular the
leaky integrate-and-fire neuron (Maass and Bishop 1999), by introducing a computational
interpretation and exploring the functionalities of active dendrites and dynamic synapses in
an integrated model.
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For a long time, dendrites have been thought to be the structures where complex neuronal
computation takes place, but only recently have we begun to understand how they operate.
The dendrites do not simply collect and pass synaptic inputs to the soma, but in most cases
they actively shape and integrate these signals in complex ways (Stuart et al. 2001, Poirazi and
Mel 2001, Aradi and Holmes 1999). With our growing knowledge of such processing in the
dendrites, there is a strong argument for taking advantage of the processing power and active
properties of the dendrites, and integrating their functionality into artificial neuro-computing
models (Panchev et al. 2002, Horn et al. 1999, Mel et al. 1998).

Furthermore, there is a variety of dynamic processes in the axonal terminal, including paired-
pulse facilitation or depression, augmentation, post-tetanus potentiation, etc. The real neurons
use these short term dynamics as an additional powerful mechanism for temporal processing.
Several studies have explored the mechanisms of synaptic dynamics (Tsodyks et al. 1998,
Abbott et al. 1997, Zucker 1989) as well as their computational properties (Natschläger et al.
2001, Pantic et al. 2002), highlighting the advantages of neurons and neural networks with
such synapses.

The mechanisms of the active dendrites and dynamic synapses operate on different time
scales, and can be complementary to each other. The combination of their functionality is
most likely to be heavily used by the real neurons and could add significant computational
advantages into the artificial neural networks. However, so far these two neuronal mechanisms
have been primarily modelled in isolation (Spencer and Kandel 1961, Schutter and Bower
1994a,b,c, Liaw and Berger 1996, Senn et al. 2001).

The work presented here introduces a computational interpretation and integration of func-
tional properties of neurons with active dendrites and dynamic synapses as well as a synaptic
plasticity rule associated with such neurons. The active dendrites manipulate the membrane
time constants and resistance of the neuron and are able to precisely shape the post-synaptic
potentials within a time scale of up to a few hundred milliseconds. Complementary to this, the
dynamics of the synapse are able to manipulate the post-synaptic responses on a time scale
from a few hundred milliseconds up to several seconds. The integration of active dendrites
and dynamic synapses into a model of a spiking neuron adds a functionality for temporal inte-
gration, which could be particularly powerful in detecting the temporal structure of incoming
action potentials. Such functionality is required in many perceptual and higher level cogni-
tive systems in the brain, e.g. speech and language processing. The model developed here
is based on the integrate-and-fire neuron with active dendrites presented in Panchev et al.
(2002). The new development introduces short-term synaptic facilitation and depression and
generalization of the training algorithm from input stimuli of single spikes to spike trains.

The new model of a spiking neuron is used in the development of a system for language
instructions given by humans to a robot. The approach of using a robot platform for testing
the performance and functionality of an artificial neural network model has many advan-
tages (Webb 2001). Similar to living organisms, robots can be autonomous behaving systems
equipped with sensors and actuators. Furthermore, the introduction of biologically inspired
models into robotics could bring significant further advances into the field of intelligent
robotics (Sharkey and Ziemke 2001, 2000, Sharkey and Heemskerk 1997). Using existing
technologies, robots can only master basic reactive or preprogrammed behaviours. They fail
to follow some of the fundamental functions of living organisms: their development, learning
and adaptation to the environment. The work presented in this article is a contribution towards
overcoming these limitations and building intelligent and adaptable robots. In the experimental
section of this article, we present a model of spiking neural network for word recognition as
part of a robot understanding natural language instructions.
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In section 2, we introduce the new model of a spiking neuron with active dendrites and
dynamic synapses and examine some of its critical properties for temporal integration of
incoming spike trains. Section 3 presents the learning algorithm for the synapses included in
the model. The experiments in section 4 explore the performance of the model for phoneme
sequence detection and word recognition as part of a system for language instructions of a
robot.

2. Spiking neurons with active dendrites and dynamic synapses (ADDS neurons):
temporal integration of input spike trains

The neuron model presented in this section introduces the advantages of the combined func-
tionality of dynamic synapses and active dendrites. The neuron is able to maximize its response
and detect a particular temporal sequence via a system of implicit ‘delay’ mechanisms. These
mechanisms are based on the modulation of the generated post-synaptic potentials resulting
from the dynamics of the synapses and the active properties of the dendrites. The learning
algorithm presented in the next section tunes the ‘delay’ mechanisms such that they generate a
maximum response, in terms of the membrane potential at the soma, for a particular temporal
sequence of input spike trains.

2.1 The neuron model

A schematic presentation of the model is shown in figure 1. The neuron receives input spikes
via sets of dynamic synapses Si , each attached to a particular active dendrite i. In addition,
the neuron has a set of synapses S̄ attached close to or directly at the soma.

