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REVIEW ARTICLE

The skin sensitization adverse outcome pathway: exploring the role of 
mechanistic understanding for higher tier risk assessment

Maja Aleksic, Ramya Rajagopal, Renato de-�Avila, Sandrine Spriggs and Nicola Gilmour 

Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK 

ABSTRACT 
For over a decade, the skin sensitization Adverse Outcome Pathway (AOP) has served as a useful 
framework for development of novel in chemico and in vitro assays for use in skin sensitization hazard 
and risk assessment. Since its establishment, the AOP framework further fueled the existing efforts in 
new assay development and stimulated a plethora of activities with particular focus on validation, 
reproducibility and interpretation of individual assays and combination of assay outputs for use in haz
ard/risk assessment. In parallel, research efforts have also accelerated in pace, providing new molecular 
and dynamic insight into key events leading to sensitization. In light of novel hypotheses emerging 
from over a decade of focused research effort, mechanistic evidence relating to the key events in the 
skin sensitization AOP may complement the tools currently used in risk assessment. We reviewed the 
recent advances unraveling the complexity of molecular events in sensitization and signpost the most 
promising avenues for further exploration and development of useful assays.

Abbreviations: AOP: Adverse Outcome Pathway; OECD: The Organisation for Economic Co-operation 
and Development; DA: defined approach; SARA model: Skin Allergy Risk Assessment model; MIE: 
molecular initiating event; KE: key event; ACD: allergic contact dermatitis; NAM: new approach method
ology; TG: test guideline; DPRA: Direct Peptide Reactivity Assay; ADRA: Amino acid Derivative Reactivity 
Assay; kDPRA: kinetic Direct Peptide Reactivity Assay; h-CLAT: Human Cell Line Activation Test; GARD: 
genomic allergen rapid detection; UN GHS: United Nations Globally Harmonized System; NICEATM: 
National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological 
Methods; ITS: integrated testing strategy; NGRA: Next Generation Risk Assessment; DNCB: 2,4-dinitro-1- 
chlorobenzene; MA: Michael acceptor; SB: Schiff Base; K5: K14: K1: K10: keratin 5: keratin 14: keratin 1: 
keratin 10; Cys: cysteine; TRITC: tetramethylrhodamine isothiocyanate; MIF: migration inhibitory factor; 
NFjB: nuclear factor-kappa B; 4-HNE: 4-hydroxy-2-nonenal; RCS: reactive carbonyl species; IKK: IjB kin
ase; SN2: bimolecular nucleophilic substitution; SNAr: nucleophilic substitution on an aromatic center; 
HR-MAS NMR: high-resolution magic angle spinning nuclear magnetic resonance; HSA: human serum 
albumin; RHE: reconstituted human epidermis; His: histidine; Met: methionine; MI: 2-methylisothiazolin- 
3-one; MCI: 5-chloro-2-methylsothiazolin-3-one; GSH: glutathione; GST: glutathione-s-transferase; ROS: 
reactive oxygen species; LP: lipid peroxidation; PPRA: Peroxide-Peroxidase Reactivity Assay; CYP: cyto
chrome p450; AO/ALDH: aldehyde oxidases/dehydrogenase; NQR: NAD(P)H quinone reductase; EH: 
epoxide hydrolase; UGTs: UDP-glucuronosyl transferases; SULTs: sulfotransferases; NATs: N-acetyl trans
ferases; MDBGN: 2-bromo-2-(bromomethyl)glutaronitrile (methyldibromoglutaronitrile); PUFA: polyunsat
urated fatty acid; Nrf2: nuclear factor erythroid 2-related factor 2; ER: endoplasmic reticulum; UPR: 
unfolded protein response; DNFB: 2,4-dinitro-1-fluorobenzene; LA: lineloic acid; AA: arachidonic acid; 
MDA: malondialdehyde; Lys: lysine; TBA: thiobarbituric acid; Trx: thioredoxin; TrxR: thioredoxin reduc
tase; APC: antigen presenting cell; Keap1: Kelch-like ECH-associated protein; EpRE/ARE: electrophile/anti
oxidant response element; IL: interleukin; ICE: interleukin converting enzyme; TNF-a: tumor necrosis 
factor alpha; DAMPs: damage-associated molecular patterns; LMWHA: low molecular weight hyaluronic 
acid; TLR: toll-like receptor; DC: dendritic cell; CD: cluster of differentiation; ATP: adenosine triphos
phate; MHC: major histocompatibility complex; HSF1: heat shock inducible factor 1; HIF1a: hypoxia- 
inducible transcription factor 1 alpha; Hsp90: heat shock protein 90; LC: Langerhans cell; HLA-DR: 
human leukocyte antigen – DR isotype; LPS: lipopolysaccharide; RXR: Retinoid X Receptor; LLNA: Local 
Lymph Node Assay; Ig: immunoglobulin; PPD: p-phenylenediamine.
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1. Introduction

Efforts to speed up and facilitate the replacement of animal 
experiments with human relevant, mechanistic, non-animal 
data in assuring chemical safety have led to remarkable 
changes in recent decades. This process has allowed a careful 
examination of the existing knowledge about the adverse 
outcomes resulting from the exposure to chemicals and con
solidation of that knowledge into useful tools including 
Adverse Outcome Pathways (AOPs). Over a decade ago, the 
Organisation for Economic Co-operation and Development 
(OECD) launched a program to develop AOPs with the pur
pose of utilizing them for development of novel approaches 
and tests, the data from which can be combined and consid
ered together to reach a decision about chemical safety 
(https://www.oecd.org/chemicalsafety/testing/projects-adverse- 
outcome-pathways.htm#SectionA). The efforts underpinned 
by the skin sensitization AOP have resulted in development 
and validation of numerous assays that, when combined, can 
confidently assign sensitizing potential of chemicals (or lack 
thereof). For those chemicals identified as sensitizers, potency 
information can be obtained using defined approaches (DAs). 

For example, a derivation of human relevant point of depart
ure and quantitation of uncertainty is achievable using SARA 
model (Reynolds et al. 2019). Skin sensitization risk assess
ment remains a tiered approach (Gilmour et al. 2022) and for 
those chemicals identified as sensitizers, additional mechanis
tic information will be useful in the higher tiers of that 
approach (Reynolds et al. 2021). Here, we have reviewed the 
current and emerging mechanistic knowledge of the induc
tion of skin sensitization which may add value to risk 
assessment.

1.1. Adverse outcome pathway

An adverse outcome pathway (AOP) is a concept describing 
a sequence of events starting from exposure of an organism 
(or specific tissue) to a chemical via a series of critical 
molecular and cellular events, culminating in an adverse out
come for the exposed organism/tissue. Originally described 
by Ankley et al. (2010) AOPs are structured to represent the 
available knowledge which causally links the molecular ini
tiating event (MIE) and an adverse outcome via one or more 
series of key events (KE).

The skin sensitization AOP, describing induction and elicit
ation phases required for adverse outcome to occur (mani
fested as allergic contact dermatitis (ACD) in humans), is one 
of the earliest developed AOPs (OECD 2014). It is summarized 
in 11 steps, including 4 which are recognized as “Key Events” 
(KEs1-4, Figure 1).

The skin sensitization AOP is focused solely on organic 
chemicals which are inherently electrophilic or can be trans
formed into electrophilic species via phase I skin metaboliz
ing enzymes or on contact with air oxygen (i.e. pro- and 
pre-haptens). This AOP does not currently include the type of 
ACD which develops as a result of exposure to metals or 
chemicals activated by UV light exposure (reviewed recently 
by de �Avila et al. (2023a)).

1.2. Current predictive assays

Prior to the development of the skin sensitization AOP, efforts 
were already underway to develop predictive non-animal 
assays for skin sensitization based on events that were well 
understood to occur during the induction of sensitization. 
Establishment of the AOP has, however, provided a frame
work together with a mechanistic knowledge base, which has 
further facilitated in chemico and in vitro assay development 
as well as their integration into “defined approaches” (DAs) 
for risk assessment of skin sensitization (OECD 2023a). This 
has also facilitated development and further refinement of 
several in silico tools, providing useful information on chemis
try and mechanistic domain of sensitizers (e.g. DEREK Nexus, 
OECD QSAR Toolbox, TIMES, ToxTree).

