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Leeds, Leeds, UK
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Abstract
Prions are the causative agent of the transmissible spongiform encephalopathies, such as Creutzfeldt-Jakob disease in
humans. In these prion diseases the normal cellular form of the prion protein (PrPC) undergoes a post-translational
conformational conversion to the infectious form (PrPSc). PrPC associates with cholesterol- and glycosphingolipid-rich lipid
rafts through association of its glycosyl-phosphatidylinositol (GPI) anchor with saturated raft lipids and through interaction
of its N-terminal region with an as yet unidentified raft associated molecule. PrPC resides in detergent-resistant domains
that have different lipid and protein compositions to the domains occupied by another GPI-anchored protein, Thy-1. In
some cells PrPC may endocytose through caveolae, but in neuronal cells, upon copper binding to the N-terminal
octapeptide repeats, the protein translocates out of rafts into detergent-soluble regions of the plasma membrane prior to
endocytosis through clathrin-coated pits. The current data suggest that the polybasic region at its N-terminus is required to
engage PrPC with a transmembrane adaptor protein which in turn links with the clathrin endocytic machinery. PrPC

associates in rafts with a variety of signalling molecules, including caveolin-1 and Fyn and Src tyrosine kinases. The
clustering of PrPC triggers a range of signal transduction processes, including the recruitment of the neural cell adhesion
molecule to rafts which in turn promotes neurite outgrowth. Lipid rafts appear to be involved in the conformational
conversion of PrPC to PrPSc, possibly by providing a favourable environment for this process to occur and enabling disease
progression.
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Introduction

Prions are the causative agent of the transmissible

spongiform encephalopathies (TSEs). This group of

diseases includes scrapie in sheep, bovine spongi-

form encephalopathy in cattle and Creutzfeldt-Jakob

disease (CJD) in humans. In these diseases the

cellular isoform of the prion protein (PrPC) is post-

translationally misfolded into the infectious scrapie

isoform (PrPSc). PrPC, encoded by the Prpn gene, is

a cell surface glycosyl-phosphatidylinositol (GPI)-

anchored protein expressed by a variety of cell types,

but being particularly abundant in neurons. The

protein consists of a flexible N-terminus, whose

structure remains undetermined, and a C-terminal

globular domain containing predominantly a-helical

secondary structure [1]. According to the protein

only hypothesis [2], an interaction between the

pathogenic PrPSc and endogenous PrPC is sufficient

to cause the template-driven formation of more

PrPSc.

Although PrPC is essential for the development of

prion disease [3], the normal physiological func-

tion(s) of PrPC remains largely unknown. However,

a growing number of studies implicate PrPC in the

cellular resistance to oxidative stress [4], in cell

signalling [5], in copper and zinc metabolism [6,7]

and in synaptic transmission [8]. PrP is associated

for much of its life cycle with cholesterol- and

glycosphingolipid-rich lipid rafts and it is the pur-

pose of this review to explore the role of lipid rafts in

prion protein biology, both for the normal and

disease-associated forms of the protein. In model

membranes containing sphingomyelin, cholesterol

and an unsaturated glycerophospholipid, the satu-

rated lipids pack together in liquid ordered domains

which are characterized by being insoluble in deter-

gents, such as Triton X-100, at 4oC. Although

extraction of membranes with cold non-ionic deter-

gents has been extensively used to isolate ‘rafts’, a

growing body of evidence suggests caution in identi-

fying detergent-resistant membranes (DRMs) with
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rafts in cell membranes [9]. However, as extraction

of membranes with detergents has been widely used

to study the raft association of PrP and other

proteins, for the purpose of this review we have

equated DRMs with rafts in the membrane.

Targeting of PrPC to lipid rafts

GPI anchor-dependent targeting

PrPC is attached to the lipid bilayer via a GPI anchor

which is added to the serine residue at position 231

(murine PrP numbering) [10] (Figure 1). The GPI

anchor is added rapidly to the protein on transloca-

tion into the endoplasmic reticulum (ER), following

the cleavage of the C-terminal GPI anchor addition

signal sequence. Both cleavage of the polypeptide

and addition of the preformed GPI anchor are

carried out by a transamidase complex whose active

site is on the lumenal side of the ER membrane. The

GPI anchor consists of a core tetrasaccharide (three

mannose residues and a glucosamine) linked

through ethanolamine phosphate to Ser-231. The

glucosamine residue is linked to the headgroup of

phosphatidylinositol whose acyl chains contain the

fully saturated stearic acid (C18:0) [10]. On transit

to the cell surface a number of modifications and

additions are made to the core GPI anchor structure,

including the addition of sialic acid to one of the

mannose residues [11]. This latter modification has

only been documented in two other GPI-anchored

proteins, porcine membrane dipeptidase [12] and

human CD59 [13].