Figure 1. Model of a neuron with active dendrites and dynamic synapses.
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The total post-synaptic current I s
i generated by all dynamic synapses at dendrite i is

described by:

τ s d

dt
I s
i = −I s

i (t) +
∑
j∈Si

wij

∑
t (f )∈Fj

ρ(�t(f ))δ(t − t (f )) (1)

where synaptic connection j at dendrite i has weight wij , Fj is the set of pre-synaptic spike
times received at the synapse and δ(·) is the Dirac δ-function.

Furthermore, the post-synaptic current passing through the dendrite into the soma is
described by:

τ d
i

d

dt
I d
i = −I d

i (t) + Rd
i I s

i (t) (2)

Experimental evidence shows that the synaptic transmission properties of cortical neurons
are strongly dependent on the recent pre-synaptic activity (Abbott et al. 1997, Tsodyks et al.
1998).The individual post-synaptic responses are dynamic and can increase (in case of synaptic
facilitation) or decrease (in case of of synaptic depression). Here, the synaptic dynamics is
described by the function ρ(·) which depends on the time �t(f ) between the current and the
earliest spikes in Fj :

ρ(�t(f )) = µe−[(�t(f )−τ ds )/σ ]2

(3)

with a time constant τ ds = 1 − wij , and scaling parameters σ and µ. Since the time constant
depends on the weight of the synapse, an input spike train arriving at a stronger synapse will
lead to a quicker short-term facilitation of the synapse, followed by a sharp depression, and
generate an earlier increase of the membrane potential at the soma (figure 2(A)). Respectively,
a spike train arriving at a weaker synapse will generate a delayed increase of the membrane
potential. The short-term facilitation and depression of the synapse operate on a time scale
from a few hundred milliseconds up to a few seconds. The combined response of the dynamic
synapses partially leads to the prolonged synaptic integration of cortical neurons presented
in Beggs et al. (2000).

Real neurons show a passive response only under very limited conditions. In many brain
areas, a reduction of ongoing synaptic activity has been shown to increase the membrane
time constant and input resistance, suggesting that synaptic activity can reduce both parame-
ters (Häusser and Clark 1997, Paré et al. 1998). The computational model of active dendrites

Figure 2. (A) Membrane potential at the soma generated by a single input spike train arriving at a single synapse
(two cases of synapses with different weights); (B) Zoom-in around the peak of membrane potential for w = 0.8.
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presented in this article is based on such observations. Here, the time constant τ d
i and the

resistance Rd
i are set to be dependent on the post-synaptic current into dendrite i and determine

the active properties of the dendrite (see Panchev et al. (2002) and Appendix A.1 for details).
As shown in the next section, the effect is that a dendrite receiving strong post-synaptic
input from a single spike generates a sharp earlier increase of the membrane potential at
the soma, whereas the potential generated from a weaker input signal will be prolonged
(figure 2 (A)).

A simpler equation holds for the total current I
s

from all synapses feeding directly to the
soma:

τ s d

dt
I

s = −I
s
(t) +

∑
j∈S

wj

∑
t (f )∈Fj

δ(t − t (f )) (4)

Finally the soma membrane potential um is:

τm d

dt
um = −um(t) + Rm(Id(t) + I

s
(t)) (5)

where I d(t) = ∑
i I

d
i (t) is the total current from the dendritic tree, and I

s
(t) is the total current

from synapses attached to the soma.
The current from dendrite i generates part of the potential at the soma, which we will call

partial membrane potential and annotate as um
i . If pre-synaptic input arrives only at dendrite

i then um
i = um. The total partial membrane potential um

d = ∑
i u

m
i is the somatic mem-

brane potential generated from all dendrites, i.e. excluding the synapses feeding directly to
the soma.

The next section will present how the above dynamic and active mechanisms of the neuron
work and allow spatio-temporal integration of incoming action potentials which facilitates the
neuron’s sensitivity to the temporal structure of the incoming spike trains.

2.2 Spatio-temporal integration of synaptic input in a neuron with dynamic synapses
and active dendrites

As shown in the next section, two of the critical factors defining the neuron’s response and
adaptation are the timing and the amplitude of the maximum of the membrane potential
at the soma. Figure 2 shows the response of a neuron with dynamic synapses and active
dendrites to the same spike trains coming through synapses with different strength. In the
case where w = 0.8 the spike train generates an earlier and sharp peak of the membrane
potential at the soma. If the synaptic strength is smaller, e.g. w = 0.2, the time constants of
the dynamic synapse τ ds and the active dendrite τ d

i will be longer, the resistance Rd
i will

be lower and consequently the peak of the membrane potential is delayed and has a smaller
amplitude.