To date, there are nine developed and validated New 
Approach Methodologies (NAMs, in chemico and in vitro 
tests) that have achieved OECD test guidelines (TG) status 
(Figure 2). Each of the test methods/assays addresses a KE in 
the skin sensitization AOP. OECD TG 442 C describes the dir
ect peptide reactivity assay (DPRA), amino acid derivative 
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reactivity assay (ADRA) and the kinetic DPRA (kDPRA), which 
are test methods addressing KE1 (the binding of haptens to 
proteins in the skin (OECD 2023b)). OECD TG 442D describes 
the KeratinoSensTM and LuSens methods which address KE2 
(the activation of keratinocytes (OECD 2022a)). OECD TG 442E 
describes the Human Cell Line Activation test (hCLAT), U937 
cell line activation Test (USensTM), Interleukin-8 Reporter 
Gene Assay (IL 8 Luc assay) and Genomic Allergen Rapid 
Detection (GARDTM) for assessment of skin sensitizers 
(GARDTMskin) which are test methods addressing KE3 (the 
activation of dendritic cells (DCs)) (OECD 2023c)). With the 
exception of the GARDTMskin assay in certain circumstances 
(JRC EC 2021), these NAMs should not be used alone for haz
ard and potency categorization, but the output should be 
combined with information from other NAMs within a DA.

Three DAs are currently included in the OECD guideline 
497 (OECD 2023a) which allow data from the individual 
assays to be integrated for chemical classification (either bin
ary (sensitizer/non-sensitizer) or the United Nations Globally 
Harmonized System of Classification and Labelling of 
Chemicals (UN GHS) hazard subcategories 1A (strong sensi
tizer) or 1B (moderate or weak sensitizer) (UN 2021)); 
reviewed by (Ezendam et al. 2016; Kleinstreuer et al. 2018)). 
The outputs from the majority of predictive assays do contain 
a quantitative component, however, use of quantitative 

information within the DAs currently described in OECD 497 
is somewhat limited. The most recent effort is utilization of 
quantitative output from reactivity assays to redefine thresh
olds for improved UN GHS classification (Al�ep�ee et al. 2023).

Better utilization of the quantitative outputs and more 
refined predictions of the skin sensitization potency has been 
achieved in recently developed DAs. The SARA model allows 
derivation of a human relevant point of departure with quan
tifiable uncertainty and a risk metric for use in quantitative 
risk assessment (Reynolds et al. 2019) and has recently been 
adapted in collaboration with NICEATM to address UN GHS 
classification (Reynolds et al. 2023, manuscript in prepar
ation). Additional DAs include Bayesian Integrated Testing 
Strategy (ITS) (Jaworska et al. 2013), Artificial Neural Network 
(Tsujita-Inoue et al. 2015) and a series of linear regression 
models (Natsch and Gerberick 2022a, 2022b; Natsch 2023). 
The value of these DAs within a risk assessment for skin sen
sitization has been recently explored using case studies 
(Gilmour et al. 2020, 2022, 2023; Reynolds et al. 2021; OECD 
2022c).

Currently, there are no NAMs addressing KE4 (the activa
tion and proliferation of a T cell response), which are suffi
ciently progressed for implementation in OECD TG or for use 
in a Next Generation Risk Assessment (NGRA) (van Vliet et al. 
2018).

Figure 1. Overview of the skin sensitization AOP. KE1: Covalent binding to skin proteins, the MIE for skin sensitization. Bioavailable, electrophilic chemical must 
bind covalently to skin proteins, forming a complete antigen recognised by the immune system. KE2: Keratinocytes activation, resulting in upregulation of inflamma
tory cytokines and chemokines, and induction of cytoprotective gene pathways. KE3: APCs activation and presentation of haptenated proteins to T cells, leading to 
migration of activated T cells into circulation, completing induction phase of sensitization. KE4: T cell proliferation in response to the haptenated protein presented 
by APCs, leading to the activation of memory T cells. Adverse outcome (ACD): the clinical manifestation of skin sensitization (elicitation) occurs on subsequent expos
ure to the same or a cross-reactive chemical. Each KE described above also occurs during elicitation, with some modification. The sensitizing chemical binds cova
lently to skin proteins, which are then processed and presented to the memory specific T cells. Memory T cells are attracted to the skin site of the exposure by the 
increased secretion of inflammatory cytokines by keratinocytes. The elicitation phase culminates in the inflammatory response local to the site of exposure to the 
same (or cross-reactive) chemical the individual has previously been sensitized to. Image: NEXU Science communication.
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SENS-IS and GARDskinTM dose response assays (Cottrez 
et al. 2015, 2016; Gradin et al. 2021), which cover multiple 
KEs, show some promise in providing more quantitative skin 
sensitizing potency assessment by predicting a skin sensitiza
tion class (strong/moderate/weak/non-sensitizing). However, 
it remains to be seen how these can be utilized in risk 
assessment.

1.3. Current mechanistic research and future 
possibilities

The current AOP, which serves as a backdrop for the devel
opment of predictive assays for sensitization, is somewhat lin
ear in nature, implying that events occur one after the other 
in an orderly sequence. However, as most of the events 
described above directly result from the electrophilicity of a 
topically applied chemical, it is more likely that they happen 
concomitantly or that they significantly overlap. As evident 
from investigations of haptenation and metabolism of 2,4- 
dinitro-1-chlorobenzene (DNCB) in HaCaT cells, interactions 
with cell surface proteins, relevant detoxification mechanisms 
as well as cell defense mechanisms otherwise capable of 
undoing or ameliorating the damage from protein haptena
tion most likely occur concomitantly to antigen formation 

(Jacquoilleot et al. 2015; Parkinson et al. 2020b). This repre
sents an opportunity to “branch” the AOP in certain areas to 
gain better mechanistic understanding of each KE and their 
potential overlap. It is possible that this could facilitate more 
meaningful data integration in the future and increase the 
biological relevance of sensitization potency predictions.

Currently, quantitative reactivity data appears to be the 
single most valuable parameter when predicting the potency 
of skin sensitizers (Natsch and Emter 2017). Increasing our 
understanding of how chemical reactivity “plays out” in the 
skin tissue may be of additional value in making further pro
gress to improve the current risk assessment of a variety of 
chemicals with different chemical mechanisms. Determining 
the optimal ways to measure reactivity related to antigen 
generation as well as additional events associated with 
reactivity and deeper quantitative understanding of cell stress 
pathways involved represent research avenues that could be 
explored further. This would facilitate further discussion on 
each of the KEs and strengthen the evidence on the rele
vance of each parameter that may be useful in decision mak
ing. The value of reviewing and furthering the detailed 
understanding of KEs in skin sensitization AOP lies in keeping 
the information up to date and motivating discussion to use 
new scientific insights to constantly look to improve our 

Figure 2. Predictive tools for risk assessment aligned to skin sensitization AOP. Current set of non-animal methods (NAMs) developed for key events in skin sensi
tization, underpinned by the AOP framework include: the direct peptide reactivity assay (DPRA) (Gerberick et al. 2004; 2007), amino acid derivative assay (ADRA) 
(Fujita et al. 2014; Yamamoto et al. 2015; Fujita et al. 2019) as well as kinetic DPRA (kDPRA) (Roberts and Natsch 2009; Wareing et al. 2017; Natsch et al. 2020), all 
included in the OECD TG 442 C (OECD 2023b); KeratinoSens TM (Emter et al. 2010; Natsch and Emter 2016) and LuSens (Ramirez et al. 2014) included in the OECD 
TG 442D (OECD 2022a); human cell line activation test (hCLAT) (Ashikaga et al. 2006), U937 cell line activation Test (U-SENSTM) (Piroird et al. 2015), Interleukin 8 
Reporter gene assay (IL 8 Luc assay) (Takahashi et al. 2011) and Genomic allergen rapid detection for assessment of skin sensitizers (GARDTMskin) (Johansson et al. 
2011, 2013) included in the OECD TG 442E (OECD 2023c). In addition to the above tools, numerous predictive chemistry (in silico) tools are also available (dotted 
box). In vivo evidence (red box) comes from mouse local lymph node assay (LLNA) (OECD 2010a) and its variants (OECD 2010b, 2018) and Buehler and Guinea pig 
maximization Test (GPMT) (OECD 2022b). The LLNA, in fact, addresses KE4, measuring T cell proliferation in treated mice rather than established sensitization.

72 M. ALEKSIC ET AL.



safety assessments, rather than as a critique of the existing 
or emerging test methods or the DAs currently used or under 
development. While predictive assays need not be compli
cated and exactly replicate the entirety of events occurring in 
the skin, to be informative in the risk assessment, they 
should enable a reliable and confident assessment of the risk 
posed to individuals exposed to electrophilic chemicals and 
be used as a part of a tiered approach (Gilmour et al. 2022). 
Currently, in chemico/in vitro predictive assays used within 
DAs do not incorporate NAMs based on some of the add
itional mechanistic insights into the MIE in skin sensitization 
and this information might be valuable in risk assessment 
decisions.

We consider the current understanding of the KEs in the 
skin sensitization AOP, discuss the challenges posed by the 
linear interpretation of the AOP and introduce novel reason
ing of how new and emerging hypotheses on individual KEs 
and their potential overlap could be investigated, measured, 
and potentially utilized in design of future predictive assays 
and DAs for potential use in future skin sensitization risk 
assessment.