GPI anchors have the propensity to target proteins

to lipid raft domains due to their saturated acyl

chains preferentially associating with the saturated

sphingolipids rather than the unsaturated glycero-

phospholipids [14,15]. In their seminal article,

Brown and Rose [16] showed that GPI-anchored

proteins become detergent-insoluble as they traverse

the Golgi due to their association with detergent-

insoluble, cholesterol-rich lipid rafts. The associa-

tion of PrPC with rafts was assumed to occur in the

Golgi, as several studies only detected the mature

protein in DRMs [17�/19]. Recently, however, it was

reported that the immature diglycosylated precursor

of PrPC associates with cholesterol-rich rafts in the

ER [20]. This association was required to facilitate

correct folding of the protein, as cholesterol deple-

tion led to its misfolding. These authors suggested

that association with cholesterol in the ER is

required to target the immature PrPC to rafts or,

perhaps by functioning as a lipochaperone within the

ER, cholesterol directly affects the folding of PrPC

[20].

The association of the GPI anchor with raft

domains in the secretory pathway has been proposed

to be the mechanism by which GPI anchored

proteins are sorted and targeted to the apical surface

of polarized epithelial cells [21], although for some

GPI-anchored proteins it is the N-linked glycans,

not the GPI anchor, that targets the protein to the

apical surface [22]. Interestingly, when transfected

into polarized Fischer rat thyroid (FRT) or Madin

Darby canine kidney (MDCK) cells, PrPC was

targeted to the basolateral membrane [23,24]. The

basolateral targeting of PrPC was maintained after

the cells were subjected to cholesterol depletion,

indicating that the raft association of PrPC is not

required for its exocytic transport [23]. Deletion

mutagenesis studies have revealed that the internal

hydrophobic domain of PrPC (residues 113�/133;

Figure 1) confers basolateral sorting in a dominant

manner [24]. These data imply that the association

of PrPC with rafts in the secretory pathway plays

additional roles than simply membrane targeting.

Non GPI anchor-dependent targeting

Several studies have provided evidence that PrP can

associate with rafts by means other than through its

GPI anchor. Our group has shown that the raft

association of PrPC is not solely dependent upon its

GPI anchor [25]. Using alternatively anchored

forms of PrP expressed in human neuronal SH-

SY5Y cells it was demonstrated that amino acid

residues 23�/90 of the flexible N-terminal domain

(Figure 1) are necessary for this non-GPI-dependent

raft association. Indeed, fusion of these residues to a
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Figure 1. Schematic of PrPC. Nascent murine PrPC is a protein of

254 amino acids. On translocation into the ER the N-terminal

signal peptide (chequered box; red online) and the C-terminal

GPI anchor addition signal (wavy line box; green online) are

removed and the latter replaced with a GPI anchor. The polybasic

region (black; blue online; residues 23�/28) at the N-terminus of

mature PrPC, the copper-binding octapeptide repeats (stippled;

purple online; residues 51-91), the central hydrophobic, neuro-

toxic domain (diagonal lines; light blue online; residues 106-126)

and the two N-linked glycans (black lollipops; Asn-180 and Asn-

196) are indicated. The positions of the raft targeting domain, the

basolateral targeting domain and the sphingolipid binding domain

(see text for details) are indicated below the protein. This figure is

reproduced in colour in Molecular Membrane Biology online.

90 D. R. Taylor & N. M. Hooper



non-raft resident protein was sufficient to redirect

the protein into DRMs. These data are supported by

the observation that the binding of GPI-deficient

PrP to sphingolipid-cholesterol-rich raft-like lipo-

somes (SCRLs) was significantly decreased after

deletion of residues 34�/94 [26]. As all of the protein

interacting partners of PrPC identified to date, such

as the neural cell adhesion molecule (NCAM), stress

inducible protein-1 and the 37 kDa/67 kDa laminin

receptor, interact with PrPC C-terminal to residue

90 (for a review see [27]), the identity of the lipid raft

interacting partner for PrPC, be it protein or lipid,

awaits determination.

