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Abstract

Polarized epithelial cells of multicellular organisms confront the environment with a highly specialized apical cell membrane
that differs in composition and function from that facing the internal milieu. In the case of absorptive cells, such as the small
intestinal enterocyte and the kidney proximal tubule cell, the apical cell membrane is formed as a brush border, composed
of regular, dense arrays of microvilli. Hydrolytic ectoenzymes make up the bulk of the microvillar membrane proteins,
endowing the brush border with a huge digestive capacity. Several of the major enzymes are localized in lipid rafts, which,
for the enterocyte in particular, are organized in a unique fashion. Glycolipids, rather than cholesterol, together with the
divalent lectin galectin-4, define these rafts, which are stable and probably quite large. The architecture of these rafts
supports a digestive/absorptive strategy for nutrient assimilation, but also serves as a portal for a large number of pathogens.
Caveolae are well-known vehicles for internalization of lipid rafts, but in the enterocyte brush border, binding of cholera
toxin is followed by uptake via a clathrin-dependent mechanism. Recently, ‘anti-glycosyl’ antibodies were shown to be
deposited in the enterocyte brush border. When the antibodies were removed from the membrane, other carbohydrate-
binding proteins, including cholera toxin, increased their binding to the brush border. Thus, anti-glycosyl antibodies may
serve as guardians of glycolipid-based rafts, protecting them from lumenal pathogens and in this way be part of an ongoing
‘cross-talk’ between indigenous bacteria and the host.
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gens, and secondly, it must be capable of extracting
nutrients from the environment. Both these de-
mands call for a cell surface that is stable rather
than dynamic and in addition is sufficiently robust to
withstand external challenges of various kinds, such
as an acid pH, degradative enzymes (proteases,
lipases, glycosidases), detergents (bile acids), and
invading pathogens. Work over the last few years has
revealed a unique lipid raft organization related to
the function of the apical membrane in epithelial
cells and this new insight will be the subject of the
present review.

Introduction

A hallmark of epithelial cells in multicellular organ-
isms is their simultaneous and direct contact with
two very different types of environments; on the one
side they face the interior of the organism and on the
other, they are exposed to the external milieu or the
lumen of an internal organ. Because of this duality
epithelial cells are architecturally and functionally
polarized. The inward-facing (basolateral) surface
needs to be equipped with a full complement of
receptors enabling the epithelial cell to decode and
execute all instructions emanating from the control
centers of the organism regarding growth, differen-

tiation, migration, and apoptosis. Consequently, the The apical membrane architecture:

main priority for the basolateral surface is to be
dynamic and adaptable to rapid changes related to
the generation/termination of signaling cascades and
membrane remodeling. In contrast, the main func-
tional priority for the apical cell surface facing the
exterior is to act as a selective filter: Firstly, it must
constitute a permeability barrier protecting the
organism from hazardous agents, including patho-

A microvillar brush border

Although microvillar protrusions can be found on
many cell types they are particularly plentiful at the
apical surface of epithelial cells. Architecturally, they
are defined by a longitudinal actin-based cytoskele-
ton in the core of the microvillus together with short,
actin-binding cross filaments connected transversely
with the cytoplasmic leaflet of the microvillar mem-
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brane and the core actin filaments (Louvard et al.
1992, Mooseker et al. 1983). These radiate vertically
as microvillar rootlets into the so-called terminal web
region, a myosin-rich filamentous structure that may
extend up to 1 pum into the cell. A high density of
microvilli (up to 3000/cell) constitutes a brush
border, which is typically seen at the apical surface
of epithelial cells specifically designed for high-
throughput absorptive functions, such as the kidney
proximal tubule cell, the placental syncytiotropho-
blast and the small intestinal enterocyte (Figure 1).
Another distinct anatomical feature of brush borders
is deep apical tubules, situated between adjacent
microvilli. These structures, which can be visualized
by electron dense membrane impermeable markers,
such as Ruthenium Red, are often seen in close
contact with the microvillar actin rootlets, have a
diameter of 50-100 nm and extend up to 1 pm into
the cytoplasm (Hansen et al. 2003, Maunsbach,
1973, Maunsbach 1976). Functionally, the deep
apical tubules are likely areas of the apical cell
surface specialized in endo/exocytotic membrane
trafficking, because they bridge the terminal web
area which otherwise sterically excludes larger mem-
braneous structures such as mitochondria, lyso-
somes and endosomes (Figure 1).