2. Methods

An already existing body of literature the authors are familiar 
with was used as a starting point for this review. In particular, 
a journal article by Natsch and Emter (2017) served as an 
inspiring body of work suggesting further mechanistic inves
tigation of chemical reactivity may provide significant and 
useful insights into underlying factors affecting sensitizer 
potency of chemicals. An NIH PubMed (https://pubmed.ncbi. 
nlm.nih.gov/) search of peer reviewed journal articles was 
conducted up to 1 August 2023 using generic terms “skin 
allergy,” “contact sensitization,” “protein haptenation,” etc., 
with the intention to source suitable articles for review of the 
mechanistic research in skin sensitization over the past cou
ple of decades, in particular focusing on the period since the 
publication of the skin sensitization AOP (OECD 2014). The 
search terms were widened to include journal articles which 
deal with phenomena associated with skin sensitization in 
some mechanistic aspects, in particular including the effects 
of electrophilic chemicals on biological systems and associ
ated events (chemical metabolism, detoxification, lipid peroxi
dation etc.). The data and conclusions from the relevant 
journal articles were critically evaluated by the authors and 
used to support the discussion on key events of the AOP in 
sensitization. The focus remained on widening the know
ledge of AOP key events and exploring the potential to 
develop novel and useful insights and assays for higher tier 
risk assessments.

3. Results

3.1. Reactivity and consequences

Electrophilic reactivity of a sensitizer, either direct (hapten) or 
acquired by air oxidation (pre-hapten) or metabolic activation 
(pro-hapten), has long been understood as a prerequisite for 
sensitization (Landsteiner and Jacobs 1935). Otherwise 

“invisible” to the immune system, the (pro/pre) electrophilic 
chemical forms a complete antigen by covalently binding to 
nucleophilic side chains of amino acids in skin proteins. This 
MIE starts the sequence of events which ultimately lead to 
sensitization and understanding this has enabled develop
ment of in chemico reactivity assays and their subsequent 
refinements. Reactivity assays today are an integral part of 
non-animal risk assessment of chemicals for skin sensitization 
potential (e.g. DPRA, ADRA, and kDPRA, see Figure 2).

The majority of reactivity assays (originally developed in 
2004 and included in the OECD TG 442 C (OECD 2023b)) 
measure the depletion of the limited number of target nucle
ophile(s) at a single time point (typically 24 h), except kDPRA, 
which assesses kinetics of reactivity with Cys peptide at mul
tiple time points. Importantly, nucleophile (peptide) depletion 
measures the level of haptenation indirectly. As such, it often 
captures oxidative depletion (of Cys peptide) rather than 
purely haptenation-induced depletion. The mechanisms of 
Cys peptide oxidative dimerization are not yet explained 
(Natsch and Emter 2017), but it is likely that this reaction also 
occurs in keratinocytes and potentially contributes toward 
overall oxidative stress. Additional reactivity assays developed 
since then and not included in the OECD TG 442 C can add 
valuable information for risk assessment. These involve use of 
multiple nucleophiles, investigating reaction mechanism(s) 
and/or measurement of the initial rate of reaction (Natsch 
et al. 2007; Natsch and Gfeller 2008; Aleksic et al. 2009; 
Chipinda et al. 2010, 2014; Sanderson et al. 2016). Perhaps 
the most valuable development is classification of sensitizers 
into mechanistic reactivity domains (Roberts et al. 2007) 
which can be used for prediction of sensitization potency 
using reaction kinetics and hydrophobicity parameters (within 
the constraints of Michael acceptor (MA) and some parts of 
Schiff base (SB) reactivity mechanistic domains (Roberts and 
Natsch 2009; Roberts et al. 2017)). However, complex reactiv
ity mechanisms and reactions with multiple nucleophiles, 
including crosslinking, are not easily captured in reactivity 
assays and remain difficult to consider in decision making.

Since the original design of the now widely used reactivity 
assays in 2004, the understanding of the complex nature of 
protein haptenation and some aspects of how the inherent 
reactivity of the chemicals results in generation of specific 
complete antigens when bound to proteins has considerably 
improved. Relevant mechanistic studies and emerging 
hypotheses are discussed below.

Utilizing fluorescence of bromobimanes’ adducts, two 
studies have confidently identified epidermal keratin com
plexes as major haptenation targets (keratin 5 (K5) in mouse 
skin (Simonsson et al. 2011) and both K5 and K14 in human 
epidermal keratinocytes (Bauer et al. 2011)). Keratins are 
highly abundant heterodimeric pairs of type I and type II ker
atins which make up the cytoskeletal keratin intermediate 
filament network in epithelia. In human epidermis, K5 and 
K14 are found in the basal layers, whereas suprabasal layers 
express another heterodimeric keratin pair, K1 and K10, 
which are extensively crosslinked and far less likely to have 
available Cys residues for haptenation (Moll et al. 2008). Cys 
54 of K5 was shown as one of the main bromobimane tar
gets. These two remarkable studies have shown that 
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haptenation in living cells and tissues is relatively rare event, 
given that protein concentration far exceeds that of the hap
ten. Another study located a specific fluorescent tetramethylr
hodamine isothiocyanate (TRITC) modification on unusually 
reactive N-terminal proline of migration inhibitory factor 
(MIF) in lymph nodes and blood of mice topically treated by 
TRITC, suggesting MIF may have an important immunomodu
latory role in sensitization (Karlsson et al. 2018; Ndreu et al. 
2022). This additionally demonstrates utility of the fluorescent 
adduct approach for studying haptenation of sensitizers 
which react with amine based nucleophiles (Patlewicz et al. 
2002), but remains applicable only to electrophiles which 
make fluorescent adducts.

Studying correlation between reactivity and sensitization 
potency, Natsch and colleagues investigated the anti-inflam
matory effect Michael acceptors are exhibiting via inhibition 
of nuclear factor-kappa B (NFjB) signaling, which appears to 
dampen their pro-inflammatory sensitizing effect and appear 
less potent. Cyclopentenone prostaglandins (Natsch et al. 
2011), 4-hydroxy-2-nonenal (4HNE) (reactive carbonyl species 
(RCS), which are end product of lipid peroxidation (Ji et al. 
2001)) and parthenolide (Kwok et al. 2001) modify IjB kinase 
(IKK), whereas sesquiterpene lactones directly target p65 of 
NFjB (Lyss et al. 1998; Garc�ıa-Pi~neres et al. 2001). This is in 
contrast to SN2 and SNAr reactive sensitizers, which are not 
inhibiting this signaling cascade (Natsch et al. 2011). Clearly, 
studying specific haptenation targets may help us interpret 
the reactivity of sensitizers more accurately in the context of 
sensitization potency.

Elbayed et al. (2013) showed the utility of the high-reso
lution magic angle spinning nuclear magnetic resonance (HR 
MAS NMR) to compare haptenation of human serum albumin 
(HSA) and reconstituted human epidermis (RHE) by a model 
sensitizer methyldodecanesulphonate. The critical comparison 
of haptenation “in solution” using a model protein Vs hapte
nation in a 3D model of human epidermis showed a consid
erably faster haptenation in tissue (detectable by 24 h 
compared to days with HSA). Chemoselectivity for the pro
tein nucleophiles differed significantly between models, with 
Lys being targeted on HSA, and His, Met, and Cys found 
modified in RHE. Two further studies using this approach 
(with a-methylene-c-butyrolactone (Debeuckelaere et al. 
2015) as well as 2-methylisothiazolin-3-one (MI) and 5-chloro- 
2-methylsothiazolin-3-one (MCI) (Debeuckelaere et al. 2016)) 
confirmed the initial kinetic and chemoselectivity findings of 
Elbayed and colleagues and demonstrated the importance of 
reactivity toward multiple nucleophilic residues, namely His. 
While the HR MAS NMR studies detect the nucleophilic resi
dues and do not identify haptenated proteins as such, they 
clearly demonstrate that nucleophile targeting and the 
dynamics of the haptenation are not fully represented in the 
current in chemico reactivity assays. However, previous efforts 
to include His in reactivity assays, have demonstrated poor 
sensitivity of His peptide depletion as well as poor predictiv
ity compared to Cys and Lys peptides (Gerberick et al. 2004).