Based on such temporal integration, the neuron is able to maximize its response to spike
trains with different onset times. Figure 3 shows two cases of a response of a neuron to two spike
trains with different onset times. In both cases the total synaptic weight is the same, however the
response at the soma is substantially different. With appropriately adjusted weights (figure 3
top), the neuron is able to compensate for the delay of one of the spike trains, by delaying the
post-synaptic current generated by the earlier one. The result is quasi-synchronous peaks of
the partial membrane potentials, and a significantly higher potential generated at the soma.
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Figure 3. Integration of two spike trains through two dynamic synapses with different strength attached to separate
active dendrites. The onset of one of the spike trains is delayed by 300 ms. Top: Both spike trains arrive at two synapses
with equal strength, w1,2 = 0.45 each. Bottom: The first spike train arrives at a synapse with strength w1 = 0.3 and
generates a peak of the partial membrane potential around 800 ms after the onset time of the stimulus. The second
spike train arrives at synapse with strength w2 = 0.6 and generates a peak partial potential around 500 ms after the
onset time. The response of the neuron to the first spike train is delayed (prolonged) compared to the response to the
second one. As a result, the neuron has achieved a quasi-synchronization of the partial membrane potentials generated
from the spike trains (middle column, bottom graph), and its response (the membrane potential at the soma, bottom
right graph) is much stronger.

Such temporal integration provides the neuron with a powerful mechanism for a selective
response to the temporal structure of the input stimuli.

3. Synaptic plasticity

There are two different types of synapses at the ADDS neuron, each of them having a different
functional role. The dynamic synapses attached to active dendrites are part of the mechanism
for spatio-temporal integration and play a role in the recognition of the temporal structure of
the input signals. The neuron also includes synapses directly attached to the soma. They have a
very fast and strong influence on the membrane potential at the soma and are very efficient for
lateral connections between cooperative or competitive neurons. Consequently, the learning
algorithms for the two types of synapses have different implementations. The specific tuning of
the dynamic synapses attached to active dendrites implements the neuron’s adaptation towards
responding to a particular temporal sequence of input spike trains, whereas the plasticity of the
synapses attached to the soma reflects the cooperation within or competition between clusters
of neurons.
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3.1 Plasticity in the dynamic synapses attached to the active dendrites

The task of the learning algorithm developed for the dynamic synapses attached to the active
dendrites is to adjust the weights of the neuron, so that it is able to synchronize the peaks
of the partial membrane potentials, and therefore maximize the response of the total somatic
membrane potential for a particular temporal distribution of spike trains.

Current views on the intra-cellular mechanisms underlying synaptic plasticity postulate
that the direction and magnitude of the change of the synaptic strength depend on the relative
timing between the pre- and post-synaptic spikes which is expressed in the Ca2+ concentra-
tion modulated by pre-synaptic as well as back-propagating post-synaptic action potentials
(Magee and Johnston 1997, Markram et al. 1997, Bi and Poo 1998, Debanne et al. 1998,
Feldman 2000, Larkum et al. 1999). The post-synaptic action potential is propagated back to
the synapse by virtue of the active properties of the dendrites under complex control mecha-
nisms. Its amplitude and duration depend on a variety of conditions, including the state of the
soma, basal dendrites and the state and spatial position of the synapse’s own dendritic branch
(Johnston et al. 1999, Stuart et al. 1997, Buzsáki and Kandel 1998, Spruston et al. 1995). In
our approach, we view the signal carried by the back-propagating action potential as having
two main parts: a signal depending on the state of the soma and basal dendrites, and a signal
depending on the state of the dendritic branch of the synapse.

Immediately following a post-synaptic spike at time t̂ (in a simulation with time step �t),
the synapse j at dendrite i, which has received a recent pre-synaptic spike, is sent a weight
correction signal:

�wij = �um
i (t̂) − �um(t̂)√

�t2 + (�um
i (t̂) − �um(t̂))2

(6)

where �um
i (t̂) and �um(t̂) are the changes in the partial membrane potential generated by

dendrite i and the total membrane potential respectively just before the post-synaptic spike.
The weight correction signal has two main contributions: a signal from the dendrite �um

i

and a signal from the soma �um. If we remove �um, the rule will be:

�wd
i = �um

i (t̂)√
�t2 + (�um

i (t̂))2
(7)

and implement the following logic of the learning algorithm: if a post-synaptic spike occurs
before the peak of the partial membrane potential (i.e. in the ascending phase of the membrane
potential, �um

i > 0), the synaptic weight will be increased, so that the next time the peak will
occur earlier, i.e. closer to the post-synaptic spike time. On the other hand, if a post-synaptic
spike occurs after the peak of the partial membrane potential, the synaptic weight will be
decreased, and the peak will be delayed, i.e. again closer to the post-synaptic spike time.

Figure 4(A) shows �wd
i for synapses with different weights as a function of the relative

timing between the pre- and post-synaptic spikes. �wd
i = 0, i.e. no change in the weight

occurs, if the post-synaptic spike coincides with the maximum of um
i . The synaptic plasticity

learning window is different for synapses with different strength. Figure 4(B) shows �wd
i as

a function of the synaptic strength and the relative timing between the pre- and post-synaptic
spikes. Depending on the strength of the synapse, for a pre-synaptic spike arriving shortly
before the post-synaptic action potential, the synaptic weight is increased. If however, the
pre-synaptic spike precedes the post-synaptic action potential by a relatively long time, the
synaptic weight is reduced.



8 C. Panchev and S. Wermter

Figure 4. (A) The correction signal �wd
i that would be sent from the dendrite to a synapse with weight 0.8 or 0.3

in the event of a post-synaptic spike. �wd
i = 0, i.e. no change in the weight occurs, if the post-synaptic spike is at

the point of the maximum of um
i . (B) �wd

i plotted against the relative time between the pre- and post-synaptic spikes
(tpost − tpre) and the synaptic weight wd

i .