Although still controversial (see below), lipid rafts
are now generally believed to exist in most if not all
membranes of eukaryotic cells, and the raft- or
‘membrane cluster’ hypothesis originally emerged
from studies on the asymmetric transport and
distribution of membrane lipids in MDCK cells

(Simons & van Meer 1988, van Meer et al. 1987).
The liquid-ordered (I, phase) state characteristic of
raft microdomains is generally believed to be caused
by the clustering of the raft-forming membrane
lipids cholesterol and sphingolipids (Brown & Lon-
don 1998, Simons & Ikonen 1997), but it is worth
noting that the relative amounts of these constituents
may vary considerably, particularly in apical mem-
branes of epithelial cells. Thus, a typical plasma
membrane of a mammalian cell contains about 20%
cholesterol, 15-20% sphingomyelin and about 5%
glycolipids, and in line with this composition,
cholesterol and sphingomyelin together comprise
about 65% of the total lipid of detergent resistant
membranes from kidney proximal tubule cells (Par-
kin et al. 2001). By comparison, glycolipids are by
far the predominant raft-promoting lipids of the
small intestinal brush border, making up > 30% of
the total lipid, whereas cholesterol and sphingomye-
lin are only present in modest amounts (about 10-
and 5%, respectively) (Christiansen & Carlsen 1981,
Hauser et al. 1980, Kawai et al. 1974). In view of
this unusual lipid composition, it is not surprising
that lipid rafts from small intestinal brush borders
have proven to be largely resistant to cholesterol
depletion (Hansen et al. 2001), and that caveolin-1,
a cholesterol-binding marker for the caveolar-type of
rafts (Okamoto et al. 1998, Schlegel et al. 2000), is
largely detergent-soluble in the small intestinal brush
border (Hansen et al. 2001). This significant differ-
ence in lipid microdomain environment may also
help explain why a number of transmembrane
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Figure 1. Epithelial cells with an apical brush border. (A) Tall, columnar small intestinal enterocytes with a brush border facing the lumen
of the gut. The apoptotoic cell in the middle is in the process of being extruded from the epithelium. (B) A closer view of the apical region of
an enterocyte showing a dense array of microvilli with rootlets of actin filaments extending into the underlying cytoplasm. Notice that
organelles such as mitochondria, lysosomes and endosomes are excluded from this uppermost terminal web region of the cytoplasm.



peptidases (aminopeptidases N- and A and dipepti-
dyl peptidase IV) which are predominantly deter-
gent-soluble in the kidney (Hooper & Bashir 1991,
Hooper & Turner 1988) are largely resistant to
detergent in the intestine (Alfalah et al. 1999,
Alfalah et al. 2002, Danielsen 1995, Mirre et al.
1996). Nevertheless, one should be careful not to
view the small intestinal brush border as simply one
gigantic raft: some of the major digestive enzymes,
such as lactase and maltase-glucoamylase, are pro-
minent examples of proteins not associated with
lipid rafts.

Detergent resistant membranes (DRM’s) and
lipid rafts: A true picture?

Despite the surge in raft papers of recent years and
the inclusion of the raft concept in all major text-
books of cell biology, most seasoned membrane
biologists are well aware of the pitfalls within the
field of raftology in which the most serious is the
shortage of evidence for the bona fide existence of
lipid rafts in the membranes of living cells (Munro
2003). So far, most of the experimental evidence
concerning lipid rafts is indirect. Thus, the most
widely used assay for raft existence is based on the
observation that when cell membranes are extracted
with the nonionic detergent Triton X-100 at 4°C,
only a subset of the components is solubilized. When
the membrane extract is subsequently layered at the
bottom of a density gradient and subjected to
centrifugation, detergent-resistant raft membranes
(DRMs) will float and thus separate from the ‘non-
raft’ components (Brown & Rose 1992). The major
concern with this type of experiment is the possibi-
lity of nonphysiological rearrangements arising from
the temperature-dependence of lipid phase beha-
viour. In other words, lipid rafts might simply be
low-temperature artifacts. Another concern is the
compositional asymmetry of the inner and outer
leaflets, which through detergent-induced formation
of holes in the membrane might become mixed
during the extraction procedure. Finally, differential
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sensitivity of the two membrane bilayers to Triton X-
100 might result in transient unstable structures
such as monolayers (Munro, 2003).

