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ABSTRACT

In humans, exposure to early life adversity has profound implications for susceptibility to developing
neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during
early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids
are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear
and membrane-associated steroid receptors. Unlike other steroids that can also be made in the
brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The
relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood.
However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids,
and their neuroactive metabolites in both developmental and adult stress paradigms strongly
suggest that these molecules may be important players in stress effects on brain circuits and
behavior. In this review, we discuss the influence of developmental and adult stress on various
components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids
and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate
systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel
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therapeutic targets for stress-related conditions.

Introduction

The word “hormone” was first used over 100years ago to
describe “the chemical messengers which, speeding from cell
to cell along the bloodstream, may coordinate the activities
and growth of different parts of the body” (Starling, 1905).
Originating from the Greek root hormon, which means “to
arouse or excite,” the term was coined to describe secretin, a
substance derived from the digestive system. As more mole-
cules that are produced in the periphery, released into the
bloodstream, and act on distant targets were discovered and
characterized, the term hormone became generally accepted
by the scientific community. Hormones can be roughly
divided into three major biochemical classes: (1) steroids; (2)
peptides; and (3) amino acid derivatives (Tata, 2005). This
review will focus only on the first in this list — steroids.
Many of the molecules originally designated as hormones
can be produced in non-endocrine tissue where they exert
local action. This is common in the brain where molecules
originally designated as hormones are produced by neurons
and glia, and have paracrine, autocrine, and intracrine func-
tions. This means they can act on cells nearby the synthesiz-
ing cell, act on the synthesizing cell itself, or act within the
synthesizing cell, respectively (Rubinow, 2018; Saldanha et al.,
2011). Despite compelling evidence for brain synthesis and
non-endocrine action of these molecules, the widespread
adoption of the term hormone to describe molecules that

have broader mechanisms of action has led to common mis-
understandings and obstacles to progress in the field. This is
particularly true for some steroid molecules that were origi-
nally discovered as originating from the gonads (progesto-
gens, estrogens, androgens) and adrenals (corticosteroids).
These molecules were first characterized for their roles in
reproductive function and stress responses respectively. It is
now abundantly clear that progestogens, estrogens, andro-
gens, and glucocorticoids can be made in the brain where
they act on steroid receptors locally (Lloyd-Evans &
Waller-Evans, 2020), or in some cases are further metabolized
into neurosteroids that can serve as allosteric modulators of
neurotransmitter receptors (Wang, 2011). Nonetheless, com-
mon misperceptions exist due to the original discovery and
characterization of these molecules as hormones. For exam-
ple, estradiol is widely considered to be a “female sex hor-
mone” due to its peripheral actions, but it is present in much
higher concentrations in the brains of adult males than
females (Hojo & Kawato, 2018). Furthermore, molecules origi-
nally associated with female reproduction, such as progester-
one, are increased in the periphery and brains of both males
and females in response to stress (Shors et al., 2001; Romeo
et al, 2007; Laham et al., 2022).

The broad regional synthesis of steroids and their multiple
mechanisms of action have complicated attempts to under-
stand their roles in stress effects, particularly in the context of
sex differences. This review attempts to integrate information
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about peripheral and brain concentrations and actions of pro-
gestogens, androgens, estrogens, and glucocorticoids, and
their metabolites (Table 1), in the context of early life stress
effects on neurons, glia, and the extracellular matrix in the
brain. The review focuses primarily on brain regions that have
been implicated in stress effects and cognitive/emotional pro-
cessing, including the hippocampus (HIP), basolateral amyg-
dala (BLA), and prefrontal cortex (PFC). To set the stage for
this endeavor, we start with a brief description of steroid syn-
thesis in the periphery and brain.

Sex steroid and glucocorticoid synthesis begins
with cholesterol

Progestogens, estrogens, androgens, and corticosteroids are
made from cholesterol. Cholesterol is produced primarily in
the body with a lower percentage coming from the diet
(Miller & Bose, 2011; Rone et al., 2009). Synthesis of these ste-
roids begins in the mitochondria where cholesterol is trans-
ported from the outer mitochondrial membrane (OMM) to
the inner mitochondrial membrane (IMM) by a lipid binding
protein called steroidogenic acute regulatory protein (StAR)
(Miller & Bose, 2011) (Figure 1). Another downstream protein
to StAR, mitochondrial translocator protein (TSPO), is involved
in transporting cholesterol from OMM to IMM (Papadopoulos
et al., 1997). The mitochondria contain important enzymes for
steroid synthesis, including P450 side-chain cleavage (P450
scc) enzymes (Omura, 2006). The first enzymatic step occurs
in the IMM where cholesterol is converted to pregnenolone
by the catalyzing action of a P450 scc enzyme (Koritz &
Kumar, 1970; Manna et al., 2013; Stocco et al.,, 2005; Stone &
Hechter, 1955).

Pregnenolone can serve as the precursor to many different
steroids that have hormonal action, including progestogens,
estrogens, androgens, and glucocorticoids (Baulieu et al.,
2001) (Figure 2). The presence of relevant enzymes is a main
determining factor of whether tissue that generates pregnen-
olone synthesizes bioactive amounts of these other sub-
stances. On its own, pregnenolone does not exert influence
over sex steroid receptors, but it does have neurosteroid
properties (Vallée et al., 2014) (Figure 2).

Progestogens

In the mitochondria, pregnenolone can be oxidized into proges-
terone (P4), the main progestogen, by the enzyme
3-hydroxysteroid dehydrogenase (3B-HSD) (Simard et al,, 2005)
(Figure 1). Once synthesized, P4 diffuses across the OMM to the
cytosol where it can bind to intracellular nuclear progesterone
receptors (PRs), diffuse across the cell membrane and bind with
membrane-associated PRs on other cells, or enter nearby cells to
exert its action on nuclear PRs. P4 can also enter the endoplas-
mic reticulum where, depending on the presence of specific
enzymes, it can be converted into other metabolites, some of
which also bind to PRs, such as 5a-dihydroprogesterone (DHP)
(Eicheler et al,1994; Guennoun, 2020). It should be noted that
DHP also binds to GABAA receptors so it works as a steroid and
neurosteroid (Guennoun, 2020).

Androgens

An alternative biochemical path for progesterone is oxidation
to 17-OH progesterone and then to the androgen andro-
stenedione by other cytochrome P450 enzymes in the endo-
plasmic reticulum (Fevold et al, 1989; Giatti et al., 2020).
Androstenedione can be converted to testosterone by the
enzyme 17B-hydroxysteroid dehydrogenase (17p3-HSD).
Testosterone is reduced to 5a-dihydrotestosterone (5a-DHT)
by the action of 5a-reductase (Jin & Penning, 2001).
Androstenedione, testosterone and DHT can bind to either
nuclear androgen receptors (ARs), which serve as transcription
factors and alter gene expression, or membrane-associated
androgen receptors, which activate G proteins and alter second
messenger cascades (Hiipakka & Liao, 1998; Zucker et al. 1996).