The implementation of the �wd
i rule does not cover the negative part of the learning win-

dow. Input spikes arriving after the post-synaptic spike are ignored. This is based on recent
experiments presented in Froemke and Dan (2002), where a triplet of pre-post-pre synaptic
spikes in layer II/III neurons of the visual cortex induced an LTP dominating result. For an
input arriving as spike trains, which is the case modelled in this article, this means that the input
spikes arriving before the post-synaptic spike are the ones that will determine the synaptic
plasticity.

The �um term implements a logic similar to �um
i , but with respect to the total membrane

potential and the total synaptic strength across all dendrites. It drives the neuron to fire close to
the peak of the total membrane potential and has a weight normalization effect. Its role is to
prevent the weights of the synapses from reaching very high values simultaneously, as well
as to prevent a total decay in the synaptic strength. If the neuron is forced to always fire
close to the peak of the membrane potential at the soma (coinciding with the peaks of the
partial membrane potentials), the total synaptic strength will have to be relatively constant
and thereby any changes of synaptic strength will lead to a redistribution (rather than a global
gain/loss) of synaptic strength.



Temporal sequence detection with spiking neurons 9

However, achieving a post-synaptic spike exactly at the peak of the total membrane potential
is not always possible, and in most cases undesirable, since it will limit the noise handling
capabilities of the neuron.A neuron trained to fire exactly at the peak of its membrane potential
will respond only to a very specific temporal pattern without any noise. Therefore, if the post-
synaptic spike is sufficiently close (for a predefined constant ε) to the peak of the membrane
potential, �um is ignored, i.e.:

�um = 0 if |�wm| ≤ ε, where �wm = �um(t̂)√
�t2 + (�um(t̂))2

. (8)

The value of ε allows control over the noise tolerance of the neuron.
Following the weight correction signal, the weights of the synapses are changed

according to:

wnew
ij =




wold
ij + η�wij (1 − wold

ij ) if �wij ≥ 0 and Fj �= ∅
wold

ij + η�wijw
old
ij if �wij < 0 and Fj �= ∅

wold
ij − ηdecaywold

ij if Fj = ∅
(9)

with a learning rate parameter η. The weight correction signal �wij depends on the term �um
i

which can be non-zero only if a pre-synaptic spike has recently arrived at the synapse, i.e.
Fj �= ∅. If the synapse has not received a pre-synaptic spike, the weight decays with a rate
proportional to ηdecay .

Following recent advances in the experimental evidence on synaptic plasticity in the bio-
logical neurons, several algorithms for learning with spiking neurons have been developed
as functions of the relative timing of the pre- and post-synaptic spikes (Song et al. 2000,
Natschläger Ruf 1999, Kempter et al. 2001, Panchev and Wermter 2001 Rao and Sejnowski
2001). However, these algorithms are explicitly based on a single pair of pre- and post-synaptic
spike events and cannot be applied to more complex input stimuli involving multiple spikes
arriving at the same synapse, e.g. spike trains. The aim of the algorithm presented here is to
achieve synaptic plasticity which exceeds the applicability of the algorithms explicitly based
on the relative timing between single pre-synaptic spikes and a post-synaptic spike, while
still being consistent with the biological evidence for synaptic plasticity of the real neurons
(see also the discussion in section 5). The learning algorithm presented in this section applies
a local synaptic plasticity rule, but goes beyond the simple relative spike timing, and incor-
porates functions of the membrane potential at the dendrite and the soma, as well as the
synaptic strength. An earlier version of the algorithm, based on the same principles, has been
shown to effectively train the neuron to an arbitrary precision, when responding to a temporal
sequence of single pre-synaptic spikes within an interval of less than a hundred milliseconds
(Panchev et al. 2002) as well as achieving weight normalization and an even distribution of
the synaptic strength. The new version of the algorithm generalizes into a neural adaptation
for input spike trains and temporal sequences spanning from a few hundred milliseconds up
to several seconds.

One main difference in receiving an input as a spike train, in contrast to a single spike, is
that the membrane potential is not a smooth curve, but it contains many local peaks. If the
learning algorithm described by equations (6)–(9) is directly applied to such an input, it will
converge to one of these local peaks and not drive the neuron towards firing close to the global
maximum. However, a closer look into the membrane potential curve (figure 2(B)) reveals that:
(1) during the ascending phase, the local increase of the membrane potential is either steeper,
or longer compared to the local decrease; and (2) during the global descending phase, the
local decrease is either steeper or longer. Consequently, if during the global ascending phase,
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the neuron’s firing time fluctuates moderately around a local peak, on average over several
presentations of the same stimuli, it has a higher probability of coinciding with the local
ascending too. Similarly, if the neuron’s firing time fluctuates moderately around a local peak
in the global descending phase, it has a higher probability of coinciding with a local decrease
of the membrane potential. Similar arguments apply if, instead of fluctuating the post-synaptic
spike times, the timing of the single spikes in the input contain noise, and therefore causing a
fluctuation of the timing of the local peaks.