Another lipid raft targeting motif identified within

the prion protein is a sphingolipid binding domain

[28] (Figure 1). This was identified through struc-

tural homology to a similar domain in the human

immunodeficiency (HIV)-1 surface envelope protein

gp120. It is also found in the Alzheimer amyloid-b
peptide. Synthetic peptides derived from the pre-

dicted sphingolipid binding domains of these three

proteins interacted with monomolecular films of

galactosylceramide and sphingomyelin. Interest-

ingly, the E200K mutation in PrP associated with

some types of familial CJD occurs within this

binding domain, which is within the disulphide-

linked loop (Cys179�/Cys214), and apparently inter-

fered with sphingomyelin binding [28]. However, as

full-length PrP containing the E200K mutation is

still found in DRMs [29], the significance of this

sphingolipid binding domain in the interaction of

PrPC with rafts in cells is not clear.

Distribution of PrPC in rafts

In studies comparing the membrane microdomains

occupied by PrPC and another GPI-anchored pro-

tein, Thy-1, it was found that the two proteins

displayed differential detergent solubility [30]. The

sphingolipid-rafts containing PrPC were more deter-

gent-soluble than those containing Thy-1, indicating

that PrPC is likely to be present in less tightly

ordered domains than Thy-1. Indeed, immunoaffi-

nity purification studies suggested that domains

containing PrPC border the edges of the more tightly

ordered Thy-1 containing domains [30]. Alternative

explanations are that PrPC is located at the boundary

between two domains or that PrPC and Thy-1 reside

in distinct domains with different compositions and

properties. In a further study, the same group

showed that the lipid composition of the PrPC and

Thy-1 containing DRMs differed markedly [31].

The PrPC DRMs contained a larger proportion of

unsaturated longer chain lipids than the Thy-1

domains. A higher proportion of unsaturated lipids

would be expected to decrease the liquid order of the

PrPC domains.

Doppel, the paralog of PrPC, which is encoded by

the Prnd gene some 16 kb downstream of the Prnp

gene, is a protein of 179 amino acids that is

expressed mainly in the testis and not in the brain

of adult mice [32]. Doppel has sequence and

structural similarity to the C-terminal half of PrP,

but lacks the N-terminal Cu2�-binding octapeptide

repeats. It too is N-glycosylated and GPI anchored

[32]. Doppel is also found in DRMs, although one

study reported that at detergent conditions in which

membrane rafts were intact, it did not co-immuno-

precipitate with PrPC, indicating that the two

proteins are not present in the same raft domains

[33], while another study showed that the two

proteins share common membrane microdomains

and internalization pathways [34].

A growing body of evidence is accumulating to

indicate that rafts are heterogeneous in both protein

and lipid composition, in their cellular localization,

and, hence, in their biological function [35]. The

limited data available for PrPC would be consistent

with this, and thus any consideration of the associa-

tion of PrPC with rafts and raft components almost

certainly has to consider the heterogeneity of such

structures.

Endocytosis of PrPC

Originally, it was proposed by Harris and co-work-

ers, in experiments using chicken PrP (which has

only approx. 30% sequence homology to mamma-

lian PrPs) transfected into mouse neuroblastoma

cells, that PrPC recycles between the cell surface and

an endocytic compartment with a transit time of

approximately 60 minutes [36]. The same group

localized chicken PrPC to clathrin-coated pits and

vesicles by electron microscopy [37]. However, it

was subsequently shown that endogenous PrPC in

murine neuronal N2a and Chinese Hamster Ovary

(CHO) cells was localized in caveolae or morpholo-

gically similar caveolae-like domains [18,38,39].