Estrogens

Progesterone-derived androstenedione can be converted to
the estrogen estrone by the enzyme P450 aro and then to
estradiol, the most prevalent estrogen in mammals, by the
enzyme 173-HSD (Osawa et al., 1993). Estradiol can also be
synthesized by the aromatization of testosterone also through
P450 aro (MacLusky et al., 1994). Both of these biochemical

Table 1. Chemical Names, Common Names, and Abbreviations for Neuroactive Derivatives of Sex Steroids

and Glucocorticoids.

Chemical name Common name Abbreviation
Pregn-4-ene-3,20-dione Progesterone, Pregnenedione P4

17B- estradiol Estradiol E2

17B- hydroxy-4-androsten-3-one Testosterone T

11B, 21-dihydroxy-4-pregnene- 3,20-dione Corticosterone, 17-Deoxycortisol CORT
3a-Hydroxy-5a-pregnan-20-one Allopregnanolone ALLO

3B-Hydroxypregn-5-en-20-one

3a, 21-Dihydroxy-5a-pregnan-20- one
5a-androstan-3a, 17 f -diol
5a-pregnane-3, 20-dione
21-hydroxy-5a-pregnan-20-one
21-Hydroxy-4- pregnene-3,20- dione

3-hydroxyestra-1,3,5 (10)-trien- 17-one

Pregnenolone P5

Tetrahydrodeoxycorticosterone THDOC
Androstanediol 3a-diol
5a-Dihydroprogesterone 5a-DHP
5a-Dihydrodeoxycorticosterone DHDOC
Deoxycorticosterone, DOC
11-Deoxycorticosterone, 21-hydroxyprogesterone

Estrone E1
17-Hydroxyprogesterone 17-OH

17a-hydroxyprogesterone

Progesterone
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Figure 1. Subcellular Compartments for Steroid/Neurosteroid Synthesis. Diagram showing that steroid/neurosteroid synthesis occurs in the mitochondria and endo-

plasmic reticulum.

Cholesterol enters the mitochondria facilitated by StAR and TSPO protein where it is cleaved into pregnenolone by enzyme P450scc. Pregnenolone is converted to progesterone (P4) by
3pB- HSD. In the endoplasmic reticulum, progesterone is converted to testosterone by a two-step pathway. 17-hydroxy progesterone and androstenedione catalyzed by P450c17 and
17B-HSD respectively. T is reduced to 5a-DHT and then 3a-diol. P450 aromatase enzyme (P450 aro) reduces androstenedione and T into estrone and estradiol respectively. In the cyto-
plasm, progesterone is also catalyzed into 5a-DHP and then into allopregnanolone by 5a-reductase and 3a-HSD). Estrone is reversibly converted to estradiol by 17B- HSD. Progesterone
is converted into DOC by 21-hydroxylase which undergoes two subsequent reduction steps by 5a-reductase and 3a-HSD to form THDOC. DOC can also be converted into corticosterone
by 11B-hydroxylase. Enzymes are denoted in red, steroids and neurosteroids in blue boxes. The arrows and directional arrows indicate irreversible and reversible reactions respectively.
Abbreviations; StAR; steroidogenic acute regulatory protein; TSPO, translocator protein; p450scc, P450 side chain cleavage; P4, progesterone; HSD, hydroxysteroid dehydrogenase; 17-OH
progesterone, 17-hydroxyprogesterone; 5a- DHT, 5a- dihydrotestosterone; 5a- DHP, 5a- dihydroprogestrone; DOC, deoxycorticosterone; THDOC, tetrahydrodeoxycorticosterone

reactions occur in the endoplasmic reticulum. Estrogen recep-
tors (ERs) include those that are nuclear, whose activation
alters gene expression, or membrane-associated, whose acti-
vation alters G protein signaling cascades (McEwen, 2002).

Glucocorticoids

An additional biochemical pathway for progesterone is its
conversion to deoxycorticosterone (DOC) by the enzyme
21-hydroxylase. Next, DOC can be converted to corticoste-
rone, the main rodent glucocorticoid, by the action of the
enzyme 11B-hydroxylase. In primates and many other nonro-
dent mammals, the enzyme 17-a hydroxylase, which rodents
lack (Raff, 2016), enables the production of 17a- hydroxypro-
gesterone, a substrate that is converted to cortisol by
21-hydroxylase and 113-hydroxylase (Porcu et al., 2016; Van
Belle, 2017). The steroids involved in both of these pathways
have been shown to bind to both nuclear and
membrane-associated glucocorticoid receptors (GRs) with the
former altering gene expression and the latter activating
G-protein coupled signaling cascades (Heitzer et al., 2007).

Determining factors of sex steroid and
glucocorticoid synthesis

There are many similarities among the biochemical path-
ways involved in the synthesis of progestogens, androgens,
estrogens, and glucocorticoids. First, all of the relevant ste-
roids derive from the same precursor molecule, pregneno-
lone (Figure 2). Second, androgens, estrogens, and
glucocorticoids all derive from progesterone. Third, many of
the biochemical pathways use the same enzymes, with dif-
ferent products arising from the action on different sub-
strates. For example, 17B-HSD can convert estrone to
estradiol as well as androstenedione to testosterone (Fevold
et al, 1989).

Given the shared biochemical pathways, it is not surprising
that most tissues that synthesize one type of these steroids
also synthesize the others, albeit at different concentrations.
For example, the adrenal glands, the testes, the ovaries, and
the brain all produce progestogens, androgens, estrogens,
and glucocorticoids (Dufau et al, 1971; Holst et al,2004;
Nelson & Bulun, 2001; Rosol et al.,2001). Differential concen-
trations of these steroids in specific tissues depend on both
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Figure 2. Chemical Structures of Neurosteroid Synthesis. Neurosteroids are closely related structurally, which allows many to serve as ligands for the same recep-
tors. Neurosteroids binding to GABAA receptors and endocannabinoid receptors are surrounded by red and blue boxes respectively. Abbreviations: HSD, hydroxys-
teroid dehydrogenase; P450 scc, P450 side chain cleavage enzyme; P450 aro, P450 aromatase; DOC, deoxycorticosterone; DHDOC, dihydrodeoxycorticosterone;
THDOC, tetrahydrodeoxycorticosterone; 5a-DHP, 5a- dihydroprogesterone; 17-OH progesterone, 17-hydroxyprogesterone; 5a-DHT, 5a- dihydrotestosterone.

the expression of specific enzymes as well as on the concen-  2). The molecular similarity of many of these steroids confers
tration of specific substrates. cross-steroid receptor ligand status to several of them. For

Not surprisingly given their shared biochemical pathways, example, progesterone binds to PRs with highest affinity, but
these molecules also have similar molecular structures (Figure it also binds to GRs (Beato et al., 1995; Kontula et al., 1983),



and testosterone binds with highest affinity to ARs, but it
also binds to PRs and ERs (Chang et al., 1995; Rochefort &
Garcia, 1976). These features make it difficult to find agonists
and antagonists of these receptors that are specific. For
example, mifepristone, a well-known PR antagonist, is also a
potent GR antagonist (Im & Appleman, 2010). In addition to
the complex interactions of sex steroids and glucocorticoids
with their receptors, these molecules exert action in the
brain through their conversion to neurosteroids.