The sparse protein haptenation was detected using sensi
tive stable isotope labeling, initially with single proteins and 
relevant protein mixtures (HaCaT cell and human skin lysates) 
(Parkinson et al. 2014, 2018, 2020a). This method was further 

utilized with living HaCaT cells treated with DNCB, adding 
the quantitative analysis of proteome (Parkinson et al. 
2020b). Minimal changes in overall protein differential expres
sion were observed in HaCaT cells while DNCB haptenated 
approximately 0.25% of all available nucleophiles when 
applied at a subtoxic concentration (10 lM) for 4 h. This van
ishingly low level of haptenation by an extremely potent sen
sitizer is in contrast with observations from reactivity assays, 
where DNCB depletes 100% of target peptides. The sites of 
modification on individual proteins were detected, however, 
haptenation could not be directly quantified. While reactive 
with most nucleophiles in reactivity assays, DNCB showed a 
preference here for Cys residues, despite the considerably 
higher concentration of amine-based nucleophiles. Although 
a proportion of highly abundant proteins were haptenated, 
including K5 and K14 (seen haptenated by bromobimanes 
previously), haptenation was also detected on low abundant 
proteins. Interestingly, maximum haptenation occurred at 2 h 
and was negligible at the end of the time course (48 h), indi
cating that DNCB haptenation may have been reversed. This 
is in contrast to the current consensus opinion that the cova
lent modifications are irreversible (OECD 2014). Similar 
dynamics were mirrored by a study using DNCB at the identi
cal subtoxic concentration and same cell line which quantita
tively investigated time course of the main phase II 
metabolism of DNCB, binding to glutathione (GSH) 
(Jacquoilleot et al. 2015). In the glutathione-s-transferase 
(GST) catalyzed process, 2 h timepoint showed maximal 
depletion of GSH, with levels recovering from 4 h onward. A 
more complex study of GSH cycle upon repeated DNCB treat
ment was using RHE model and has shown a complete 
recovery of the levels of GSH after three consecutive daily 
doses of DNCB (Spriggs et al. 2016).

Despite only a few distinct chemicals having been investi
gated in the complex studies described above, new hypothe
ses are emerging from these insights. It is evident that 
haptenation develops immediately post-exposure to the elec
trophilic chemical which concomitantly triggers a variety of 
associated events in epidermal cells. Some of this knowledge 
has already been utilized for development of predictive 
assays (e.g. KeratinoSensTM (Natsch and Emter 2016; OECD 
2022a)). Other associated events, such as damage to proteins 
by elevated reactive oxygen species (ROS), lipid peroxidation 
(LP) and secondary damage to proteins from end products of 
LP (RCS) have not had as much attention.

Three emerging areas of interest which are either a direct 
consequence of chemical reactivity of sensitizers or are 
events associated with the initial external electrophilic stress 
are discussed below with suggestions how exploring these 
events mechanistically and quantitatively may be useful in 
predicting sensitizer potency (Figure 3).

3.1.1. Skin metabolism
Metabolism research in skin sensitization has been focused 
on phase I metabolic processes which may be responsible for 
activation of pro-haptens. Conceptually, the formation of 
reactive metabolites by phase I metabolism in human skin is 
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well established, although in vitro demonstration is still rela
tively limited (Niklasson et al. 2014; Reynolds et al. 2021).

However, current understanding of phase I skin metabol
ism and abiotic activation (e.g. air oxidation) have been used 
in the adaptations to existing reactivity assays, aiming to 
incorporate “activation” of nonelectrophilic chemicals to their 
electrophilic metabolites which then bind to the model 
nucleophiles (e.g. Peroxidase Peptide Reactivity Assay (PPRA) 
(Gerberick et al. 2009; Troutman et al. 2011; Ryan et al. 2020). 
The utility of current in chemico and in vitro assays for detec
tion of pre- and pro-electrophiles has been a subject of 
reviews (Patlewicz et al. 2016; Urbisch et al. 2016). To date, 
little emphasis has been placed on the activity of phase II 
metabolizing enzymes in epidermis which are responsible for 
effective “removal” of a variety of electrophilic molecules by 
either binding them to substrates generating non-reactive 
products or converting the electrophiles to related unreactive 
molecules.

Oesch and colleagues updated their comprehensive 
review of skin metabolizing enzymes in 2014 (Oesch et al. 
2014), reviewing and comparing numerous studies which 
investigated either mRNA levels, protein levels or activity of a 
vast array of metabolizing enzymes (including non-CYP 
metabolizing enzymes, such as aldehyde oxidases/dehydro
genase (AO/ALDH), NAD(P)H quinone reductase (NQR), hydro
lases (epoxide hydrolase (EH), esterases/amidases), and 

conjugating enzymes, such as glutathione-s-transferases 
(GSTs), UDP-glucuronosyl transferases (UGTs), sulfotransfer
ases (SULTs) and N-acetyl transferases (NATs)). The broader 
role of detoxifying enzymes in drug hypersensitivity was sub
ject of a review (S�anchez-G�omez et al. 2016), highlighting the 
evidence supporting the involvement of GSTs and aldo-keto 
reductases in development of a variety of allergic responses 
as well as interaction of these key detoxifying enzymes with 
oxidative stress molecules, both endogenous and external 
electrophiles and inflammatory mediators. While it can be 
challenging to confidently detect and measure activity of 
some metabolizing enzymes in human skin, 3D skin/epider
mal models and skin relevant cell lines, it is accepted that 
majority of relevant metabolizing enzymes are present and 
detoxification is observable in vitro and ex vivo (Manevski 
et al. 2015; Kazem et al. 2019). However, although stable in 
models, levels of protein expression of certain metabolizing 
enzymes and consequently their metabolic activity may vary 
in individuals as well as at a population level (Spriggs et al. 
2018; Buratti et al. 2021).

The phase II metabolism of electrophilic molecules is 
closely linked to the reactivity mechanism. For example, SN2 
chemicals and MAs are conjugated to GSH, removed out of 
the cell and processed to the relevant mercapturic acid con
jugate for excretion, whereas SB formers and acylators are 
metabolized by AO/ALDH (Table 1). When a sensitizer has 

Figure 3. Molecular initiating event (MIE) in skin sensitization by 1,4-dinitro-2-chlorobenzene (DNCB). Besides antigen formation ((a) covalent binding of DNCB to 
specific cell proteins), additional concomitant and associated events ((b) detoxification, (c) oxidative balance disturbance, (d) lipid peroxidation, (e) covalent modifi
cation reversal, (f) activation of the Nrf2 pathway) and (g) covalent protein damage from reactive carbonyl species (RCS, end products of lipid peroxidation) are 
shown. Image: NEXU Science communication.
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more than one electrophilic center, there may be more than 
one mechanism involved in completely removing the sensi
tizing potential of that molecule. For example, cinnamalde
hyde reacts via MA to thiols and via SB formation to amine 
nucleophiles. Thus, cinnamaldehyde a,b-unsaturated moiety 
undergoes conjugation to GSH catalyzed by GSTs and its car
bonyl moiety is dealt with by an AO/ALDH converting it to 
cinnamic acid.

The phase II metabolic reactions are inevitably faster than 
spontaneous protein haptenation, due to enzyme catalysis 
and high concentrations of cofactors (e.g. cellular GSH con
centration is approx. 5 mM in most cells (Pizzorno 2014)). 
Most electrophiles are subject to these cellular defense mech
anisms, effectively preventing the damage they may exert by 
covalently modifying proteins. This can explain the vanish
ingly low and, until recently, almost undetectable level of 
haptenation by non-cytotoxic concentration of even a very 
potent sensitizer, such as DNCB (Parkinson et al. 2020b).

Considering the reactivity of sensitizer in the context of 
detoxification may help explain extreme potency of certain 
sensitizers. For example, DNCB is an extreme sensitizer and 
depletes 100% of Cys peptide in standard reactivity assays 
(Gerberick et al. 2004). However, DNCB is found to covalently 
modify the active center of GST-W (Figure 3, b), the enzyme 
which catalyzes the phase II metabolism of DNCB, possibly 
disabling the enzyme (Bailey et al. 2021). Another extreme 
sensitizer, 5-Chloro-2-methylisothiazol-3-one (MCI), is acti
vated by thiols, including GSH and two further highly 
reactive intermediates are generated in this process (Alvarez- 
S�anchez et al. 2004a; 2004b). Thus, instead of effective 
detoxification, the GSH acts as a catalyst, increasing the 
reactivity of MCI. These two extremely potent sensitizers 
appear to impede their removal from the cell. Further instan
ces of sulphydryl based (e.g. GSH) activation of sensitizers 
have recently been shown for isothiocyanates (Karlsson et al. 
2016) and 2-bromo-2-(bromomethyl)glutaronitrile (MDBGN) 
(Ndreu et al. 2020). It is also known that some GSH conju
gates can be converted into reactive, toxic intermediates 
(Anders 2008; Cooper and Hanigan 2018).

Main phase II metabolic mechanisms apply to both exter
nally applied and endogenously generated electrophilic mol
ecules (e.g. RCS). These are mainly aldehydes, dialdehydes or 
a,b-unsaturated aldehydes, and it is likely that their increased 
level would impact the capacity of GST and AO/ALDH detoxi
fication mechanisms. It may be important to determine the 
level of RCS generated by exposure to sensitizers to be able 
to fully assess the detoxification capacity and how this influ
ences the potency for skin sensitizers competing for the 
same detoxification mechanisms.