Caveolae, flask-shaped invaginations of the plasma

membrane that contain the coat protein caveolin-1,

are involved in non-clathrin-dependent endocytosis

[40]. As caveolae appear to be a subset of choles-

terol-rich lipid rafts, depletion of cellular cholesterol

disrupts their endocytosis [41]. In CHO cells that

have endogenous caveolin-1, cryoimmunogold elec-

tron microscopy was used to show that at steady

state PrPC was enriched in caveolae both at the

plasma membrane and at the trans-Golgi network

and in interconnecting chains of endocytic caveolae

[42]. Furthermore, the cholesterol-binding agent

filipin prevented the Cu2�-induced endocytosis of

Prion protein and lipid rafts 91



PrPC in both both neuronal and non-neuronal cells,

leading to the conclusion that endocytosis is occur-

ring through a caveolae-dependent mechanism [43].

However, this conclusion is confused by the fact that

filipin is known also to induce the shedding of PrPC

[43,44]. In addition, as most neuronal cells do not

express caveolin-1 [45,46] and lack morphologically

distinguishable caveolae [37], the role of caveolae in

the endocytosis of PrPC in the brain has to be

questioned.

Clathrin-coated pits are the most well studied

endocytic mechanism and allow the endocytosis of

transmembrane proteins that are recruited to the pits

by interaction of targeting motifs in their cytoplas-

mic tails with various accessory proteins, including

the adaptor protein AP-2, on the cytoplasmic face of

the membrane [47]. As the GPI-anchored PrPC does

not contain transmembrane or cytoplasmic domains,

it would have to associate with a transmembrane

adaptor in order to engage the clathrin endocytic

machinery [48]. There is a precedent for this; the

GPI-anchored urokinase-type plasminogen activator

(uPA)-receptor when bound to uPA is internalized

via interaction with the transmembrane low-density

lipoprotein receptor-related protein-1 [49]. How-

ever, the highly ordered nature of the saturated lipids

in rafts will not permit the tight curvature of the

membrane required for the formation of clathrin-

coated pits [50,51]. Therefore, for a GPI-anchored

protein to be internalized through clathrin-coated

pits it probably has to first translocate out of the rafts

into non-raft regions of the membrane.

Sunyach et al. [50] were the first to report this to

occur during the endocytosis of endogenous PrPC in

both primary sensory neurons and N2a cells. This

was based on 50% of the PrPC in N2a cells being

detergent soluble (where 99% of another GPI-

anchored protein remained detergent insoluble)

and the statistically significant co-localisation of

PrPC with the transferrin receptor and the low

density lipoprotein receptor (as shown by light and

electron microscopy), two prototypical receptors

endocytosed through clathrin-coated pits. A green

fluoresecent protein (GFP)-tagged form of PrP was

shown to internalize via a dynamin-dependent en-

docytic pathway, with the protein being targeted to

the recycling endosomal compartment via Rab5-

positive early endosomes [52]. The steady state

distribution of GFP-GPI between the plasma mem-

brane and early endosomes was not affected by a

Rab5 mutant, implying that the endocytosis of GFP-

PrP is different from other GPI-anchored proteins

and is not determined predominantly by the GPI

anchor [52].

PrPC contains four complete octapeptide repeats

(PHGG(G/S)WGQ) in its N-terminal half that are

capable of binding Cu2� ions [53,54] (Figure 1).

Cu2� ions, at levels similar to those occurring

naturally in the extracellular spaces of the brain,

can stimulate the endocytosis of PrPC in neuronal

cells [6,55]. Recently, we determined the mechan-

ism involved in the Cu2�-stimulated endocytosis

of PrPC in neuronal cells [56] (Figure 2). Under

basal conditions PrPC was associated with DRMs,

PrPC + Cu2+

Clathrin
coated pit

Endocytosis

Cu
Cu

Cu
Cu

AP-2
AP180

Lipid raft                   Non-raft region

Figure 2. PrPC is localized in rafts but translocates out of them before being endocytosed through clathrin-coated pits. PrPC is attached to

the exoplasmic leaflet of the plasma membrane via its GPI anchor and localises within detergent-insoluble rafts through interactions

between its N-terminal region (residues 23-90) and a raft-resident protein (grey; orange online) or lipid. Upon Cu2� binding to the

octapeptide repeats the protein undergoes a conformational change that dissociates it from the raft-resident partner and PrPC then moves

laterally out of the rafts into detergent-soluble regions of the plasma membrane. The polybasic N-terminal region (blue online) then

interacts with the ectodomain of a transmembrane protein (grey; turquoise online) that engages, via its cytoplasmic domain, with the

adaptor protein AP-2 and the endocytic machinery of clathrin-coated pits. Modified from [56]. This figure is reproduced in colour in

Molecular Membrane Biology online.
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however, upon exposure of cells to Cu2� a propor-

tion of PrPC moved into detergent-soluble regions of

the plasma membrane. The subsequent internaliza-

tion of PrPC could be specifically blocked by

selectively inhibiting clathrin-mediated endocytosis.