Sex steroids and glucocorticoids can be converted
to neurosteroids

Neurosteroids are steroids synthesized in the central ner-
vous system by both neurons and glial cells (Baulieu, et al.,
2001). Neurosteroids are different from sex steroids and glu-
cocorticoids in that they exert their effects by binding to
neurotransmitter receptors as opposed to nuclear or mem-
brane bound-steroid receptors (Mellon & Griffin, 2002;
Penning et al., 2004; Schverer et al., 2018). In addition to
serving as a precursor to progesterone, androgens, estro-
gens, and glucocorticoids, pregnenolone itself can act as a
neurosteroid by binding to endocannabinoid receptors
where it acts as an allosteric inhibitor (Vallée et al.,, 2014).
Progesterone, androgens, and glucocorticoids can also all be
converted to neurosteroids that bind to GABA receptors
(Reddy & Jian, 2010).

As mentioned above, progesterone can be metabolized to
DHP by the action of 5a-reductase. DHP is then converted to
30, 5a tetrahydroprogesterone (3a, 5a-THP), or allopregnano-
lone, in the presence of the enzyme 3a-HSD (Penning et al.,
2004). When acting on testosterone, 5a-reductase produces
DHT, which is further converted to the neurosteroid
3a-androstanediol (3a-diol) in the presence of 3a-HSD (Jin &
Penning, 2001). The glucocorticoid deoxycorticosterone is
reduced to dihydrodeoxycorticosterone (DHDOC) by the
action of 5a-reductase and then the enzyme 3a-HSD converts
it to the neurosteroid tetrahydrodeoxycorticosterone (THDOC)
(Purdy et al, 1991). Thus, allopregnanolone, 3a-diol, and
THDOC are all produced by the action of the same enzymes
(5a-reductase and 3a-HSD) with the specific end products
determined by whether the substrates are progestogens,
androgens, or glucocorticoids. DHP, allopregnanolone, 3a-diol,
and THDOC have very similar biological actions as positive
allosteric modulators of GABAA receptors (Crawley et al., 1986;
Guennoun, 2020; Puia et al., 2003; Reddy & Jian, 2010). GABAA
receptors are ligand-gated chloride channels whose activation
inhibits cells. Accordingly, these neurosteroids have been
shown to inhibit cells with GABAA receptors (Wang, 2011).
Allopregnanolone has been most extensively studied and
shown to bind to GABAA receptors with delta (§) subunits,
which are the most common extrasynaptic receptors, whose
activation increases tonic inhibition (Belelli et al., 2002; Stell
et al., 2003).

Like steroid synthesis within neurons and glia, the synthe-
sis of neurosteroids occurs in the mitochondria (Miller &
Bose, 2011). Studies have shown that many cells in the brain
are equipped with the enzymes necessary to convert
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cholesterol or peripheral steroids to neurosteroids (Kimoto
et al., 2001), including neurons and glia of the neocortex,
hippocampus, amygdala, thalamus and olfactory regions
(Agis-Balboa et al., 2006).

Sex differences in brain synthesis and levels of
steroids and neurosteroids

There are obvious sex differences in the peripheral levels of
sex steroids and glucocorticoids in both rodents and pri-
mates. Female rodents have higher peripheral levels of pro-
gestogens, estrogens, and glucocorticoids than males while
males have higher peripheral levels of androgens (Nelson &
Bulun, 2001; Tyagi et al., 2017). Despite these clear differences
and the ease with which these molecules can cross the blood
brain barrier, brain concentrations often do not reflect pat-
terns in the periphery in part because of the presence of
binding globulins in the blood. A good example of this is the
female>male sex difference in peripheral glucocorticoids in
rodents, which does not appear to exist in humans (Bangasser
& Wicks, 2017; Moisan, 2021; Reschke-Hernandez et al., 2017).
The exact reason for the species difference in whether males
and females exhibit different levels of peripheral glucocorti-
coids remains unclear, although it is possible that there are
sex differences in the regulation of adrenal steroids in rodents
that do not exist in humans. Nonetheless, the peripheral sex
difference in rodents does not correspond to a similar sex dif-
ference in brain glucocorticoid concentrations because
females have more corticosteroid binding globulin than
males, which limits glucocorticoid access to the brain
(Mataradze et al., 1992). Thus, the functional consequences of
this rodent sex difference remain unclear.

Another reason that brain concentrations do not reflect
peripheral sex differences is brain region-specific expression
of enzymes that convert peripherally synthesized steroids into
other molecules. Perhaps the best example of this is the sex
difference in peripheral estradiol levels in rodents, which is
reversed in the brain. Adult female rats and mice have higher
levels of circulating estradiol than males, but because of the
presence of aromatase in the brain as well as high concentra-
tions of the main substrate of aromatase, testosterone, males
have higher concentrations of estradiol in some brain regions
(Amateau et al, 2004; Gillies & McArthur, 2010; Hokenson
et al, 2022). Taken together, these findings emphasize the
need to examine brain concentrations of bioactive molecules
directly, rather than inferring their relative concentrations by
extrapolating from peripheral levels.

With regard to brain concentrations of sex steroids and glu-
cocorticoids, studies have shown that baseline progestogen
levels are higher in female than male rodent brains (Meffre
et al, 2007; Pesaresi et al., 2010; Sze et al.,, 2018). Conversely,
baseline androgen concentrations, like estradiol levels, are
higher in male than female rodent brains (Hojo & Kawato,
2018; Pesaresi et al., 2010; Sze et al, 2018). By contrast, no
baseline differences in brain glucocorticoid concentrations
exist between the sexes. The relative concentrations of neuro-
steroids more closely reflect the concentrations of their pre-
cursors, in that female > male sex differences in progesterone
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parallel those of allopregnanolone (Meffre et al., 2007), while
male > female sex differences in testosterone parallel those in
3a-diol. In female rodents, the estrous cycle produces fluctuat-
ing changes in peripheral progesterone. These estrous cycle
differences in progesterone parallel differences in allopreg-
nanolone concentrations with higher levels of during diestrus
(Caruso et al, 2010; Laham et al., 2022). Collectively, these
findings suggest that brain concentrations of neurosteroids
are dependent on both steroid concentrations in the periph-
ery and the presence of enzymes necessary for the production
of neurosteroid precursors or neurosteroids themselves.