The above arguments provide the basis for the generalization of the synaptic plasticity
rule for neurons receiving input as spike trains. They outline the necessary condition for
consistency between the ascending and descending phases of membrane potentials generated
by single spikes and by spike trains. The logic implemented by the �wd

i rule can be applied
for post-synaptic potentials generated by spike trains. The additional condition required is a
moderate fluctuation of the timings of the pre- or post-synaptic spikes. Similar to the real neural
systems, there are many possible sources of such fluctuations, such as unreliable synapses,
noise in the input spike trains, etc. It is well known that most real neurons receive input spike
trains containing irregular spike timings and a level of noise (Softky and Koch 1993, Shadlen
and Newsome 1994). Such a mechanism is employed in the experiments presented later in
this article.

3.2 Plasticity in the synapses attached to the soma

The function performed by the synapses attached to the soma is relatively simple. They
are used mainly for lateral connections between competitive or cooperative neurons. These
synapses are trained using a simpler rule implementing an asymmetric spike-timing depen-
dent learning window with length t lwin ms. Here the change in the synaptic strength depends
only on the normalized relative timing between the pre- and post-synaptic spikes: �ti =
(t

pre

i − t
post

i /t lwin). After a pre- or post-synaptic spike, the weight change for the synapses is
calculated as:

�wi =
{

A�ti exp(−�ti) if �ti > 0,

−AB�ti exp(−�ti) if �ti < 0.
(10)

Figure 5. The asymmetric learning window for synapses attached to the soma. A = e, B = 0.6 and t lwin = 100 ms.
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and the weights are changed according to:

wnew
i =

{
wold

i + ηs�wi(1 − wold
i ) if �wi > 0,

wold
i + ηs�wiw

old
i if �wi < 0.

(11)

Figure 5 shows the asymmetric weight change learning window described by the above
equations. If the pre-synaptic spike precedes the post-synaptic spike, the weights are increased.
Respectively, if the pre-synaptic spike arrives after the post-synaptic one, the weights are
reduced.

4. Experiments

There are many different systems in the brain where recognition of temporal information
encoded in incoming spike trains is required. For instance, the spike trains generated in
the auditory system are used in the higher cortical auditory regions for the identification
of phonemes and words (Hopfield and Brody 2000). Here, we will present some experiments
where we used the new model of a neuron with dynamic synapses and active dendrites to
recognize words based on input of phoneme sequences.

4.1 Short words with repeating phonemes

One aim in the first experiment is to explore how the model will perform the recognition of
words which have the same phonemes, but in a different order, as well as words with repeating
phonemes. In order to test this, we developed a neural network for the recognition of the
words ‘bat’, ‘tab’, ‘babat’ and ‘tatab’. Each word is represented as a sequence of spike trains
generated by input neurons representing the phonemes ‘æ’, ‘æ2’, ‘b’, ‘b2’, ‘t’ and ‘t2’. The
active neurons and the order of the spike trains defines the word in the input. Here we assume
that neurons representing the same phoneme (e.g. ‘æ’) will fire with different probability.
Consequently, there are different neurons (e.g. for ‘æ’, ‘æ2’, etc.) responding to the first,
second, etc. occurrences of the same phoneme.

Figure 6 shows the architecture of the neural network. The six input units are leaky integrate-
and-fire neurons, and are driven by a decaying supra-threshold current with random fluctuation
within a predefined range. This random fluctuation provides the noise in the timings of the

Figure 6. The network architecture for short word phoneme sequence recognition. All word recognition neurons
receive connections from the phoneme neurons via dynamic synapses attached to active dendrites and are connected
to each other via synapses attached to the soma.
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single input spikes that is necessary for the training of the neurons on the output layer (as
discussed in section 3.1). The decay rate of the current driving all input neurons is the same,
so all input spike trains have approximately the same mean firing rate. The role of the input
neurons is to represent the incoming word as a sequence of spike trains (see input phonemes
column in figure 8). The length of each phoneme (i.e. the delay of the onset of the next
phoneme in the word) is 100 ms. In all experiments presented in this article, the input spike
trains were generated using neurons with persistent dendrites which model the activity of a
type of cortical neuron presented in Egorov et al. (2002).

The output units are the leaky integrate-and-fire neurons with dynamic synapses and active
dendrites presented in section 2.1. Their task is to recognize the temporal pattern of input spike
trains, i.e. to recognize the words given their particular sequences of phonemes. As presented
in the previous sections these neurons have an effective mechanism and learning algorithm
for selective response of the temporal structure encoded in the onset times of a set of spike
trains. The output neurons form a four by four map with all to all lateral connections via
synapses attached to the soma. Each output neuron receives connections from all phoneme
input neurons via dynamic synapses attached to different active dendrites.

After training (see appendix A.2 for the procedure and parameters used), the network devel-
oped a well formed tonotopic word map of small clusters of neurons recognizing each word
(figure 7). Clusters representing words that sound similar are close on the map. The neigh-
bourhood was determined by the number of shared phonemes and partial phoneme sequence
overlap between the words.