Relevant as they are, at least some of these caveats
have been addressed. Thus, the near monopoly
status of Triton X-100 as detergent for raft analysis
has been broken by a number of studies using a
variety of nonionic detergents. One detergent in
particular, Brij 98, has attracted interest by its ability
to isolate rafts from a number of different cell types
at physiological temperature (Braccia et al. 2003,
Danielsen & Hansen 2003, Drevot et al. 2002, Holm
et al. 2003, Munoz et al. 2003, Schuck et al. 2003).
From these works, it is fair to conclude that lipid
rafts per se are not artifacts created iz vitro simply by
temperature-induced phase transition of the mem-
brane lipids. Of equal importance, it can also be
concluded that although the lipid-lipid and lipid-
protein interactions defining raft microdomains are
generally weak, they are sufficiently strong to form at
the surface of living cells at 37°C.

As shown in Figure 2, a close examination by
electron microscopy of the ultrastructure of lipid
rafts from small intestinal brush borders does not
lend support to the notion that components from the
two bilayers mix during detergent extraction. Thus,
immunogold labeling for the ectoenzyme aminopep-
tidase N is generally observed only along one of the
two membrane leaflets. In addition, high magnifica-
tion images of rafts reveal an intact bilayer structure.

No doubt questions concerning lipid raft size,
stability and functional relevance will continue to be
debated. However, few membrane biologists today
will question that functional protein-protein interac-
tions occurring at the surface of living cells can be
influenced by the lipid microdomain environment in
which they take place.

Galectin-4: An organizer and stabilizer of
glycolipid-based lipid rafts in the brush border

Galectin-4 belongs to the galectin family of f-
galactoside-binding proteins and members of the

Figure 2. Bilayer membrane structure of lipid rafts. Lipid rafts prepared from intestinal microvillar membranes, using Brij 98 (A, B) or
Triton X-100 (C) (Braccia et al. 2003). (A) Immunogold labeling for aminopeptidase N. Note that the labeling is confined mainly to one
side of the membrane. (B, C) High magnification electron micrographs of raft membranes. The two leaflets of the bilayer are visible

regardless of choice of detergent. Bars: 200 nm.
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family have been found in a variety of tissues and cell
types and been implicated in a host of diverse
physiological functions (Barondes et al. 1994, Drick-
amer & Taylor 1993, Huflejt & Leffler 2004).
Galectin-4, originally discovered in rat intestinal
extracts (Leffler et al. 1989), is a 36-kDa protein
and comprises two carbohydrate recognition do-
mains that both bind lactose with a similar affinity
but have differential affinities for other saccharides.
This divalency makes galectin-4 a natural cross-
linker, but in a modified sense because the two
carbohydrate recognition domains have separate
subset of ligands. Its expression is confined to the
entire length of the gastrointestinal tract both during
development and in normal adult tissue, but in
addition galectin-4 expression is induced in cancers
from other tissues (Huflejt & Leffler 2004). Like
other members of the family, galectin-4 is synthe-
sized without a signal for membrane translocation,
but by a poorly understood process of ‘nonclassical’
secretion (Nickel 2003, Nickel 2005), it is targeted
to the extracellular side of the small intestinal brush
border where it is firmly associated with lipid rafts
and binds to other proteins, including the major
brush border enzymes aminopeptidase N and su-
crase-isomaltase (Danielsen & van Deurs 1997). In a
recent study, galectin-4 was shown to associate with
a wide range of sulfated glycolipids and the carci-
noembryonic antigen in patches on the surface of
human colonadenocarcinoma cells (Ideo et al.
2005). It thus seems fair to conclude that galectin-
4 indeed has the ability to cross-link a broad
repertoire of glycoconjugates. Furthermore, that
galectin-4 is not just a passive raft component but
probably serves a major role as a raft organizer/
stabilizer (Braccia et al. 2003) is indicated by the
following observations: (i) Release of galectin-4 from
the membrane by lactose also releases other raft-
associated proteins, such as aminopeptidase N and
alkaline phosphatase; (i) By sequential extraction
with Triton X-100 at increasing temperature (0, 20,-
and 37°C), a fraction of ‘superrafts’ (membranes
resisting extraction with Triton X-100 at physiolo-
gical temperature) could be obtained in which
galectin-4 is greatly enriched relative to other raft
components. Together, these properties indicate that
galectin-4 is a core constituent of glycolipid-based
rafts.