Impact of stress on sex steroid, glucocorticoid, and
neurosteroid levels

Steroid and neurosteroid levels across brain regions fluctuate
dynamically in response to different conditions such as stress
(Purdy et al., 1991; Barbaccia, 2004). In addition to the base-
line differences in neuroactive steroids as described above,
sex-specific differences in steroid and neurosteroid levels
have been observed in response to stress.

Exposure to adverse conditions during early life alters lev-
els of sex steroids, glucocorticoids, and neurosteroids in
rodents and humans (Figure 3). For example, male rats reared
under limited bedding and nesting conditions show increased
serum estradiol levels (Eck et al., 2022; 2019). Maternal

separation leads to decreased testosterone levels in serum of
male mice (Miyaso et al., 2021; Tsuda et al., 2011).

Maternal separation with early weaning has been shown
to increase serum and brain concentrations of progesterone
in diestrus female mice (Laham et al., 2022). Along with these
increases in progesterone levels, allopregnanolone levels are
lower (Laham et al, 2022). Changes in the expression of
enzymes associated with steroid and neurosteroid synthesis
have been reported in response to both prenatal and early
postnatal stress in rodents. Juvenile offspring of rat dams
exposed to restraint during late gestation showed decreased
conversion of progesterone to 5a-reduced metabolites such
as DHP and allopregnanolone in the medial prefrontal cortex
(mPFC) (Paris & Frye, 2011b). A reduction in allopregnanolone
was noted in the hippocampus of female offspring of rat
dams exposed to immune challenge during the late gestation
period (Paris et al., 2011). Frye et al. (2010) reported that male
rat offspring of dams exposed to prenatal stress show
increased corticosterone levels, decreased 3a-diol concentra-
tion, and decreased hippocampal DHT levels accompanied by
increased avoidance behavior. Similarly, gestational and acute
restraint stress decreased hippocampal 3a-diol levels and
increased avoidance behavior (Walf & Frye, 2012). Our labora-
tory has found that female diestrus mice subjected to mater-
nal separation and early weaning have reduced levels of
5a-reductase in the ventral hippocampus, which likely
contributes to the elevated ratio of progesterone to

Figure 3. Diagram lllustrating Some of the Effects of Developmental Stress on Steroid and Neurosteroid Levels, Neuronal Morphology, Glial Expression, and PNN Integrity.
Note: Stress influences various aspects of brain function that extend beyond the factors mentioned in the diagram. P4, Progesterone; E2, Estradiol; T, Testosterone; ALLO,
Allopregnanolone; CORT, Corticosterone; DHP, Dihydroprogesterone; DHT, Dihydrotestosterone; DOC, Deoxycorticosterone; THDOC, Tetrahydrodeoxycorticosterone; BLA,
Basolateral amygdala; PFC, prefrontal cortex; HIP, hippocampus; dHIP, dorsal hippocampus; VHIP, ventral hippocampus; Iba1, ionized calcium binding adaptor molecule 1; GFAP,
Glial fibrillary acidic protein; PNN, Perineuronal nets; PV, Parvalbumin; CSPG, Chondroitin sulfate proteoglycan. 3: male Q: female.



allopregnanolone (Laham et al., 2022). Similarly, male juvenile
mice reared in isolation have lower expression of 5a-reductase
in the mPFC and nucleus accumbens and reduced allopreg-
nanolone and THDOC in the frontal cortex (Bortolato et al.,
2011). Postweaning social isolation has also been shown to
result in a downregulation of cortical and plasma concentra-
tions of allopregnanolone, This was also associated with
increased avoidance behavior (Serra et al.,, 2005; Serra et at,,
2000). These studies indicate a dysregulation in neurosteroid
synthesis in rodent models of developmental stress (Table 2).
Although it is difficult to draw connections between studies
done in rodents and the human condition, it seems relevant
to note that childhood Holocaust survivors have diminished
serum levels of 5a- reductase (Yehuda et al., 2009).

In adulthood, acute stress increases the levels of certain
steroids in rodents, including progesterone, testosterone,
estrogen, and corticosterone/cortisol, in both the periphery
and brain (Lépez-Calderén et al., 1990; Romeo et al., 2007;
Shors et al., 1999). Stress increases levels of these steroids, as
well as their neurosteroid derivatives, in males and females,
with increases in allopregnanolone being greater in the fron-
tal cortex, amygdala and brainstem in females. A significant
increase in allopregnanolone was only noted in the frontal
cortex in stress-induced male rats (Sze et al.,, 2018). Studies
indicate that plasma and brain levels of THDOC and allopreg-
nanolone rapidly increase in rats exposed to acute stress
(Reddy & Rogawski, 2002). Vallée et al. (2000) quantified the
neurosteroid concentration in rat plasma and brain following
forced swim stress and reported a significant elevation in
allopregnanolone and pregnenolone levels. Peak brain and
plasma levels of allopregnanolone and THDOC are noted in
rats exposed to acute stressors such as cold swim stress, foot
shock, or carbon dioxide exposure (Barbaccia et al, 1996,
1997). Similarly, other studies have shown a 4-20 fold rapid
elevation in THDOC and allopregnanolone in the rodent cor-
tex and hypothalamus following exposure to acute swim test
(Purdy et al., 1991). Investigators have reported a reduction in
avoidance behavior in response to the administration of allo-
pregnanolone and THDOC in rodents (Bitran et al, 1991;
Wieland et al.,, 1991). Studies suggest that this increase in the
levels of allopregnanolone is a potential homeostatic mecha-
nism, to increase the GABAA receptor threshold and promote
stress resistance in response to acute challenges (Shirayama
et al., 2011; Yoshizawa et al., 2017). Blockade of allopregnano-
lone production in response to acute stress using finasteride,
a 5a-reductase inhibitor, decreases sensorimotor gating index
in response to acute stress, an effect observed in several neu-
ropsychiatric disorders (Pallarés et al., 2015).

Also in adulthood, chronic stress alters levels of peripheral
sex steroids and glucocorticoids. Studies have shown that
chronic stress elevates serum levels of progesterone and glu-
cocorticoids in male and female rodents, while decreasing
levels of testosterone and estradiol in rats and mice (Gao
et al., 2020; Retana-Marquez et al.,, 2003). Studies have also
shown that chronic stress-induced changes in peripheral ste-
roid levels do not always parallel changes in neurosteroid
concentrations. Indeed, adult male mice exposed to a social
isolation paradigm, show a reduction in 5a-reductase activity,
which produces decreased allopregnanolone levels in the

Table 2. Impact of Stress on Sex Steroid, Glucocorticoid, and Neurosteroid Levels.