Figure 8 shows the input and output spikes for the words ‘bat’ [b æ t], ‘tab’ [t æ b] and
‘babat’ [b æ b2 æ2 t]. In the former two words, the same input neurons are active, but based
on the temporal order of the spike trains, the output neurons are able to distinguish between
the different words. The word ‘babat’ contains all the phonemes of the word ‘bat’. However,
the temporal distribution of the phonemes is different (a longer delay between the æ and t

phonemes), and there are two additional phoneme inputs. As a result, the neurons representing
‘bat’ do not respond to this phoneme sequence. It is recognized only by the sequence detectors
for ‘babat’.

There are different sources and types of noise in the biological neural systems. Although
the neurons in our model were trained only with noise in the timing of the single spikes
within the train, the model exhibits robust behavior for several different types of noise.
The output neurons have reliable responses when the onset times of the input spike trains
vary by up to 40 ms. Further, the output neurons reliably detected temporal sequences in

Figure 7. Two typical map formations of the words ‘bat’, ‘tab’, ‘babat’ and ‘tatab’. Each neuron responds only to
one particular word. Words that sound similar, i.e. have similar phoneme sequences are recognized by neurons in
neighbouring clusters.
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Figure 8. Recognizing the words ‘bat’ (top), ‘tab’ (middle) and ‘babat’ (bottom). Left column: The input spike
trains for the phonemes representing the three words. Middle column: Output spikes of the small clusters of neurons
recognizing the particular word. Each plot line represents the activity of the 16 neurons from map 1 on figure 7.
Neuron number 0 is the bottom left unit from the map, neuron 3 is the bottom right unit and neuron 15 is the top right
unit. Right column: Total membrane potentials at the soma for three neurons recognizing the three words. Neuron 13
responds only to the word ‘bat’, neuron 10 responds only to the word ‘tab’ and neuron 0 responds only to the word
‘babat’.

the presence of relatively high levels of noise from the non-active inputs. Figure 9 shows
such examples for the words ‘tatab’ and ‘bat’. The words are correctly recognized even in
the presence of additional noise in the onset times and random spikes from the non-active
phonemes.

4.2 Recognizing language instructions to a robot

Increasingly more attention in intelligent robotics has been paid to robots that are capable of
interacting with people, responding to voice commands or deriving an internal representation
from a language description (Wermter et al. 2003, Lauria et al. 2002, Yoshizaki et al. 2002,
Kyriacou et al. 2002, Bugmann et al. 2001, Crangle, 1997). Such robots exhibit learning and
acquire adaptive behaviour which cannot be completely preprogrammed in advance. Natural
language can be used for the description of relatively specific rules or action sequences,



14 C. Panchev and S. Wermter

Figure 9. Processing ‘tatab’ with noise in the onset times(up to 40%); and ‘bat’ with noise in the onset times and
lower frequency random spikes from the non-active phonemes.

and could be the primary means of communication between the user (sometimes computer-
language-naive) and the robot.

In this section we present part of a system which is being implemented for language instruc-
tions to a robot. The goal of the system is to instruct a robot for navigation and grasping tasks.
The language corpus consists of words forming instruction phrases like: ‘Bot go’, ‘Bot stop’,
‘Bot turn left’ or ‘Bot lift’. The words used in this experiment, together with their phonemic
representation are shown in table 1. The overall architecture is shown in figure 10. Phoneme
sequences are used as an input to the neural network module which recognizes the words.
The input phoneme sequences can be generated from real speech using a speech-to-phoneme

Table 1. Phoneme sequences of the words.

Word Phoneme sequence

GO [g ow]
BOT [b ao t]
TURN [t er n]
RIGHT [r ay t]
LEFT [l eh f t]
LIFT [l ih f t]
DROP [d r ao p]
STOP [s t ao p]
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Figure 10. Robot’s language instruction system.

recognition module, e.g. parts of Sphinx (Lee et al. 1990). The output words as a sequence
are sent to the robot, and the formed instruction interpretation is executed.

The architecture of the neural network module is shown in figure 11. The input layer
contains one neuron for each phoneme. As in the previous experiment, the input units are
integrate-and-fire neurons driven by a decaying supra-threshold current injection containing
noise in the amplitude. The output units on the next layer are integrate-and-fire neurons with
dynamic synapses and active dendrites. They are organized in an eight by eight map with
all-to-all lateral connections via synapses attached to the soma. Each output neuron receives
connections from all phoneme neurons via dynamic synapses attached to different active
dendrites.

The network was trained using correct, noise-free phoneme sequences as produced by
a speech-to-phonemes recognition module. Based on the observed average length of the
phonemes produced by this module, the length of each consonant was set to 50 ms and each
vowel to 100 ms. As in the previous experiment, the length of a phoneme determines the delay
of the onset time of the spike train representing the next phoneme in the word.