Quantifying the phase II metabolic capacity of the human 
keratinocytes for the main mechanistic domains of reactive 
chemicals should enable understanding of how this process 
competes with protein haptenation and at which concentra
tion the electrophilic chemical could overwhelm the cellular 
defense mechanisms. Reactivity rates of reaction of sensitizers 
with simple nucleophiles are already available in chemico 
(e.g. aldehydes reactivity with butylamine (Natsch et al. 2018) 
and electrophiles with glutathione (Schultz et al. 2005)), 
although inclusion of enzymatic activity (in skin extracts or 
using isolated enzymes) might give a more relevant estima
tion of detoxification in vivo. This can be applied to the 
chemicals with a single mechanistic domain as well as those 
with more than one reaction mechanism.

3.1.2. Oxidative stress and end products of lipid peroxida
tion (LP)
Oxidative stress is part of keratinocyte inflammation, currently 
considered under the KE2 in the AOP. This is a direct conse
quence of electrophilicity of sensitizers, and a molecular basis 
for secondary inflammatory effects also described in KE2. 
Electrophile presence in keratinocytes disturbs the redox bal
ance, either by direct binding to cellular antioxidants (such as 
GSH), oxidative dimerization of thiols (e.g. GSH to GS-SG) or 
via radical mechanisms (directly or following activation, e.g. 
hydroperoxides). Disruption of redox balance by engaging 
the main cellular antioxidant inevitably leads to increase in 
ROS (Figure 3, c), which, in turn, disturbs cellular homeostasis 
via: (1) irreversibly damaging cellular proteins (attacking the 
nucleophilic sites and the protein backbone); (2) attacking 
the polyunsaturated fatty acids (PUFAs) (including disrupting 
the cell membrane) and initiating LP (Figure 3, d) which 
results in formation of endogenous electrophiles (or RCS) as 
well as (3) additionally activating the nuclear factor erythroid 
2-related factor 2 (Nrf2) pathway (Figure 3, f)), ultimately 
increasing the transcription of the phase II metabolizing 
enzymes in the cell.

Increased ROS results in the accumulation of the unfolded 
proteins in the endoplasmic reticulum (ER) and activation of 
the unfolded protein response (UPR) (Read and Schr€oder 
2021). This ROS dependent phenomenon has been demon
strated in a THP-1 cell line treated with a potent skin sensi
tizer 1-fluoro-2,4-dinitrobenzene (DNFB) (Lu�ıs et al. 2014). 
Increase in ROS is, therefore, likely to speed up the process
ing of haptenated proteins.

Redox balance disruption deepens the damaging effect by 
enabling elevated ROS to interact with cellular and organelle 
membranes, where a phospholipid bilayer is made up of 

Table 1. Likely phase II metabolic fate of different mechanistic groups of sensitizers.

Reaction mechanism Associated detoxification mechanism Enzyme(s) involved

Michael addition (MA) GSH conjugation GSTs
Acylation (Ac) and Schiff base formation (SB) Conversion of aldehyde to carboxylic acid AO/ALDH
SN2/SNAr GSH conjugation GSTs
Other examples (e.g. PPD) N-acetylation N-acetyl transferase(s)

Note: The two most prominent enzyme systems are glutathione-s-transferases (GSTs) and aldehyde oxidases/dehydrogenases (AO/ALDHs) 
both serving to mitigate the effects of externally or endogenously induced oxidative and electrophilic stress.
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hydrophilic head group and hydrophobic acyl chains of satu
rated, monounsaturated, and polyunsaturated fatty acids. 
Epidermis and keratinocyte cell cultures contain a large pro
portion of saturated fatty acids (FAs), and of the polyunsatur
ated fatty acids (PUFAs), only lineloic acid (LA, 18:2 W-6) and 
arachidonic acid (AA, 20:4 W-6) are detected at higher levels 
and vary considerably between freshly isolated epidermis 
and cultured keratinocytes (Ponec et al. 1988; Sch€urer et al. 
1993). LP involves ROS attack on the carbon-carbon double 
bonds of the PUFAs (Figure 3, d), often in the phospholipid 
bilayer of membranes (Pamplona 2011; Łuczaj et al. 2017). 
ROS initiates LP, however, the progression of this reaction is 
not further impacted by ROS levels. It is, instead, driven by 
the proximity of the peroxidizable fatty acid chains (Zimniak 
2011). Self-propagating fatty acid peroxyl radicals of W-6, but 

also W-3 PUFAs, ultimately produce, via series of cleavages, a 
collection of over 30 biologically active structurally related 
electrophilic molecules known as RCS (end products of LP) 
(Figure 4) (Kawai et al. 2007; Negre-Salvayre et al. 2008). 
Unlike ROS, RCS have longer half-life and are capable of 
covalent modification of other biomolecules, in particular 
proteins, causing “endogenous electrophilic stress” (Marnett 
et al. 2003).

RCS have multiple roles, ranging from cell signaling and 
preventing irreversible oxidative protein damage at low con
centrations to damage inducing at high concentrations 
(Domingues et al. 2013; Castro et al. 2017; Mol et al. 2017; 
Zhang and Forman 2017). RCS covalently modify proteins via 
MA reactions and SB formation, much like some externally 
applied sensitizers, which they resemble. Proteins covalently 

Figure 4. Structures of some reactive carbonyl species (RCS), end products of lipid peroxidation (LP). The most abundant and most often studied RCS are malondial
dehyde (MDA) and 4-hydroxynonenal (4HNE). A large body of literature details extensive investigations of generation, known metabolic routes and effect on certain 
signaling events, cellular Pool of protein and pathologies associated with production of MDA and 4HNE (e.g. Alzheimer’s disease, Parkinson disease, liver disease, 
diabetes, cardiovascular disease and cancer) (reviewed by but not limited to) (Ayala et al. (2014)).
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modified by RCS (carbonylated proteins), are often processed 
by the proteasome 20S, but can be ubiquitinated and proc
essed by the proteasome 26S or, indeed, by lysosomes 
where, due to low pH and active acid hydrolases, SB adducts 
can be reversed (Zhang and Forman 2017).

From a structure and reactivity perspective, RCS resem
blance of well-known skin sensitizers raises the obvious ques
tion of the immunogenicity of their protein adducts. Indeed, 
there is accumulating evidence that malondialdehyde (MDA) 
modifications of certain proteins act as oxidation-specific 
epitopes capable of triggering both innate and adaptive 
immune response (Papac-Milicevic et al. 2016). Only two RCS 
molecules have been tested in sensitization assays and classi
fied as human sensitizers (glyoxal (Gerberick et al. 2005; 
Basketter et al. 2014) and hexanal in DPRA (Kawakami et al. 
2020)). It is easy to assume that, if tested, RCS could be 
determined as topical sensitizing chemicals, however, realis
tically, the sensitizing concentrations should far exceed those 
that are generated endogenously. Under oxidative stress con
ditions, keratinocytes are likely producing a variety of RCS, 
which are collectively damaging, but individually should not 
reach the concentration required to provoke a specific 
immune response. Additionally, certain LP end products are 
metabolized and routed into other cellular processes (e.g. 
MDA and acetaldehyde are converted to acetate; methyl 
glyoxal is converted into pyruvate and both enter the citric 
acid cycle (Negre-Salvayre et al. 2008; Ayala et al. 2014)), 
potentially lowering the chances of eliciting a skin reaction in 
an individual topically sensitized to an LP end product.

The type and level of individual RCS generated under oxi
dative stress conditions is entirely dependent on the PUFA 
composition of the cells (Zimniak 2011). The susceptibility of 
PUFAs to peroxidation increases proportionately with their 
level of unsaturation and can be determined by calculating 
the “peroxidation index” for a known PUFA composition 
(Hulbert et al. 2014). This could be one of the important 
sources of variability in individual sensitization thresholds.

All cells, including keratinocytes, have adapted and devel
oped defense mechanisms to rapidly sequester RCS or 
metabolize them into other useful molecules and repair the 
damage they cause (Marnett et al. 2003; Sousa et al. 2017). 
However, it is important to consider the level and type of 
RCS generated during the induction of sensitization, given 
that their reactivity is resulting in cellular interactions chem
ically mirroring those of sensitizers (Figure 3, g). Dependent 
on the type and level of RCS generated, they may act as 
competition for detoxification mechanisms, impairing the cel
lular ability to remove the sensitizer effectively; contribute to 
further activation of the UPR and “speed up” the processing 
of haptenated proteins and/or as additional signal to increase 
the cellular ability to remove the electrophiles, for example 
by activating the Nrf2 pathway.

3.1.3. Stability of covalent adducts
We explored the literature for evidence of (in)stability and 
reversibility of covalent modifications both in skin sensitiza
tion field and beyond, namely in studies examining reactions 
of LP end products, RCS.