Associated Behavioral

Time of

Reference

Eck et al., 2020, 2022

Changes

Change in Levels

Sex Steroid/Glucocorticoid/Neurosteroid

Species/Sex Brain Region

Stressor

Stress

Shorter latency to

Increased in males

E2

N/A (serum levels)

Rats/Male and Female

LBN

Early Life

engage in reproductive

behavior

Miyaso et al., 2021; Tsuda et al., 2011

Decreased aggressive

behavior

Decreased

T

Mice/Male N/A (serum levels)

MS

Laham et al,, 2022

Increased avoidance
Impaired object

Increased P4, Decreased ALLO

P4, ALLO

VHIP

Mice/Female (Diestrus)

MSEW

Paris & Frye, 2011b; Walf & Frye, 2012

Decreased Conversion to 5a-reduced

P4 to 5a-reduced metabolites (DHP, ALLO),

3a-diol, DHT

mPFC, HIP

Rats/Male and Female

Restraint- Late Gestation

recognition, Increased

metabolites. Decreased 3a-diol, DHT

in males

avoidance, reduced social

interaction

Paris et al., 2011

Impaired object

recognition

Decreased

ALLO

HIP, PFC

Rats/Female

LPS - Late Gestation

Bortolato et al., 2011; Serra et al.,
2005, 2000; Dong et al., 2001;

Pinna et al., 2004

Increased avoidance and

aggression

Decreased

ALLO, THDOC, 5a- reductase

mPFC, nACC, HIP, OB

Mice/Male, Rats/Male

Adulthood SI

P5, P4, ALLO, THDOC, DHP

Sze et al., 2018; Reddy & Rogawski,
2002; Vallée et al.,, 2000; Barbaccia
et al, 1996; Purdy et al,, 1991;

Pallarés et al., 2015
Gao et al., 2020

Disrupted prepulse

inhibition

Increased (More in Females)
Decreased ALLO in serum

ALLO, DOC, P4, THDOC

FC, AMY, Brainstem,

HYPO, serum

Rats/Male and Female

Swim, CO,

STRESS 7

Not reported

Decreased
Decreased

T, E2
T

N/A (serum measures)

Mice/Female
Rats/Male

Cus

Retana-Marquez et al., 2003;

Greater latency to engage
in reproductive behavior

N/A (serum measures)

Restraint, Shock, Swim

*Compared to unstressed controls.

LBN, limited bedding and nesting; MS, maternal separation, MSEW, maternal separation and early weaning; SI, social isolation; DHP, dihydroprogesterone; DHT, dihydrotestosterone; DOC, deoxycorticosterone; DHDOC, dihydrodeoxycorti-
costerone; THDOC, tetrahydrodeoxycorticosterone; T, testosterone; E2, estradiol; ALLO, allopregnanolone; P4, progesterone; P5, pregnenolone; PFC, prefrontal cortex; HIP, hippocampus; ACC, anterior cingulate cortex; OB, olfactory bulb;
FC, frontal cortex; AMY, amygdala; HYPO, hypothalamus.
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frontal cortex and olfactory bulb. These findings were not
observed in female mice (Dong et al., 2001; Pinna et al.,
2004). The available evidence suggests that compensatory
mechanisms exist in the brain to mitigate peripheral changes
in steroid levels after acute stress. These mechanisms appear
to be diminished after chronic stress, possibly through a
downregulation of enzymes that convert steroids to neuros-
teroids with buffering action on avoidance behavior (Table 2).
In humans, individuals with neuropsychiatric disease associ-
ated with stress, including posttraumatic stress disorder and
major depressive disorder, have lower levels of serum
S5a-reductase (Agis-Balboa et al., 2014), which likely influences
levels of neurosteroids, as some studies have suggested
(Romer et al., 2010; Romer & Gass, 2010).

Impact of stress on neurons: involvement of
steroids and neurosteroids

Stress is known to have profound effects on neuronal excitabil-
ity, biochemistry, and structure, some of which are mediated
by stress-induced changes in steroids and neurosteroids. The
most obvious steroids to be implicated in stress effects on
neurons are glucocorticoids, also known as stress hormones. A
large literature has shown that developmental stress influences
neurotransmission, gene expression, dendritic architecture, and
postnatal neurogenesis (De Kloet et al., 1996; McEwen et al.,
2016; Mirescu et al., 2004; Monroy et al,, 2010). For example,
prenatal and postnatal stress, as well as chronic stress in adult-
hood, result in atrophied apical dendrites of CA3 pyramidal
cells and diminished hippocampal, but not prefrontal or hypo-
thalamic, synaptic markers in rodents (Liu et al, 2016; Paris &
Frye, 2011a; Watanabe et al., 1992). Some of these effects have
been attributed to changes in glucocorticoids (De Kloet et al.,
1996; McEwen et al,, 2016; Mirescu et al., 2004) and others are
very similar to what has been observed with chronic stress in
adulthood, where a causal link with glucocorticoids has been
established (Horchar & Wohleb, 2019; Kvarta et al., 2015) (Table
3). However, it should be emphasized that elevated glucocorti-
coid levels do not explain many of the persistent effects of
early life adversity as well as those of stress in adulthood
(Faturi et al., 2010; Kim et al., 2015).

In addition to glucocorticoids, other steroids known to be
altered by developmental stress, as well as acute and chronic
adult stress, influence neurons and as such, may contribute to
stress responses. For example, estrogen and progesterone, which
are both elevated in response to postnatal and acute adult stress
in rodents (Paris & Frye, 2011a, 2011b; Shors et al, 1999), are
known to increase dendritic spine density in the hippocampus
(Gould et al.,, 1990; Woolley et al,, 1990). Allopregnanolone has a
similar effect to progesterone of increasing dendritic spine den-
sity (Barreto-Cordero et al,, 2020; Shimizu et al., 2015) raising the
possibility that progesterone acts through its derivative allopreg-
nanolone to modulate dendritic spines. Studies have shown that
ovariectomized female rats treated with estrogen replacement
and subjected to acute stress showed an increase in spine den-
sity in basolateral amygdala (BLA) (Shansky et al., 2010). A similar
increase in BLA spine density was noted in male rats exposed to
chronic stress (Mitra et al.,, 2005). In adulthood, acute stress exerts

Table 3. Impact of Stress on Neurons: Involvement of Steroids and Neurosteroids.