After training (see section A.2 for details on the training procedure and parameters) each of
the output neurons adapted towards recognizing a particular phoneme sequence, i.e. a partic-
ular word. The word recognition neurons formed small localized clusters of units recognizing
the same word (see figure 11). Typically a subset of the neurons within a cluster responded

Figure 11. Network architecture and self-organized map of the word recognition neurons after training.
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depending on the input noise level. Altogether, the neurons within a cluster covered a range of
noise-dependent fluctuations in the input phoneme sequence for the particular word. Further-
more, the clusters were organized in a tonotopic word map, i.e. neurons recognizing words
that have similar sounds, such as ‘drop’ and ‘stop’ or ‘left’ and ‘lift’, occupied neighbouring
clusters.

Figure 12. Processing the words ‘drop’, ‘stop’, and ‘right’. Top and middle: small clusters of neurons responding
to noisy input for the words ‘drop’ and ‘stop’. Bottom: no output neurons from the network responded to the [riht]
sequence. Although the neurons recognizing the word ‘right’ [rayt] are still significantly potentiated, the input
stimulus is not sufficient to trigger a post-synaptic spike.
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Figure 13. Processing the words ‘Bot turn left’.

There are three different types of noise produced by a phoneme recognition module: (1) the
lengths of the same phonemes are not exactly the same in each utterance; (2) in most sequences
there are additional phonemes which do not belong to the word being represented; and (3) in
some sequences there are missing phonemes. The network was tested on all three types of noise.

Figure 12 shows the processing of the words ‘drop’ [draop] and ‘stop’ [staop] with noise in
the phoneme lengths and additional phonemes being activated. The actual network inputs are
[draof lp] and [stf aolp] respectively, with noise in the onset time of the phoneme spike trains.
The network responds reliably if some extra phonemes are added to the input. Due to the weight
decay, a neuron which recognizes a particular word has synapses with a significant strength
only for phoneme inputs that belong to that word. The synaptic strength for input phonemes
which do not belong to the word is negligible. As a result an additional input phoneme does
not have a significant influence on the selective response of the neuron recognizing its word.
However, if the phonemes, which are added as noise, constitute a valid phoneme sequence, it
might be recognized by other neurons. Furthermore, the output neurons have been found to
respond reliably if the phoneme lengths varied by up to 40%.

If however, the input phoneme sequence representing a particular word has missing
phonemes, it will most likely not be detected as a valid sequence and the neurons recog-
nizing that word will not respond. Figure 12 shows one such example for the word ‘right’
[rayt], where the ‘ay’ phoneme has been substituted with ‘ih’. No output neuron from the
network responded to this phoneme sequence.Although the neurons which recognize the word
‘right’ are still significantly activated, the input stimulus can not trigger a post-synaptic spike.

Figure 13 shows the processing of the instruction ‘Bot turn left’. Each of the words has been
recognized by a particular set of neurons. The input is a set of three noisy phoneme sequences
[b ao t], [t er n] and [l eh f t]. Since the model was trained to perform recognition only on a
single word level, there is a delay between the consecutive words. The output is a sequence
of active clusters representing each of the three words. The recognized words will be sent to
the robot which will execute the given instruction.

5. Discussion and Conclusion

We presented a novel model of a spiking neuron for detecting the temporal structure of spike
trains and applied it in a network of spiking neurons for recognizing words for robot language
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instructions. The neuron exploits the dynamics of the synapse and the active properties of
the dendrites in order to implement an efficient ‘delay’ mechanism which will maximize its
response to a particular input sequence. The spatio-temporal structure of the ‘delay’mechanism
is encoded in the synaptic strengths. We have developed and presented a synaptic plasticity
rule which is capable of efficiently tuning the neuron. After training, the neuron is sensitive
to a specific temporal structure of the input spikes, and is selectively responsive to stimulus
with spatio-temporal patterns that matches its ‘delay’ structure.

The synaptic plasticity rules employed in this work follows recent neuro-physiological
experimental results (reviewed in Bi and Poo 2001, Kepecs et al. 2002, Roberts and Bell 2002).
The implementation of plasticity of the synapses attached to the soma, section 3.2, is a
direct approximation of the asymmetric learning window as a function of the relative tim-
ing of the pre- and post-synaptic spikes, as presented in several neuro-physiological studies
(Markram et al. 1997, Bi and Poo 1998, Feldman 2000). In general, if the pre-synaptic spike
precedes the post-synaptic spike, the weights are increased, and respectively, if the pre-synaptic
spike arrives after the post-synaptic one, the weights are reduced. The magnitude of the change
depends on the time difference between the two spikes.

The plasticity rule for the synapses attached to the active dendrites is somewhat more
complicated. Studies presented in Nishiyama et al. (2000) have revealed a second negative
part of the learning window. Negative changes in the synaptic strength have been observed if
the pre-synaptic spike precedes the post-synaptic spike by a relatively long time. Nishiyama
and colleagues discussed possible causes for the appearance of this so called ‘paradoxical
zone’ of the learning window as the different spatio-temporal pattern of calcium elevation or
the activation of local inhibitory circuits. A possible cellular mechanism for this part of the
learning window has been discussed in Bi (2002). The synaptic plasticity rule presented in
section 3.1 implements and takes advantage of the ‘paradoxical’ part of the learning window.
Our work shows that in fact, if the active properties of the dendrites are taken into account, this
part of the learning window has a possible computational interpretation and plays a critical
role in the synaptic plasticity process. It allows the neuron to adapt and maximize its response
to a specific spatio-temporal pattern of incoming action potentials.