Time course studies of DNCB haptenation (Parkinson et al. 
2020b) and GSH cycle in DNCB treated HaCaT cells (Spriggs 
et al. 2016) show that protein haptenation peaks at 2 h, coin
ciding with maximum depletion of GSH. The level of hapte
nation is negligible at 48 h, indicating that either the 
previously haptenated proteins have been removed some
how from the samples or that the modifications have been 
reversed. The latter scenario seems more plausible for several 
reasons: (1) the haptenation experiments were conducted in 
a closed system; (2) the whole sample was lysed at a given 
time point and, thus, it contains the entire proteome, includ
ing proteins that might have been “expelled” from the cells; 
(3) there was no obvious way to systematically remove the 
haptenated proteins; and (4) it is energetically more favorable 
for the cell to repair the damage to haptenated proteins by 
removing the covalently bound hapten than to undergo de 
novo protein synthesis. While none of the above reasons con
stitutes a proof that covalent modifications by DNCB are 
reversed, it points us strongly in the direction of exploring 
the possibility of this occurring (Figure 3, e).

Natsch and Emter exemplified occurrences of “sequential” 
reactivity of electrophiles with different amino acid residues 
(Natsch and Emter 2017). Using MCI, methyl isothiazolinone 
(MI), oxazolone, isocyanate, isothiocyanate, and an anhydride 
as case studies, an initial reaction with thiol (protein Cys resi
due or GSH) is described, followed by a final, more stable 
adduct detected on an amine (Lys or His residues on pro
teins). The article does not explicitly discuss haptenation 
reversibility in the context of hapten removal and ultimate 
detoxification, however, it does point out lack of full under
standing of the complex reactivity of sensitizers.

Outside of skin sensitization field, experimental reversal of 
SB adducts is found in literature reporting measurements of 
“free” and “total” levels of RCS where acidification is often 
used experimentally to remove the SB conjugated MDA and 
subsequently capture it by thiobarbituric acid (TBA) (e.g. 
Spickett et al. 2010). Haptenated proteins are processed in an 
acidic environment of lysosomes, where acid hydrolases are 
active at low pH (Cooper 2000), likely reversing SB adducts. 
Furthermore, to prevent the known spontaneous reversibility 
of SB adducts in biological samples, sample preparation (e.g. 
for proteomic analyses) often includes “stabilization” step 
(e.g. Han et al. 2007; Eggink et al. 2008). This involves a reac
tion with sodium borohydride ((Billman and Diesing 1957)), 
which reduces the -C¼N- bond in SB to a more stable -CH2- 
NH- making the adduct less likely to be hydrolyzed and, 
therefore, more likely to be detected.

Reversibility of several types of GSH adducts has been dis
cussed as a spontaneous event (Baillie and Kassahun 1994). A 
recent study investigating 4-hydroxynonenal (4HNE) site spe
cific binding in human colon carcinoma cell line treated with 
an analogue of 4HNE, showed that MA adducts rapidly dis
appear in intact cells (Yang et al. 2015). The mechanism of 
this potential reversal remains unknown, however, sporadic 
evidence shows that some MA adducts can be reversed by 
excess thiol (often GSH) (Mol et al. 2017). Some reports detail 
design of reversible MA electrophiles (Lee and Grossmann 
2012; Krishnan et al. 2014). Another important component of 
cellular defense against ROS, thioredoxin (Trx) and its 
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associated enzyme thioredoxin reductase (TrxR) comprise a 
system capable of reducing the disulfide bonds of oxidized 
Trx, but also other chemical entities, such as lipid hydroper
oxides (Nordberg and Arn�er 2001). There is, however, no dir
ect evidence that this system can reduce S-C bonds formed 
during MA reaction.

Certain strong or extremely potent sensitizers (Gerberick 
et al. 2005) have more than one reaction mechanism or react 
via complex mechanisms. It is plausible that complex adducts 
and crosslinks are less likely to be reversed (or are energetic
ally “costly” to reverse) and that this could explain their high 
sensitization potency. For example, glutaraldehyde is a strong 
sensitizer capable of formation of strong crosslinks between 
(and within) proteins (Bowes and Cater 1968), making it a 
very useful reagent in many experimental procedures 
(Migneault et al. 2004). Another potent sensitizer, formalde
hyde, makes initial methylol adduct with amine nucleophiles 
which is dehydrated to a SB and known to be unstable. 
However, formaldehyde adducts continue to react beyond 
this initial step with other amino acids within close proximity 
forming methylene bridges and imidazolinone adducts (Metz 
et al. 2004, 2006). Further complex crosslinks following inter
action with formaldehyde were recently described (Michiels 
et al. 2020). An extreme sensitizer, MCI, mentioned earlier, 
reacts via complex mechanism to protein nucleophiles 
(Alvarez-S�anchez et al. 2004a, 2004b).

Mechanistically, it is unclear how covalent adducts could 
be reversed in skin for majority of reactions in sensitization 
and whether this phenomenon has a quantitative impact on 
kinetics of antigen formation. It is evident that some adducts 
are more readily reversible than others and plausible that 
reversing covalent adducts is, in fact, an “extended arm” of 
cellular detoxification mechanism.

3.1.4. Quantitative combination of early reactivity-related 
events
The impact of skin exposure to reactive chemicals reaches 
beyond antigen generation, triggering the additional events 
described above. Concomitant nature of these events may 
explain how sensitization occurs only when cellular defense 
systems are overwhelmed (Figure 5). Developing assays to 
quantify certain events (e.g. detoxification, redox balance dis
turbance and generation of endogenous electrophiles, revers
ibility of covalent modifications) in addition to existing 

reactivity assays may help determine the true relationship 
between reactivity and sensitization potency of a chemical.

3.2. Epidermal inflammation

Keratinocytes and antigen presenting cells (APCs) are trig
gered via innate immune mechanisms during induction of 
skin sensitization (OECD 2014; Martin 2017), resulting in epi
dermal inflammation. Often referred to as “danger signal” 
(Ainscough et al. 2013), molecules released in response to 
sensitizer-induced cellular injury act as the link between the 
innate and the adaptive arms of the immune system. Current 
validated assays addressing KE2 have focused on the activa
tion of the key inflammatory pathway in keratinocytes as a 
readout of the epidermal inflammation (KeratinoSensTM 

(Emter et al. 2010; Natsch and Emter 2016) and LuSens 
(Ramirez et al. 2014), included in the OECD TG 442D (OECD 
2022a)). The assays rest on the principle that electrophiles 
modify Cys residues on Kelch-like ECH-associated protein 
(Keap 1) which leads to release of the Nrf2. Released Nrf2, no 
longer targeted for ubiquitination and proteosomal degrad
ation, migrates to the nucleus and binds to the electrophile/ 
antioxidant response element (EpRE/ARE), thus activating the 
transcription of cytoprotective genes, mainly encoding for 
metabolic phase II enzymes (Natsch and Emter 2016). Nrf2 
pathway activation represents a cumulative effect of electro
philic sensitizer, ROS, GSH, and endogenous electrophiles 
(RCS), all of which react with Cys residues of Keap 1 (Figure 
3, f). Subject of much investigation, it has been proposed 
most recently that the potency of a chemical may be 
inversely proportional to the amount of Nrf2 protein available 
(Vallion and Kerdine-R€omer 2022).

Besides Nrf2 pathway activation, epidermal inflammation 
in skin sensitization is a culmination of multiple molecular 
signals from both keratinocytes and APCs (Kimber et al. 2002, 
2011). The entire set of molecular components of epidermal 
inflammation is not completely understood, but it is evident 
that a substantial overlap in the inflammatory signaling path
ways exists in these two cell types. Recent advances in 
understanding inflammation in both keratinocytes and APCs 
as well as potential ways of utilizing this information are dis
cussed below.

Figure 5. Simplified diagram showing how electrophilic chemicals may interact with cell defense systems, which act in concert to prevent a threshold for sensitiza
tion being reached. Electrophilic molecule is likely to encounter cell detoxification mechanisms (k4) faster than be able to covalently modify proteins (k1). It is likely 
that some type of covalent modifications can be reversed (k3) and subsequently removed by cellular detoxification mechanisms (k4). However, detoxification (k4) 
may lead to disturbance of redox balance and increase lipid peroxidation (LP, k2), which, in turn, also covalently modifies cellular proteins, potentially speeding up 
antigen processing and activating unfolded protein response (UPR).
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3.2.1. Cytokines in keratinocytes and APCs
Cytokine secretion is a hallmark of epidermal inflammation in 
response to skin sensitizer exposure and is regulated at both 
transcriptional and post translational levels. Increased serum 
levels of IL 18 and enhanced expression of IL 1b, IL 1Ra, IL 
36a, IL 36b, IL 36c, and IL 33 in the involved skin of ACD 
patients have been observed (Mattii et al. 2013). Both human 
keratinocytes and APCs significantly increased the production 
of IL 1b, IL 18 as well as Interleukin Converting Enzyme (ICE) 
(Zepter et al. 1997; Matos et al. 2005). ICE or Caspase 1, 
which cleaves both IL 1b and IL 18 into their biologically 
active forms, is regulated by inflammasome in both keratino
cytes and APCs (Naik et al. 1999; Mee et al. 2000). Pro-inflam
matory cytokines also induced in both cell types include 
tumor necrosis factor alpha (TNF a) and IL 8 (Barker et al. 
1991; Rambukkana et al. 1996; Nukada et al. 2008). 
Interestingly, the IL 8 assay, which is the only OECD validated 
cytokine assay (Watanabe et al. 2007; Sand et al. 2018) was 
developed as a marker for APC activation (KE3) rather than 
keratinocyte inflammation (KE2), possibly due to the cell type 
used in the assay (OECD 2023c).