Sex Steroid/Glucocorticoid/

Time of

Reference
Mirescu et al., 2004; Katahira et al, 2018

Effect on Neurons

Affected Neuron Type or Area

Neurosteroid

Brain Region
HIP, PFC

Species/Sex

Stressor

MS, MS+SI

Stress

Immature neurons of dentate  Reduced number of new neurons and PV+ neurons,

CORT

Rats/Male and Female;

Early Life

as well as suppressed maturation of PV+ neurons
Decrease in spine density in dHIPP, no differences in

gyrus; PV +Interneurons

Pyramidal cells

Mice/Male and Female
Rats/Male and Female

Paris & Frye, 2011a

DHP, P4, E2

dHIP, mPFC,

Multiple stressors

spine density noted in mPFC and HYPO

Increased Dendritic Spine Density

HYPO

Shors et al., 1999; Shors et al., 2001
Hokenson et al., 2021; Watanabe

CA1 pyramidal cells
Pyramidal cells

HIP E2

Rats/Male and Female

Adulthood  Shock

Decreased dendritic spine density, apical dendritic

E2 (in females),

HIP

Rats/Male and Female

Restraint, multiple

et al,, 1992; Luine et al., 1994
Filipovi¢ et al.,, 2013; Kraus et al.,

length and complexity
Chronic stress induced decrease in number; Increase

Glucocorticoids

CORT, E2

acute stressors

Restraint, SI

PV +interneurons of CA1, CA3,

HIP, AMY

Rats/Male and Female

2022; Mitra et al., 2005; Shansky

et al, 2010

in spine density; Increase in dendritic length at

intermediate branches

and dentate gyrus; BLA

pyramidal cells

Compared to unstressed controls.
MS, maternal separation; SI, social isolation; CORT, corticosterone; E2, estradiol; P4, progesterone; DHP, dihydroprogesterone; PV, parvalbumin; BLA, basolateral amygdala; HIP, hippocampus, PFC, prefrontal cortex; AMY, amygdala; HYPO,

hypothalamus.

*



differential effects on CA1 pyramidal cell dendritic spine density
in male and female rats (Shors et al., 1999). Stress reduces den-
dritic spine density in female rats when they are in proestrus,
while it has the opposite effect in male rats (Shors et al,, 2001).
Similar results were observed in female mice where acute stress
in the context of higher estrogen leads to reduced dendritic
spine density and impaired hippocampus-dependent memory,
while similar stress exposure during a low estrogen state has no
effects (Hokenson et al., 2021). Furthermore, while acute stress in
adulthood increases dendritic spines in males, developmental
stress has the opposite effect in male mice and rats (Monroy
et al, 2010; Xu et al, 2022) (Table 3). These findings suggest a
complex interplay between stress effects and sex that may be
not only dependent on baseline levels of steroids and neuroste-
roids but also on the age at which the stress occurs.

Testosterone also influences dendritic spine density in the
hippocampus with parallel results in performance on
hippocampus-dependent learning tasks in rats (Muthu et al.,
2022). Studies have also shown that both testosterone and its
derivative DHT can stimulate hippocampal spine density in rats
(Hatanaka et al., 2015). Taken together, these findings raise the
possibility that stress-induced changes in progestogens, andro-
gens, estrogens, and glucocorticoids, as well as their neuroste-
roid derivatives may be responsible for some stress-induced
effects on neurons, including on dendritic structure.

In addition to changes in excitatory neurons, developmen-
tal and adult stress have been shown to influence inhibitory
interneurons in both the hippocampus and prefrontal cortex.
Maternal separation diminishes the migration of parvalbumin
positive (PV+) interneurons into the developing hippocampus
(Katahira et al., 2018). Similarly, exposure to early life adver-
sity has been shown to reduce the number of PV+interneu-
rons in the prefrontal cortex of female rats (Gildawie et al.,
2021). We have found a reduction in the number of PV +inter-
neurons, and somatostatin+interneurons, in the ventral hip-
pocampus of adult male mice previously subjected to
maternal separation with early weaning (Murthy et al., 2019)
although in the case of PV+cells, this reduction likely reflects
diminished production of parvalbumin rather than an actual
decrease in the number of these cells. Studies in adult rats
have shown that chronic, but not acute, stress also reduces
parvalbumin expression in hippocampus interneurons
(Filipovi¢ et al., 2013) (Table 3). Although inhibitory interneu-
rons, including PV +cells, are known to express GRs and ERs
(Hernandez-Vivanco et al., 2022; Kraus et al., 2022), it remains
unexplored whether the effects of stress on this population
are mediated through these signaling mechanisms.

Likewise, although both principal neurons and inhibitory
interneurons express GABAA receptors, which are known tar-
gets of neurosteroid derivatives of sex steroids and glucocor-
ticoids, the connection between stress effects and neurosteroid
action remains unexplored.

Impact of stress on perineuronal nets: involvement
of steroids and neurosteroids?

Many neurons shown to be affected by early life stress are
enwrapped in perineuronal nets (PNNs), extracellular matrix
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structures known to regulate neural underpinnings of cogni-
tion and behavior, including but not limited to, synaptic plas-
ticity, neuronal oscillations, and synchrony across brain
regions (Sorg et al., 2016; Wingert & Sorg, 2021). Numerous
studies have investigated the impact of postnatal and adult
stress on PNNs and shown complex effects that seem to
depend on multiple factors, including brain region, sex, and
timing/type of stressor (Laham & Gould, 2021).

Postnatal stress using the maternal separation and early
weaning stress paradigm has been shown to increase PNN
intensity in the ventral hippocampus in adulthood along with
increases in avoidance behavior (Catale et al., 2022; Dimatelis
et al, 2013; Murthy et al, 2019). An upregulation of PNN
CSPGs such as tenascin, brevican, neurocan was also noted in
animals subjected to maternal separation (Dimatelis et al,
2013). Other results suggest an increase in PNN number in
the BLA and HIP animals exposed to stress during the post-
natal period or in adulthood (Guadagno et al., 2020; Riga
et al., 2017), including an adult paradigm of enrichment loss
(Smail et al., 2023). However, additional studies have shown a
downregulation in PNN intensity in PFC, BLA (Gildawie et al,,
2021; Santiago et al., 2018) and PNN number (Gildawie et al.,
2020; Klimczak et al., 2021; Ueno et al., 2018; Yu et al,, 2020)
in PFC, HIP, prelimbic cortex, and BLA in animals exposed to
postnatal and adult stress paradigms such as maternal sepa-
ration, social isolation, social defeat, and chronic mild stress.
Sex- dependent effects of postnatal stress have also been
observed in the development of PNNs around PV+cells in
the PFC and BLA of male and female rats, with a higher PNN
intensity noted in the PFC of male rats exposed to maternal
separation and juvenile social isolation, while a higher PNN
intensity reported in BLA of female rats (Gildawie et al., 2021).
Similarly, increase in PNN intensity was reported in the right
amygdala of male juvenile rats but not females after expo-
sure to early life stress (Guadagno et al., 2020). Studies have
shown that changes in PNN intensity/number are associated
with increased in avoidance behavior and impairments in
stress regulation (Laham et al,, 2022; Lee & Lee, 2021; Murthy
et al.,, 2019; Santiago et al., 2018; Yu et al., 2020). Collectively,
these studies suggest that a dysregulation in PNN intensity
and number occurs after exposure to several stress para-
digms. It is important to consider factors such as type of
stressor, duration of time after stress exposure (Gildawie et al.,
2020, 2021; Laham & Gould, 2021; Ueno et al., 2018), sex, and
stage of development (Drzewiecki et al., 2020) when address-
ing the impact of stress on PNNs (Table 4).