Furthermore, the new model of spiking neuron was tested in the development of a self-
organizing tonotopic word map of cooperative and competitive neurons. We have achieved
a self-organization of the neurons representing the words which is based on the phonetic
properties of the words, i.e. the spatio-temporal structure of the input stimuli. The same word
is recognized by a small cluster of neighbouring neurons, and the clusters representing words
that sound similar are close on the map. This is a possible intermediate representation and link
between the frequency-based tonotopic maps in the auditory cortex (Kaas and Hackett 2000)
and the distributed semantic-based representations of words in the brain (Pulvermüller 1999).

The performance of the model was tested under different regimes and levels of noise. The
results suggest that it can be successfully applied in processing of real data. An example of
such application is the presented network for word recognition as part of a robot language
instruction system. Each word was represented as noisy temporal sequence of phonemes
generated as an intermediate output by a speech-to-phoneme recognition module. The output
neurons were able to learn the spatio-temporal structure of the phonemic representation and
recognize words from the input under noisy conditions.

Further experiments and applications of the model will involve generating the input sequence
directly from the cochleagrams of the real speech input (Slaney and Lyon 1993, Wermter and
Panchev 2002), instead of phoneme representations, and thereby achieving a model of neural
speech recognition with spiking neurons. The results from the experiments presented here,
i.e. the output of the self-organizing map, will be used as an input for the future development
of a language processing network of spiking neurons for representation of whole phrases and
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sentences (Pulvermüller 2002). As part of this, the model of a spiking neuron with dynamic
synapses and active dendrites is also being further developed towards achieving more complex
neural structures such as cell assemblies and synfire chains.
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A. Appendix: Methods

This appendix gives details on the parameters and training procedures used in the experiments
presented in the article.

A.1 Active dendrites

The time constant τ d
i and the resistance Rd

i of the active dendrites are defined as functions of
I s∗
i which is the maximum of I s

i (t) since the last pre-synaptic spike. Following equation (1),
for a single spike arriving at the synapse, I s∗

i = wijρ(�t(f ))/taus (see also figure A14). τ d
i

is defined as:

τ d
i � τ d

i (I s∗
i ) = τm − τm − τ s

1 + e−(τ s I s∗
i +(1/τ s ))

(A1)

For low synaptic input, this leads to values of τ d
i approaching the time constant of the soma

τm, and for high inputs τ d
i approaches the time constant of the synapse τ s which is usually

much faster than τm.

Figure A14. τd and Rd plotted as a function of the weight of the synapse at which a single spike has arrived (with
τ s = 2 ms and τm = 60 ms).
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Furthermore, Rd
i is defined such that for a single spike at a synapse with strength wij , the

value of the maximum of the membrane potential at the soma is directly proportional to the
neuron’s firing threshold θ , i.e. equals wij θ . Such a choice for Rd

i facilitates the control over
the neuron in simulation and improves its adaptation during learning. Thus, Rd

i yields the
equation:

Rd
i � Rd

i (τ d
i ) � Rd

i (I s
i∗) = θ

BE
(A2)

with

A = 1

τ s − τ d
i

, B = A
Rm

τm
, C = τmτ s

τm − τ s
, D = τmτd

i

τm − τ d
i

(A3)

and

E = min
(
−Ce−t/τ s + De−t/τ d

i + (C − D)e−t/τm
)

, t > 0 (A4)

A.2 Running parameters and training procedure

The following parameters were used for the simulations presented in this article:
For all neurons: τ s = 2 ms, τm = 60 ms and Rm = 15.
For the dynamic synapse (equation (3)): σ = 0.3 and µ = 0.18. The normalized time �t(f )

between the current and the earliest spikes in Fj is: �t(f ) = (tcurrent − tf irst /t (f )), with
t (f ) = 1 sec in the experiment presented in section 4.1 and t (f ) = 0.4 sec in the experiment
presented in section 4.2.

The following parameters were found to be optimal for the training of the neurons:
For the synapses attached to active dendrites: ε = 0.03, η = 0.03 and ηdecay = 0.001.
For the synapses attached to the soma: A = 0.005e, B = 0.6, taul = 40 ms, t lwin = 100 ms

and ηs = 0.03.
The network presented in section 4.1 was trained for 10,000 epochs. During one epoch

correct noise-free sequences were presented once for each of the four words. After each epoch,
the weights of the lateral connections were decreased by −0.00001. In order to examine to exact
responsiveness of each neuron to a particular spatio-temporal pattern, the lateral connections
were removed during the tests.

The network presented in section 4.2 was trained for 15,000 epochs. During one epoch
correct noise-free sequences were presented for each of the eight words. Within each epoch of
the first 3000 epochs, the shorter words were represented more frequently. For the remaining
12,000 epochs, each word was represented once within an epoch. After each epoch, the weight
of the lateral connections were decreased by −0.00001.