The general question concerning size and stability
of lipid rafts iz sizu has been a highly disputed topic
among ‘raftologists’ for a long time (Anderson &
Jacobson 2002, Edidin 2001, Hooper 1998), but a
consensus seems to be emerging that rafts are
typically rather small (maybe as small as a single
protein molecule surrounded by a cluster of raft lipid
molecules) and transient. This concept of very small

and dynamic rafts or ‘shells’ (Anderson & Jacobson
2002) that may be triggered to assemble into larger
functional microdomains fits well with the formation
of signal transduction complexes (signalosomes)
following activation of cell surface receptors (Harder
2004, He et al. 2005, Pike 2003, Simons & Toomre
2000, Werlen & Palmer 2002). However, this trendy
concept does not agree well with the properties
described above concerning the glycolipid-based
rafts containing galectin-4 as a cross-linker of
glycoconjugated membrane lipids and proteins.
That lipid rafts in the small intestinal brush border
are stable, rather than transient, and also of a
substantial size has also been indicated by the
possibility to separate microvillar membrane vesicles
(which are about 100 nm in diameter) into raft-rich
and raft-poor types without the use of detergents
(Hansen et al. 2001). With regard to size they may
therefore be examples of naturally occurring micro-
domains that can only be mimicked experimentally
with other types of cell membranes when raft
proteins are forced to coalesce by antibody-induced
‘copatching’ (Harder et al. 1998).

Functional roles of glycolipid-based rafts

The small intestinal brush border is designed to
function as a digestive surface that is maximally
prepared at all times for processing dietary nutrients
into small, non-hazardous molecules that can be
safely absorbed by membrane transporters (Trier
1968). This digestive/absorptive strategy implies that
apical fluid-phase uptake of nutrients by endocytosis
in the intestine must be kept at a minimal rate. In
contrast, the kidney proximal tubule cell, which
morphologically resembles the small intestinal en-
terocyte, mainly relies on endocytosis followed by
digestion in the lysosomes (Maunsbach 1976).
Therefore, it may well be that the organization into
glycolipid-based microdomains stably cross-linked
by galectin-4 and possibly by other members of the
galectin family in the small intestine serves as a
mechanism to limit endocytosis. In support of this
notion, it has previously been shown that another
type of large lipid raft domains, caveolae, represent
highly stable plasma membrane compartments not
involved in constitutive endocytosis (Hommelgaard
et al. 2005, Thomsen et al. 2002). Furthermore,
Myola, the brush border myosin that links the
membrane to the microvillar actin cytoskeleton, is
associated with lipid rafts and has been proposed to
be required for the retention of the raft protein
sucrase-isomaltase in the brush border (Tyska &
Mooseker 2004), and in Myola knockout mice, the
brush border localization of galectin-4 and other



raft-associated proteins was affected (Tyska et al.
2005).

In a recent paper, galectin-4 was shown to play a
functional role in apical trafficking in enterocyte-like
cells (Delacour et al. 2005). Thus, the lectin was
detected on post-Golgi carrier vesicles of HT-29
5M12 cells, and a knockdown of galectin-4 expres-
sion by 80% using RNA interference (RNAi) caused
apical membrane markers to accumulate intracellu-
larly while the localization of a basolateral marker
was unaffected. The same group had previously
shown that a glycosylation inhibitor, 1-benzyl-2-
acetamido-2-deoxy-a-D-galactopyranoside, likewise
perturbs apical trafficking in this cell type (Delacour
et al. 2003). Sulfatides with long chain-hydroxylated
fatty acids were prominent constituents of DRM’s
isolated from these cells, and as also reported by
another group (Ideo et al. 2005), this particular class
of glycolipids were identified as high-affinity ligands
for galectin-4, forming ‘superraft’ complexes resist-
ing solubilization with Triton X-100 at 37°C (Dela-
cour et al. 2005).

Annexin A2 (annexin II) is another cytosolic, lipid
raft-associated protein (Harder & Gerke 1994) that
like galectin-4 is translocated to the lumenal side of
the small intestinal brush border membrane by
nonclassical secretion (Danielsen et al. 2003). Like
galectin-4, it was recently shown to be present on
apically destined, exocytic lipid raft vesicles, and a
knockdown of annexin A2 expression by RNAIi
caused these vesicles to accumulate in the submem-
braneous periphery of MDCK cells (Jacob et al.
2004).