3.2.2. Damage associated molecular patterns (DAMPs)
Both intracellular and extracellular danger signals contribute 
to the epidermal inflammation via cytokine regulation 
(Schaefer 2014). Upstream to the cytokine expression and 
processing, extracellular DAMPs such as Low Molecular 
Weight Hyaluronic Acid (LMWHA) fragments signal through 
the Toll-like Receptors (TLRs) to trigger inflammatory 
responses (Scheibner et al. 2006; Jiang et al. 2011). 
Electrophiles increase the degradation of High Molecular 
Weight HA (HMWHA) to LMWHA fragments by either modu
lating the expression of Hyaluronidase isoforms or 
Hyaluronan Synthase levels in human keratinocytes (Nikitovic 
et al. 2015). Electrophiles also upregulate TLR 4 and NFjB 
leading to further modulation of inflammatory cytokines, 
such as IL 18 and IL 8 (Galbiati et al. 2014; van der Veen 
et al. 2016; Kavasi et al. 2019). High Mobility Group Protein 
B1 (HMGB1), a non-histone chromatin binding protein, is an 
agonist of TLR 4 that is released from keratinocytes on expos
ure to electrophilic chemicals (Galbiati et al. 2014). LMWHA 
fragments have also been shown to activate the TLR 4 signal
ing pathway in DCs, including facilitating phosphorylation of 
p38/p42/44 MAP kinases and nuclear translocation of NFjB 
(Termeer et al. 2002). However, covalent modification of 
either IKK or p65 of NFjB by MA sensitizers mentioned earlier 
has been shown to inhibit this signaling pathway and have 
an anti-inflammatory effect (Natsch et al. 2011). Signaling 
through MAPK is another key component that regulates 
inflammation through various touch points in both keratino
cytes and DCs (Trompezinski et al. 2008).

Adenosine triphosphate (ATP) contributes to inflammation, 
but also to the maturation of APCs. Chemically injured kerati
nocytes release ATP and in the presence of extracellular ATP, 
APCs show a transient increase in endocytosis, up-regulation 
of CD86, CD54, and major histocompatibility complex (MHC) 
class II, secretion of IL 12 as well as exhibit an improved 

stimulatory capacity for allogeneic T cells (Schnurr et al. 2000; 
Mizumoto et al. 2003).

Both keratinocytes and APCs elevate ROS upon exposure 
to skin sensitizers (Bruchhausen et al. 2003; Mehrotra et al. 
2005; Martin et al. 2011). This can lead to the activation of 
inflammasome and release of active IL 1b and IL 18 in kerati
nocytes (Galbiati et al. 2014). ROS-induced oxidative break
down of the extracellular matrix results in generation 
LMWHA, which activate the TLR and NFjB signaling cascade 
(Martin et al. 2011). As discussed earlier, ROS additionally 
activates the Nrf2 pathway, which mounts an antioxidant 
response. Nrf2 pathway cross talks with the NFjB and inflam
masome signaling which contributes to the dynamics of pro 
and anti-inflammatory effects (Ade et al. 2009; Helou et al. 
2019). ROS are generated during mitochondrial oxidative 
metabolism, which implies a key mitochondrial function in 
the sensitizer-induced inflammatory response and a further 
burden to the cellular detoxification systems.

Additional protective systems, upregulated in response to 
protein damage by electrophiles, have not received much 
attention (e.g. heat shock inducible factor (HSF1) and hypoxia 
inducible transcription factor (HIF1a), controlling heat shock 
and hypoxia responses, respectively (Cyran and Zhitkovich 
2022)). A recent study has suggested a specific mechanistic 
role for the heat shock protein 90 (Hsp90) in sensitization to 
DNCB, identifying several DNCB modified Hsp90 peptide frag
ments (Kim et al. 2022).

3.3.3. Biomarker signatures
Genes downstream of the Nrf2 pathway and other cellular 
stress markers have been evaluated as signatures for sensi
tizer-induced transcriptional changes in novel in vitro assays, 
such as SenCeeToxVR , SENS-IS, EpiSensA, and VITOSENS 
(Hooyberghs et al. 2008; Lambrechts et al. 2010; McKim et al. 
2012; Cottrez et al. 2015; Saito et al. 2017), as well as ex vivo 
skin (van der Veen et al. 2015). In addition to Nrf2 targets, 
the SENS-IS assay also considers select biomarkers with 
redox/detox functions within the set of ARE genes (24 bio
markers) and an additional set of 42 genes with varied func
tionalities (apoptosis, cell death, heat shock, cell stress, 
inflammation, MHC, proteasome, and tissue repair pathways). 
Specific criteria applied to a combination of gene expression 
from both sets is used to classify sensitizers of varying 
potency. In MUTZ3 CD34þ DC progenitors treated with sensi
tizers, Nrf2 and ARE genes were found to be part of the pre
dictive gene signature (Johansson et al. 2011). This has been 
explored further through the development of GARDTMskin 
assay platform and indicates the role of genes related to 
metabolism and cell cycle in addition to oxidative stress 
response (Albrekt et al. 2014; Zeller et al. 2017; Johansson 
et al. 2019; Gradin et al. 2021).

3.3.4. Combining multiple inflammatory signals from kera
tinocytes and APCs
It is difficult to envisage how any measurement of single 
components of the inflammation process in keratinocytes 
and/or APCs could provide a useful readout for improving 
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our ability to predict potency of sensitizers. Given the numer
ous signaling pathways and markers characteristic of the sen
sitizer-induced inflammatory response and the substantial 
overlap of these cascades between keratinocytes and APCs, 
there is ample opportunity to explore how combined inflam
matory parameters may influence sensitizer potency. 
Additionally, understanding how reactivity may modulate 
inflammation response (directly (e.g. MA sensitizers inhibiting 
NFkB signaling) or by proxy (increase in ROS and initiation of 
LP, forming RCS)) may be vital in improving our ability to 
predict sensitizing potency. A potential approach to quantita
tively combine key inflammatory signals from keratinocytes 
and APCs is suggested in Figure 6(A,B).

3.4. Keratinocyte-immune cells communication

In addition to the unique and overlapping components of 
signaling that takes place within keratinocytes and DCs, there 
is evidence of “cell-to-cell” communication that generally 
takes place in the epidermis as well as specifically during 
allergic sensitization. This intercellular communication takes 
place via a variety of mechanisms.

3.4.1. Exosomes
Exosomes have been shown to aid intercellular communica
tion by transporting key information in the form of mRNA, 
miRNA, DNA and proteins (Bang and Thum 2012; Jella et al. 
2018) as well as mitochondria (Hough et al. 2018). Exosomes 
from murine keratinocyte cell line MPEK were readily taken 
up by bone marrow-derived DC in vitro resulting in a 
matured phenotype, accompanied by increased CD40 expres
sion as well as by the production of large amounts of IL 6, IL 
10, and IL 12 (Kotzerke et al. 2013). HaCaT cells can induce T 
cell proliferation via indirect contact through exosomes that 
contain major histocompatibility complex (MHC) I and II (Cai 
et al. 2017). In addition to cells using a systemic transit of 
exosome-like nanovesicles to deliver a chosen inhibitory 
miRNA to target effector T cells in a contact hypersensitivity 
model, functional cell targeting by free extracellular RNA has 

also been shown to take place by transfecting companion 
cell exosomes that then transfer RNA cargo to the acceptor 
cells (Bryniarski et al. 2013; 2015). Such mechanisms may play 
a role in modulating cellular/tissue homeostasis and the host 
immune system in allergic diseases (Hough and Deshane 
2019).

3.4.2. Nanotubes
Su and Igy�art�o demonstrated that epidermal Langerhans cells 
(LCs) contained many keratinocyte specific molecules (kera
tins, adhesion molecules, mRNA and protein) and were more 
prone to migration. These keratinocyte-specific signatures 
were transferred from keratinocytes to LCs through an exo
some independent mechanism that likely involved tunneling 
nanotubules and was not unidirectional (Su and Igy�art�o 
2019). Nanotubular structures have been shown to facilitate 
the selective transfer of membrane vesicles and organelles, 
thereby serving as a key mechanism of intercellular transfer 
of organelles (Rustom et al. 2004). Additionally, nanotubules 
enable myeloid cells to communicate with both targeted 
neighboring or distant cell, as well as other cell types, there
fore, creating a complex variety of cellular exchanges, includ
ing pathogen spread (Dupont et al. 2018).