This was achieved using a tyrosine analogue, tyr-

phostin A23, that specifically disrupts interactions

between transmembrane protein cytoplasmic tail

coated-pit targeting motifs and AP-2 and with a

dominant negative mutant of the clathrin assembly

protein AP180 [56]. The deletion of large parts of

the N-terminal region of PrP has revealed the critical

importance of this region to its endocytosis [57�/59].

More specifically, point mutations within the poly-

basic region (residues 23�/28; Figure 1) disrupted

the constitutive endocytosis of PrPC [50]. Using

mutants of PrPC that either lacked the N-terminal

polybasic region or the octapeptide repeats, we were

able to show that copper binding, perhaps by driving

a conformational change in the protein [60], is

required to dissociate PrPC from lipid rafts, while

the polybasic region is required to mediate the

endocytosis of PrP, possibly through interaction

with a transmembrane adaptor protein [56] (Figure

2). Although we and others have shown that PrPC in

neuronal cells can translocate out of rafts and be

internalized via the clathrin-endocytic machinery,

the involvement of other raft-based endocytic me-

chanisms in the internalization of PrPC in other cells

cannot be ruled out.

PrPC, lipid rafts and signal transduction

In many cells, including neurons, lipid rafts provide

a platform for signal transduction processes [61].

Many-cell surface receptors and cytoplasmic signal-

ling molecules, such as Src family kinases and

trimeric and small GTPases, are concentrated in

DRMs, and caveolin-1, acting as a scaffold protein,

is essential in the regulation and formation of

signalling complexes in rafts. For some years it has

been known that cross-linking with antibodies of

many diverse GPI-anchored proteins results in signal

transduction that is characterized by: (i) transient

elevation of cytoplasmic Ca2� concentrations; (ii)

tyrosine phosphorylation of cellular substrates; and

(iii) triggering of T cell proliferation and differentia-

tion [62]. Therefore, in some ways, it was not too

surprising when it was reported that antibody-

mediated cross-linking of PrPC on the surface of

differentiated murine 1C11 neuronal cells triggered

a signal transduction cascade involving the caveolin-

1-dependent coupling of PrPC to the intracellular

tyrosine kinase Fyn [5]. More recently in the same

differentiated 1C11 cells, it has been reported that

PrPC via caveolin-1 modulates serotonin receptor

coupling to G-proteins, thereby acting as a protago-

nist contributing to the homeostasis of serotoniner-

gic neurons [63]. Further evidence for a role for

PrPC in signal transduction came from the observa-

tion that PrPC interacts with the neuronal phospho-

protein synapsin Ib, the adaptor protein Grb2 and

the prion interactor Pint1 [64].

PrPC has been shown also to be a component of

the multimolecular signalling complex involved in T

cell activation. PrPC associates with gangliosides in

DRMs from neural and lymphocytic cells [65], and

in T cells co-immunoprecipitates with Fyn and, after

T cell activation, with the phosphorylation protein

ZAP-70 [66]. Antibody cross-linking of PrPC on T

cells resulted in its coclustering with the caveolin-like

raft proteins flotillins-1 and -2 (reggie-2 and -1) in

polarized caps [67]. Several signalling molecules,

including Thy-1, CD3/TCR and LAT, were also

directed to the cap and the cross-linking of PrPC

provoked mitogen-activated protein (MAP) kinase

activation and a brief elevation of the intracellular

Ca2� concentration [67].