Taken together, these findings highlight the im-
portance of stable, glycolipid-based raft microdo-
mains in an intracellular de novo assembly and apical
targeting of preapical domains, but the exact stage
where galectin-4 as well as annexin A2 enter the
exocytic biosynthetic pathway and translocate across
the membrane bilayer remains to be defined.

Lipid rafts as portals for pathogen invasion

However important lipid rafts are as an organizing
principle for the cell membrane, it has become
increasingly clear over the past years that they may
also serve a less beneficial function, namely as
target sites for pathogens during adhesion to/inva-
sion of target cells. Thus, an impressive number of
pathogens, including bacteria, viruses, fungi, para-
sites and toxins specifically recognize raft compo-
nents when making their initial contact with the
target cell (reviewed in (Duncan et al. 2002, Manes
et al. 2003, Rosenberger et al. 2000, Shin &
Abraham 2001). This apparent preference for rafts
most likely reflects their essential property which is
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to cluster a specific subset of membrane compo-
nents, in this case pathogen receptors, within a
confined area of the cell surface. In addition, the
lipid rafts may harbour, or be able to recruit, the
signaling capacity needed to provide an entry into
the cell (Duncan et al. 2002). With regard to
mechanisms of entry, lipid rafts are often thought
to promote internalization by a clathrin-indepen-
dent mechanism, as exemplified by uptake via
caveolae (Duncan et al. 2002, Nichols 2003,
Sharma et al. 2004).

In comparison with other types of cell membranes
the glycolipid-based raft organization of the small
intestinal brush border described above should be
expected to be particularly vulnerable for exploita-
tion by pathogens (Taieb et al. 2004). Cholera toxin
(CT) of Vibrio cholera recognizes the ganglioside
GM,, a widespread raft glycolipid, and probably the
one most frequently used by many investigators
(Sandvig & van Deurs 2002). In the small intestinal
epithelial cell line Caco-2, CT was internalized by a
cholesterol-dependent mechanism involving caveo-
lae-like domains (Orlandi & Fishman 1998). How-
ever, studies of CT uptake in Caco-2 cells by another
group indicated that the toxin may enter the cell
both by clathrin-dependent- and independent me-
chanisms (Torgersen et al. 2001). Since the small
intestinal epithelium is the prime natural target for
CT, we recently investigated how CT crosses the
enterocyte brush border (Hansen et al. 2005a). As
observed with other cell types, CT associated tightly
with microvillar DRMs, but surprisingly the toxin
rapidly induced the formation of numerous apical
clathrin-coated pits- and vesicles, indicating a ‘clas-
sical’ clathrin-dependent mechanism of endocytosis
in native small intestinal epithelial cells. Further-
more, cholesterol depletion with methyl-B-cyclodex-
trin had no measurable effect on CT binding and
uptake. This observation underscores the point that
endocytosis may well be both lipid raft- and clathrin-
dependent, as well as cholesterol-independent. This
notion is somewhat at odds with current beliefs on
endocytosis via lipid rafts (Nichols & Lippincott-
Schwartz 2001), but it makes sense for a cell
membrane like the small intestinal brush border
that contains only low amounts of caveolin (Badiza-
degan et al. 2000), and relies on glycolipids rather
than cholesterol for raft integrity and stability
(Danielsen & Hansen 2003).

Anti-glycosyl antibodies: Guardians of
glycolipid-based rafts

Anti-glycosyl antibodies, which comprise about 1%
of the total amount of circulating antibodies in
humans (Galili et al. 1984), are defined as anti-
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bodies induced in the host by a glycosyl antigen
and which combine with a specific carbohydrate
moiety of that antigen (Pazur et al. 1978). They
were originally isolated by affinity chromatography
on ‘lactoseagarose’ from antisera of rabbits immu-
nized with nonviable cells of Streprococcues faecalis,
which contain an antigenic diheteroglycan of
glucose and galactose in its cell wall. Two sets of
anti-glycosyl antibodies were characterized, one
combining with the terminal galactose residues
(anti-galactose antibodies) and another set combin-
ing with terminal lactose residues (anti-lactose
antibodies) of the same antigen (Pazur et al.
1978). The anti-glycosyl antibodies include both
antibody classes IgG and IgM with the former
showing the highest affinity and being of the anti-
lactose type whilst IgM are of the anti-galactose
type (Mandal et al. 1984). By ‘lactoseagarose’
chromatography, anti-glycosyl antibodies were re-
cently shown to be the major soluble lectin-like
proteins in the small intestine of the pig with
affinity towards lactose (Hansen et al. 2005b).
Surprisingly for this organ, they included substan-
tial amounts of IgM and IgG in addition to IgA,
otherwise considered the principal class of antibo-
dies produced by the gut (Mostov 1994, Neutra et
al. 2001, Rojas & Apodaca 2002). Depositions of
IgM, IgG, and IgA at the small intestinal brush
border were mainly localized in microvillar DRM’s
and could be released by a brief wash with lactose,
implying that a fraction of the anti-glycosyl anti-
bodies are targeted to lipid raft microdomains at
the apical surface of epithelial cells (Figure 3).
Interestingly, a lactose wash releasing the anti-
glycosyl antibodies simultaneously increased the
binding to the brush border of lectin PNA, a
galactosyl-binding plant lectin (Lotan et al. 1975),
as well as cholera toxin B which binds to ganglio-
side GM,;, a glycolipid containing a terminal
galactose residue (Cuatrecasas 1973, Holmgren et
al. 1973). Taken together, these observations led to