The potential involvement of steroids and neurosteroids in
stress-induced PNN changes remains relatively unexplored.
Studies have shown that chronic corticosterone treatment in
adult mice leads to an increase in PNN intensity in the hippo-
campus (Alaiyed et al., 2020), which is consistent with the
possibility that stress-induced increases in glucocorticoids, or
their derivatives, influence PNNs. Studies have shown that
inhibition of estradiol synthesis increases PNN intensity
around PV+ interneurons in the dorsal CA1 region of the hip-
pocampus in female mice, a finding that has been causally
linked to diminished hippocampus-dependent learning and
memory and hippocampal neuronal oscillations
(Hernandez-Vivanco et al, 2022). Given that studies have
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shown early life and adult stress affect estradiol levels, it is
possible that some stress effects may exert their action
through modulation of circulating or brain-derived estradiol
although the possibility remains to be investigated.
Allopregnanolone inhibition in adult female mice has been
shown to alter PNN composition in the ventral CA1, increas-
ing the numbers of PNNs that contain the C4S sulfation pat-
tern, a PNN characteristic known to inhibit plasticity (Laham
et al., 2022). Similar changes were observed in ventral CA1
PNNs in adult female mice after early life stress (maternal
separation with early weaning), an experience that diminishes
ventral hippocampal allopregnanolone concentrations (Laham
et al,, 2022). Taken together, these findings suggest that early
life stress may alter PNN composition through actions on allo-
pregnanolone. This is an area that is clearly in need of further
investigation. It is also worth noting that neuronal activity
has been shown to modulate PNN intensity (Evans et al.,
2022), thus, the influence of these molecules on PNNs may
occur indirectly, through effects on neuronal function.

Reference
Murthy et al., 2019; Dimatelis et al.,

2013; Laham et al., 2022
Gildawie et al., 2021
Klimczak et al., 2021; Ueno et al., 2018

Riga et al., 2017
Yu et al., 2020
Alaiyed et al., 2020

Guadagno et al., 2020
Santiago et al.,, 2018

Associated Behavioral Changes
Reduced object location memory
and maintenance of LTP

Increased locomotion, increased
N/A

risk assessment in females

Increased fear
Increased avoidance, reduced

Increased threat response
Depressive-like behavior
working memory

Increased avoidance

Impact of stress on glia: involvement of steroids
and neurosteroids?

Microglia and astrocytes are highly sensitive to environmental
changes and involved in infllmmatory processes. Several studies
indicate that stress may be associated with the dysregulation of
immune system response (Black, 2003; Kiecolt-Glaser et al.,, 1996).
Microglia respond to stress in a variety of ways, including increas-
ing in number, producing pro-inflammatory cytokines, and
expressing cell surface antigens (Calcia et al,, 2016; Kettenmann
et al, 2011). One of the key cell surface antigens is the intracel-
lular ionized calcium-binding adaptor protein, Ibal, which is
found in microglia and is upregulated during inflammation.
Upregulation in lba1l expression in the hippocampus has been
reported in rodents exposed to different stress paradigms when
compared to unstressed animals (Bian et al, 2012; Kojo et al.,
2010; Park et al., 2011; Wohleb et al., 2011). A similar increase in
Ibal expression is observed in other regions of the brain such as
the amygdala, nucleus accumbens, and PFC in animals subjected
to stress (Bian et al, 2012; Schiavone et al, 2009; Tynan et al.,
2010; Wohleb et al,, 2011) (Table 5).

Maternally separated male and female rats exposed to a
“second hit” of stress during adulthood, show an upregulation
of Ibal activity in the PFC, along with hyper-ramified microg-
lial morphology, indicating microglial activation or a priming
process increasing the susceptibility of a heightened response
during subsequent stressors (Ganguly et al., 2018; Hoeijmakers
et al., 2017; Roque et al, 2016; Saavedra et al., 2017; Tay
et al, 2018). Takatsuru and colleagues report that ELA
increases the number and motility of microglial processes
(Takatsuru et al., 2015). Additionally, exposure to early life
adversity results in a decrease in the arborization area of
Ibal+ cells (Baldy et al., 2018). During normal hippocampus
growth in mice, there is a decrease in microglial density and
phagocytic activity. However, in mice exposed to ELA, there is
an increase in phagocytic activity during hippocampal devel-
opment as well as an increase in microglial density and sur-
face area in the hippocampus at PND 14 (Delpech et al.,
2016) (Table 5).

PNN Change
Increased PNN Intensity; Increased PNN CSPGs; Affects PNN
Composition (increased C4S+/WFA +cells in ventral CA1)
Reduced PV+PNN structural integrity, PV+PNN reduced

number in females
Reduced PNN number; Reduction in PNN number in PFC

Increased PNN number around PV + cells
Reduced PNN number

Increased PNN density around PV +cells

Reduced PNN intensity
Increased PNN Intensity

Brain Region

HIP, BLA, PFC
HIP, RC, PFC

PFC
HIP

F

L
BLA
HIP

Species/Sex
Mice/Male and Female;
Rats/Male and Female
Rats/Male and Female
Rats/Male and Female
Rats/Male
Rats/Male and Female
Mice/Male and Female

Mice/Male
Rats/Male

Stressor

MSEW

Social Defeat
Chronic CORT

MS, Sl
LBN
LBN
CMS

Sl
fate; WFA, wisteria floribunda agglutinin; LTP, long-term potentiation; PFC, prefrontal cortex; HIP, hippocampus; BLA, basolateral amygdala; RC, retrosplenial cortex.

MSEW; Maternal separation and early weaning; MS, maternal separation; SI; social isolation; LBN; limited bedding and nesting; CMS, chronic mild stress; PNN, perineuronal nets; CSPG, chondroitin sulfate proteoglycan; C4S, chondroitin-4-sul-

Table 4. Impact of Stress on Perineuronal Nets: Involvement of Steroids and Neurosteroids?.

*Compared to unstressed controls.

Time of
Stressor
Early Life
Adulthood



Table 5. Impact of Stress on Microglia and Astrocytes: Involvement of Steroids and Neurosteroids?