The activation of intracellular signals implies the

existence of an extracellular ligand(s) capable of

triggering activation of PrPC. One candidate as such

a ligand is the stress-inducible protein 1 that has

been shown to bind to cell surface PrPC and induce

neuroprotective signals via a cAMP/protein kinase

A-dependent pathway that rescues cells from apop-

tosis [68,69]. Another candidate is the neural cell

adhesion molecule (NCAM) which has been re-

ported recently to interact directly both in cis (on the

same cell membrane) and in trans (on neighbouring

membranes) with PrPC at the neuronal cell surface

[70]. PrPC was shown to promote the recruitment of

transmembrane isoforms of NCAM to rafts where

the latter activates Fyn kinase and enhances neurite

outgrowth [70].

However, questions remain as to how the GPI-

anchored PrPC, present on the extracellular face of

the plasma membrane can directly interact with

signalling proteins on the cytosolic face. One sugges-

tion is that transmembrane forms of PrP could link

directly to such cytosolic proteins [64]. Another

possibility is that PrPC links to such cytoplasmic

signalling proteins via one or more transmembrane

adaptors. Interestingly, antibodies against clathrin

reduced, but did not ablate, the level of Fyn

activation upon PrPC cross-linking, implicating cla-

thrin in mediating, in part, the signal transduction

from PrPC [5]. Whether this is due to a proportion

of PrPC engaging with a transmembrane adaptor

protein within clathrin-coated pits (see above)

remains to be determined. Clustering of PrPC

with antibodies on the surface of GT1-7 neurohy-

pothalamic cells resulted in a rapid and transient
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phosphorylation of the MAP kinases extracellular

receptor kinases 1 and 2 (ERK1/2) and the micro-

tubule-destabilizing protein stathmin [71], the latter

protein being phosphorylated on Ser-16. Phosphor-

ylation of stathmin on Ser-16 is induced upon

activation of the transmembrane tyrosine kinase

epidermal growth factor receptor (EGFR) and these

authors were able to show that a specific EGFR

inhibitor blocked both signalling pathways, indicat-

ing a recruitment and transactivation of EGFR upon

antibody-mediated PrPC clustering [71]. This sug-

gests that EGFR could be a functional transmem-

brane partner of PrPC. Interestingly, prior to ligand

binding to EGFR in quiescent fibroblasts, a signifi-

cant portion (65%) of the receptor is in the low

density plasma membrane fractions that contain

caveolae and non-caveolae rafts [72]. After ligand

binding, activated receptors rapidly move from this

membrane fraction to non-raft regions of the plasma

membrane where they are internalized by clathrin-

coated pits [73]. Other candidates as signal trans-

duction transmembrane adaptors linking PrPC to the

cytosolic signalling proteins are the transmembrane

isoforms of NCAM [70] (see above).

Although binding of stress-inducible protein 1 to

PrPC induced neuroprotective signals [69] and PrPC

activates phosphatidylinositol 3-kinase that plays a

pivotal role in cell survival [74], another study

reported that cross-linking of PrPC in vivo with

specific monoclonal antibodies triggered rapid and

extensive apoptosis in hippocampal and cerebellar

neurons [75]. From these and other studies it is not

clear whether different ligands, possibly in different

cell types, could promote alternative signalling path-

ways, or whether the localization of PrPC in different

rafts or in raft and non-raft domains of the mem-

brane could trigger different cellular responses. As

yet no data have been presented to show whether the

localization of PrPC in rafts is critical for these two

opposing responses.

One mechanism that could account for these

apparently contradictory results would be if PrPC

resides in multiple subtypes of raft that differ in their

protein (and lipid) compositions or if under basal

conditions PrPC in one type of raft is segregated

from particular signalling molecules which reside in

another raft. Upon ligand binding or antibody cross-

linking the PrPC containing rafts fuse with the rafts

containing a particular subset of signalling molecules

and the appropriate signal transduction cascade and

cellular response is triggered. In relation to PrPC,

evidence for the existence of different subtypes of

rafts comes from the observation that in cerebellar

granule cells DRMs containing most of PrPC, GAP-

43 and protein kinase C can be separated from those

DRMs containing Fyn and MARCKS [76] and that

PrPC and Thy-1 are present in different DRMs [30]

(see above). Moreover, in resting human T cells

PrPC was predominantly localized to non-raft re-

gions of the plasma membrane but upon antibody

cross-linking was recruited into rafts where it acti-

vated the Src tyrosine kinase [77]. This mechanism

would be consistent with the emerging view that

rafts may normally be relatively small, containing

one or only a few protein molecules preferentially

surrounded by a small group of lipids, so-called

‘lipid shells’ [78]. Upon cell stimulation or antibody

cross-linking these small domains fuse together to

form larger platforms [79]. The protein composi-

tion, and hence biological properties, of these larger,

induced platforms will depend on which particular

domains fuse in response to a particular stimulus.