the idea that the anti-glycosyl antibodies, by
competing with pathogenic molecules for the ga-
lactosyl/lactosyl binding sites at the brush border,
serve as guardians of apical lipid rafts (Hansen et
al. 2005b).

Host-bacterial ‘crosstalk’

The intestine is host to an immense number of
commensal microrganisms that live in harmony with
their host organ. In contrast, it takes only 10—100
single organisms of a pathogen such as Shigella to
destroy this peaceful coexistence and cause disease
(Kohler et al. 2003). Maintaining health, as well as
causing disease, depends upon interactive processes
taking place between the intestinal epithelium and
the bacteria and are commonly referred to as ‘cross-
talk’.

One interesting aspect of the host-bacterial cross-
talk is the ability of microorganisms to modulate the
glycosylation pattern of the gut epithelium. Early
studies comparing germ-free and conventional mice
showed that the indigeneous Bacteroides thetaiotao-
micron induces epithelial surface fucosylation, sup-
posedly in order to match the host carbohydrate
structures as substrates for the bacterial glycosidases
(Hooper et al. 2002). In addition, a soluble factor
from B. thetaiotaomicron was shown to specifically
increase the surface galactosylation of the intestinal
cell line HT29-MTX (Freitas et al. 2001). Subse-
quently, the same group has made the observation
that other indigeneous bacteria, Lacrobacillus caset
and Lactobacillus acidophilus in turn generate differ-
ent patterns of host surface glycosylation and
proposed that this crosstalk should be seen as a
potential strategy to reduce receptor recognition by
pathogens (Freitas et al. 2003). In this context the
‘coating’ of the stable lipid rafts of the brush border
by anti-glycosyl antibodies mentioned above can be
viewed as yet another manifestation of the ongoing
host-bacterial crosstalk.

Figure 3. IgG and IgA in the enterocyte brush border. Cryosections of the crypt region of small intestinal mucosa labeled for IgG (A) or
IgA (B). Both immunoglobulin classes are deposited in the brush border of enterocytes (arrows). Labeling is also seen along the basolateral
surface of the enterocytes (E), as well as in plasma cells of the lamina propria (LP). Bars: 10 pm. This figure is reproduced in colour in

Molecular Membrane Biology online.



Conclusion and future perspectives

The aim of this review has been to describe the
special type of lipid raft organization in epithelial
brush borders that is rather different from our
general concept of these membrane microdomains.
Thus, lectins, examplified by galectin-4, seem to
play a key role in conferring stability to these mainly
glycolipid-based rafts. In the near future, it would be
interesting to define more clearly how galectins and
similar lectin-like proteins may play a role also in the
intracellular assembly and apical targeting of pre-
apical domains. To tackle this problem, we will need
to learn more about how and where soluble galectins
manage to translocate the cell membrane and gain
access to their ligands. Much the same holds for
annexin A2, which, as described above, is another
interesting candidate protein for playing a pivotal
role in the apical targeting. Like galectin-4, annexin
A2 is a soluble protein with divalent, raft-binding
properties that exits the cytoplasm by a nonclassical
mechanism. Unfortunately, nonclassical secretion of
proteins remains an ill-defined concept despite the
fact that the phenomenon has been known for many
years (Nickel 2003, Nickel 2005). Galectins and
annexins might hold the clue to solve this mystery
concept.
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