Time of

Reference
Roque et al., 2016; Takatsuru et al., 2015; Baldy et al.,
2018; Delpech et al.,, 2016: Giridharan et al., 2019,

Réus et al., 2017, 2019; Banqueri et al., 2019

Changes in Microglia/Astrocytes

Brain Region

HIP; SSCx;

Species/Sex

Stressor

Stressor

Increased activated microglia, decreased astrocyte density and

Rats/Male and Female;

MS

Early Life

number of processes; Increased motility of microglial processes in

Medulla; PFC; nACC,

dorsal striatum

Mice/Male and Female

SSCx; Increased size of microglial soma and decreased arborization in

medulla; Decreased astrocytes

Ganguly et al.,, 2018

PFC Increased Iba1, hyper- ramified microglia
HIP

Rats/Male and Female

Rats/Male

MS and FR

Saavedra et al., 2017

Increased microglial activation, decreased astrocytes

Decreased GFAP mRNA

MS and LPS
MS and SI
LBN

Yamawaki et al., 2018

PFC

Rats/Male and Female

Abbink et al., 2020

Increased astrocyte coverage at P9, and a decrease noted at

HIP, entCx
10 months

Mice/Male and Female

Bian et al., 2012; Li et al., 2013; Liu et al., 2009,
2011; Lou et al., 2018; Tynan et al.,, 2013

Park et al., 2011; Tynan et al., 2010

Increased activated astrocytes in HIP; atrophy of astrocyte processes;

Decreased GFAP mRNA levels in PFC; decreased astrocytes in HIP

HIP; PFC

Mice/Male; Rat/Male and

Female

Cus

Adulthood

Hypertrophied and activated microglia; Increase in microglia density,
number

HIP

Gerbil/ Male; Rat/Male and

Female
Restraint and Swim  Mice/Male and Female

Restraint

Sugama et al., 2007

Increased microglial activation

Thalamus, HYPO, HIP,
Substantia nigra,
central gray

HIP

Frank et al., 2007; Fonken et al., 2018

Increased microglia, no change in astrocytes; reduced microglial

phagocytic activity

Rats/Male and Female

Shock

Wohleb et al., 2011

Increased de-ramified microglia

AMY, HIPP, PFC

HIP

Mice/Male

Social stress

Czéh et al., 2006

Decreased astrocytes and soma volume

Increased microglia

Tree shrew/Male

Rats/Male

Psychosocial stress

SI
*Compared to unstressed controls.

Schiavone et al., 2009

nACC, PFC

MS, maternal separation; MSEW, maternal separation and early weaning; FR, food restriction; LPS, lipopolysaccharide; SI, social isolation; LBN, limited bedding and nesting; CUS, chronic unpredictable stress; iba1; ionized calcium binding

adaptor molecule-1; GFAP, Glial fibrillary acidic protein; PFC, prefrontal cortex; HIP, hippocampus; SSCx, somatosensory cortex; nACC, nucleus accumbens; entCx, entrorhinal cortex; HYPO, hypothalamus; AMY, amygdala.
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In adulthood, acute stress increases microglial number (Frank
et al, 2007), and induces de-ramification (Sugama et al,, 2007)
and according to more recent studies, adult exposure to acute
stress reduces microglial phagocytic activity. (Fonken et al., 2018;
Frank et al,, 2019). Chronic stress in adulthood causes inflamma-
tion, which is characterized by an increase in brain cytokine lev-
els, and this elevation is associated with changes in microglia
morphology (Calcia et al., 2016; Yirmiya et al., 2015).

Exposure to chronic stress is associated with an increase in
Ibal+ cell density, Ibal area and microglial phagocytic function
(Frank et al, 2019; Hinwood et al., 2012; Nair & Bonneau, 2006;
Tynan et al, 2010). Microglia hyper-ramification has also been
observed in the PFC and hippocampus of animals subjected to
chronic restraint stress (Hinwood et al,, 2013) or repeated swim-
ming tests (Hellwig et al,, 2016), while an increase in de-ramified
microglia were noted in the amygdala, PFC and hippocampus of
mice subjected to repeated social defeat paradigm (Wohleb
et al, 2011) (Table 5).

Stress hormones and cytokines influence glial fibrillary
acidic protein (GFAP), a cytoskeletal astroglia protein, and an
increase in these levels indicates astrocyte activity. An upreg-
ulation in astrocytic activity and neuroinflammatory cytokines
was reported in animals subjected to early life stress para-
digm such as maternal deprivation (Giridharan et al., 2019;
Réus et al., 2017, 2019). Conversely, a decrease in GFAP mRNA
expression and GFAP +cell number was noted in the PFC of
mice exposed to maternal separation (Musholt et al., 2009;
Yamawaki et al., 2018).

Additionally, a decrease in GFAP immunoreactivity was
reported in the PFC, ACC, dorsal hippocampus of animals
exposed to ELA (Abbink et al., 2020; Banqueri et al., 2019). In
adulthood, exposure to acute stressors resulted in a decrease
in astrocyte density (Saur et al.,, 2016), GFAP expression in the
hippocampus (Xia et al., 2013) and induces astrocytic hypertro-
phy (Murphy-Royal et al.,, 2019). Chronic stress in adulthood is
associated with a reduction in astrocyte number and somatic
volume in the hippocampus (Altshuler et al.2010; Banasr et al.,
2010; Czéh et al., 2006; Li et al., 2013, Liu et al., 2009, Liu et al.,
2011, Tynan et al., 2013). Exposure to chronic mild unpredict-
able stress during adulthood is also associated with a decrease
in structural complexity of astrocytes (Yamawaki et al., 2018)
(Table 5).

The involvement of steroids and neurosteroids in
stress-induced changes in microglia and astrocytes has been
incompletely explored, but chronic stress-induced changes in
microglial activation and astrocyte number can be blocked by
GR antagonism (Horchar & Wohleb, 2019; Lou et al, 2018)
and stress-related memory formation can be blocked by
deleting GRs from astrocytes (Tertil et al., 2018; Wiktorowska
et al, 2021). Evidence showing that allopregnanolone
increases microglial cell processes and decreases microglia
migration in mice, suggests a role for allopregnanolone in
modulating microglial morphology and inhibiting phagocytic
function. (Jolivel et al., 2021). Given these insights into the
interplay between glial cells and neurosteroids, and consider-
ing the known effects of stress on these entities individually,
it seems increasingly important to explore the impact of
stress on glial functionality through the modulation of ste-
roids and neurosteroids.
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Conclusions

Early adverse experiences are known to alter neurons, glia, and
the extracellular matrix and many of these effects have been
causally linked to behavioral change that lasts into adulthood.
Understanding the connection between aversive experience and
brain changes will require considering all these brain compo-
nents, as well as the many signaling molecules that can be
altered by early life stress. Early adversity is known to alter the
levels of glucocorticoids and sex steroids in both the periphery
and brain, and these molecules can be synthesized in both com-
partments. While studies have investigated the causal role of glu-
cocorticoids in stress effects, less attention has been paid to the
potential involvement of glucocorticoid derivatives, as well as to
sex steroids produced in the periphery and brain, and their neu-
rosteroid end products. Additional studies directly investigating
the potential involvement of these signaling molecules in stress
influences on neurons, glia, and the extracellular matrix will help
to shed light on the complex cascade of events that produce
lasting changes after early life stress.
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