Role of lipid rafts in the conversion of PrPC to

PrPSc

Lipid rafts appear to play a critical role in the

conformational conversion of PrPC to PrPSc [80].

Depletion of cellular cholesterol with the HMG CoA

reductase inhibitor lovastatin, the polyene antibiotic

filipin or the squalene synthase inhibitor squalesta-

tin, diminished the formation of PrPSc [17,43,81]

and removing PrPC from rafts by replacing its GPI

anchor addition signal with the transmembrane and

cytosolic domains from non-raft proteins, prevented

the formation of PrPSc [17,39]. PrPSc is present in

DRMs, although it did not cofractionate with PrPC

on a Nycodenz density gradient suggesting that the

two forms of the protein may be located in distinct

DRMs of different densities and composition

[18,19].

The conversion of PrPC-like proteinase K-sensi-

tive PrP (PrP-sen) to PrPSc-like proteinase K-resis-

tant PrP (PrP-res) by exogenous PrP-res in a

cell-free system has provided further insight into

the role of rafts and the GPI anchor on PrPC in

the conversion process. In this cell-free conversion

assay, raft-bound PrP-sen resisted conversion to

PrP-res unless the PrP-sen was released from rafts

by phospholipase C digestion or the PrP-sen was

inserted into contiguous membranes with the source

PrP-res by polyethylene glycol fusion [26,82]. Some-

what surprisingly, removal of the GPI anchor from

the PrP-sen led to its conversion to PrP-res without

phospholipase or polyethylene glycol treatment.

These observations led Caughey and coworkers

[82] to conclude that generation of new PrPSc

during TSE infection requires: (i) removal of PrPC

from target cells, (ii) an exchange of membranes

between cells, or (iii) insertion of incoming PrPSc

into the raft domains of recipient cells. A more

recent study using a modified version of the protein
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misfolding cyclic amplification (PMCA) cell-free

conversion assay also observed that membrane

attachment is not required for PrP-sen to convert

efficiently into PrP-res [83]. However, incubation of

N2a cells with filipin, which induces the shedding of

PrPC, inhibited the formation of PrP-res raising the

possibility that the release of PrPC from the plasma

membrane may decrease the amount of PrPC avail-

able for conversion to PrPSc [43].

In vitro structural studies in model raft mem-

branes using recombinant Syrian hamster PrP (re-

sidues 90�/231) showed that when refolded into

‘a-PrP’, a conformation containing predominantly

a-helical secondary structure, the a-helix content

increased on binding of the protein to raft-like

membranes and that this form of the protein was

protected from aggregation and fibrillization [84]. In

contrast, refolded ‘b-PrP’, which has predominantly

b-sheet secondary structure, was converted into

amyloid fibrils on binding to raft-like membranes

[85]. a-PrP was found to bind, with decreasing

affinity, to palmitoyloleoylphosphatidylglycerol, di-

palmitoylphosphatidylcholine and raft-like mem-

branes, suggesting that the majority of PrP may

exist preferentially outside of lipid rafts in the steady

state [86]. However, caution should be taken when

interpreting the results of studies using recombinant

bacterially-expressed truncated forms of PrP that do

not contain any of the mammalian cell post-tansla-

tional modifications, including the GPI anchor.

Evidence that PrPC and PrPSc need to be mem-

brane-bound in order for conversion to occur came

from a study in which infected Scrapie mouse brain

(SMB) cells were co-cultured with uninfected target

cells [87]. This study showed that cell contact was

required for efficient conversion of PrPC on the

target cells. Both PrPC and PrPSc are released into

the extracellular environment in association with

exosomes, membranous vesicles that are secreted

upon fusion of multivesicular endosomes with the

plasma membrane [88]. As these exosomes bearing

PrPSc are infectious, they may represent a mechan-

ism by which PrPSc is exchanged between mem-

branes and enable the spread of PrPSc throughout

the organism [88]. As shown for other GPI-an-

chored proteins, PrPC can also be transferred

efficiently between cells, a process that is dependent

on an intact GPI anchor [89].

A recent study using scrapie-infected transgenic

mice expressing PrP lacking the GPI anchor, re-

ported that abnormal PrP-res was deposited as

amyloid plaques, rather then the usual nonamyloid

form of PrP-res, which, although able to induce

brain damage reminiscent of Alzheimer’s disease,

had minimal clinical manifestations [90]. In addi-

tion, combined expression of anchorless and wild-

type PrP produced accelerated clinical scrapie [90].

These observations imply that the GPI anchor plays

a critical role in the presentation and progression of

prion disease, and that there is a link between the cell

surface topology of PrPSc and prion disease patho-

genesis. By disengaging PrPC from the cell surface,

Chesebro and colleagues effectively uncoupled clin-

ical disease from PrPSc formation [91]. The available

data can be accommodated in the following model

(Figure 3). For conversion and disease progression,

the incoming PrPSc has to be inserted into a

contiguous membrane with PrPC. Rafts provide a

favourable environment for conformational conver-

sion of PrPC to PrPSc, by concentrating the proteins

within confined regions of the membrane, by align-

ing them in a way that promotes their interaction or

by providing accessory molecules that are required

for formation of PrPSc [20,80]. The conversion

to PrPSc may affect signalling events involving

PrPC, leading to the removal of neuroprotective

signals and/or to the initiation of neurotoxic signals

[91] (Figure 3). Soluble PrPC devoid of its mem-

brane attachment can be converted into PrPSc,

possibly more efficiently than membrane-bound

PrPC, but lack of membrane-anchorage prevents

PrPSc

PrPC

Neuroprotective
signal

Neurotoxic
signal

Lipid raft

Figure 3. A model for the role of lipid rafts in the conversion of PrPC to PrPSc and subsequent disease progression. PrPC is attached to the

membrane via its GPI anchor and upon clustering in lipid rafts transduces neuroprotective signals into the cell. Infectious PrPSc inserts into

the target cell membrane alongside the PrPC in the rafts. Conversion of the PrPC to PrPSc may affect signalling events involving PrPC,

leading to neurotoxicity and cell death. Reproduced with permission from [91]. This figure is reproduced in colour in Molecular Membrane

Biology online.
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disease progression as it fails to disrupt signal

transduction processes.

Interestingly, during scrapie infection, although

PrP-res accumulated in DRMs from retinas and

optic nerves of mice, the PrPC interacting proteins

caveolin-1 and synaptophysin were redistributed to

detergent-soluble fractions [92]. This alteration of

the distribution of caveolin-1, synaptophysin and

possibly other cytoplasmic signalling proteins upon

prion replication could provide a mechanism by

which signal transduction processes emanating from

PrP on the surface of infected cells could be altered.

Such alterations in signal transduction from PrPC

may in turn contribute to disease pathogenesis.

However, it remains to be seen what effect prion

infection and the conversion of PrPC to PrPSc has on

serotoninergic functions, neurite outgrowth and

other PrPC-dependent functions.

Conclusions

It is clear that lipid rafts play a key role in both the

normal and the pathological functioning of PrP. The

association of PrPC with rafts is not a static event but

should be considered as a dynamic process, with the

protein exiting and entering rafts, and with the rafts

containing PrPC fusing with other domains.

Although PrPC probably interacts with rafts primar-

ily via its GPI anchor, a region in its N-terminus is

also important for regulating its raft association

through interaction with an as yet unidentified raft

component. Transmembrane adaptor proteins, both

within rafts and in non-raft regions of the mem-

brane, play important roles in the signal transduc-

tion and endocytosis of PrPC, respectively. Signal

transduction from PrPC may be enhanced by the

clustering of small raft domains containing PrPC,

with other domains containing particular signalling

proteins, although the precise molecular mechan-

isms by which clustering of PrPC triggers a variety of

cellular responses requires further work. Finally,

rafts are critically involved in the conformational

conversion of PrPC to PrPSc, by providing a favour-

able environment for this process to occur and

enabling disease progression. Whether conversion

to PrPSc alters signal transduction processes emanat-

ing from PrPC in rafts remains to be clarified.
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