3.4.3. Blebs
Mentioned previously, Bauer et al. demonstrated a keratino
cyte mechanism where neoepitopes (covalently modified pro
teins generated upon bromobimanes exposure) are released 
via keratinocyte blebbing. This form of cellular communica
tion is likely the main source of haptenated protein for the 
APCs which engulf and process the material contained within 
the blebs (Bauer et al. 2011).

Although potentially interesting for understanding the 
mechanistically complete picture of induction of sensitization, 
it is unclear how quantifying the various means of “cell-to- 
cell” communication may be informative in estimating sensi
tization potency.

Figure 6. (A) A Snapshot of unique and overlapping signaling components of keratinocytes (KCs) and dendritic cells (DCs) (B) Schematic showing possible dose- 
dependent interplay and additive effects of inflammatory signals from KCs and DCs feeding into different levels of potency of sensitizing compounds.
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3.5. Antigen presenting cells activation, migration, and 
maturation

The activation, migration and overall maturation of DCs are 
the hallmarks of the KE3 of the skin sensitization AOP. The 
bridging event between the innate and adaptive immunity 
results from a cascade of several upstream cellular processes. 
Apart from inflammatory response, LCs undergo numerous 
additional changes. These include internalization of MHC 
Class II molecules into endosomal compartments (for loading 
of the haptenated peptides on to the MHC II molecules 
(Girolomoni et al. 1990; Becker et al. 1992)), followed by 
increased tyrosine phosphorylation (K€uhn et al. 1998), 
increase in the expression of surface markers such as CD86 
and CD54, stabilization of the HLA-DR molecules on the sur
face, and downregulation of cell adhesion molecules (Aiba 
et al. 1997) resulting in their migration to the local lymph 
nodes. While the MHC restricted antigen presentation is 
accepted as the main antigen presentation pathway for skin 
sensitization, there is emerging evidence that CD1 presenta
tion, involving skin lipids, may also have a role to play (Betts 
et al. 2017).

Validated assays using human DC-like cell lines or mono
cytic cell lines that can be differentiated into DC are hCLAT 
(Ashikaga et al. 2006), USENSTM(Piroird et al. 2015), IL 8 Luc 
assay (Takahashi et al. 2011) and GARDTMskin (Johansson 
et al. 2011, 2013), all included in the OECD TG 442E (OECD 
2023c). While read outs from all these assays have been 
aligned to KE3, some of these assays are also representative 
of the events leading up to KE3. New knowledge related to 
DC maturation and a mechanistic basis to integrate inputs 
from the various signaling cascades, cellular processes as well 
as different dendritic and other immune cell populations are 
discussed below.

3.5.1. Multiple signaling pathways
There is substantial evidence pointing to oxidative stress and 
MAP Kinase signaling as key intracellular triggers leading to 
activation of DCs (Mizuashi et al. 2005; Nakahara et al. 2006; 
Trompezinski et al. 2008). Further genomic evidence, as seen 
in the GARDTMskin hazard prediction signature, shows that 
numerous genes with known functions underpin the biology 
of cellular and molecular events that occur within DCs on 
sensitizer exposure (e.g. small molecule biochemistry, cell 
death, lipid metabolism, hematological system development, 
cell cycle, molecular transport, cellular growth and prolifer
ation, carbohydrate metabolism, canonical pathways (e.g. 
Nrf2 mediated oxidative response), xenobiotic metabolism 
signaling, protein ubiquitination pathway, lipopolysaccharide 
(LPS)/IL 1 mediated inhibition of retinoid X receptor (RXR) 
function, aryl hydrocarbon receptor signaling and protein kin
ase A signaling pathways) (Johansson et al. 2011). Genomic 
signatures indicate that metabolic processes, cell cycling and 
oxidative stress responses are engaged differently depending 
on the reactivity mechanisms or potency of the sensitizer, as 
well as showing regulation of specific short, endogenous 
noncoding RNA molecules, miRNAs (Albrekt et al. 2014; Zeller 
et al. 2017). Number and type of regulated miRNAs appears 

to rely on individual structural and/or reactivity properties of 
chemical sensitizers (Lindberg et al. 2019). Furthermore, new 
insights have emerged from these investigations about pro
teins involved in cholesterol biosynthesis, homeostasis and 
autophagy (Lindberg et al. 2020; de �Avila et al. 2022, 2023b). 
Although not all mentioned pathways are biomarkers for DC 
activation, as some precede the KE3, consideration of these 
changes together with the commonly quantified DC activa
tion markers in an integrated manner can add more under
standing to the mechanistic basis of varying levels of 
potency amongst skin sensitizers.

3.5.2. Antigen presenting cell (APC) subtypes
The human skin is resident to several subtypes of APCs of 
which the epidermal LCs preferentially prime and expand the 
CD8þ or cytotoxic T lymphocytes (CTLs) (Kissenpfennig et al. 
2005; Klechevsky et al. 2008; Furio et al. 2010). Dermal DCs 
are also capable of presenting antigens to T cells, albeit not 
as efficiently as LCs in inducing the CTLs into potent effectors 
(Kaplan et al. 2008; Klechevsky et al. 2008). There is also evi
dence of recruitment of blood-borne LangerinþDC precursor 
cells to the dermis, dependent on chemokine ligands such as 
C-C chemokine receptor 2 (CCR2) and Selectins expressed in 
vascular endothelial cells (Ginhoux et al. 2007; Merad et al. 
2008). Thus, not only epidermal LCs, but DCs of dermal and 
vascular origin, are also capable of antigen presentation and 
priming of T cells. It is, however, unclear which factors deter
mine the recruitment and involvement of additional DCs.

3.5.3. Changes in cell adhesion and migration
A key aspect of LCs activation is their migration to the drain
ing lymph nodes, for which alteration of inter-cellular adhe
sion within the epidermis is important (Griffiths and Nickoloff 
1989; Barker et al. 1991; Groves et al. 1995). E-cadherin medi
ates the adhesion between keratinocytes and LCs (Blauvelt 
et al. 1995; Mayumi et al. 2013) and yet, there is conflicting 
evidence whether it is indispensable in LC activation and 
migration to the draining lymph nodes (Jakob and Udey 
1998; Brand et al. 2020). Whether other cell adhesion mole
cules such as integrins, selectins or immunoglobulins, some 
of which are expressed in the epidermis (D’Arcy and Kiel 
2021), play a role in regulating migration remains unclear 
and may be worthy of investigation.

APC activation, maturation and migration rightly remain a 
vibrant area of research, however, it is difficult to envisage 
utility of, thus far overlooked, indicators of these events in 
the context of sensitizer potency.

3.6. Cellular immune response

As described in the skin sensitization AOP, the development 
of ACD is a biphasic event consisting of an induction phase 
characterized by priming of antigen specific T cells and an 
elicitation phase characterized by clinical symptoms such as 
erythema, itching and burning (Figure 1). T cell proliferation, 
clonal expansion of primed antigen specific T cells, is 
described in the KE4 of the skin sensitization AOP. This KE is 
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the hallmark of the delayed type hypersensitivity, a point at 
which the individual is sensitized to a chemical, although 
involvement of the B cells in skin sensitization has also been 
investigated.

3.6.1. T cell proliferation
Currently, the only validated assay measuring T cell prolifer
ation resulting from the induction of skin sensitization is the 
local lymph node assay (LLNA, (OECD 2010a)). However, ani
mal data can no longer be generated for the purpose of cos
metic regulation in the European Union (EU 2009). While 
there may, indeed, be opportunities to explore development 
of informative assays with this output (Kimber et al. 2012; 
van Vliet et al. 2018), currently there are no NAMs addressing 
the activation and proliferation of a T cell response which are 
sufficiently progressed for implementation in OECD TG or for 
use in a NGRA approach (van Vliet et al. 2018). It remains dif
ficult to envisage robust, sensitive, and reproducible assays 
addressing this KE in vitro in the near future.

3.6.2. B cell involvement
Historically, there have been attempts to investigate the level 
of involvement of B cells in pathophysiology of ACD. This is 
still an area generating considerable interest. Both LCs and 
dermal DCs have the ability to polarize naïve CD4þ T cells 
either to secrete Th2 cytokines or differentiate into T cells 
that can induce naive B cells to secrete large amounts of 
immunoglobulins (Igs) (Klechevsky et al. 2008). If B cells are 
presented with specific IgE to a hapten-protein complex 
together with the specific antigen, they have been shown to 
internalize the IgE-antigen complex via a CD23 mediated 
mechanism and cross-present the antigen to DCs in vitro 
(Engeroff et al. 2018). The involvement of B cells could 
potentially modulate the efficiency with which DCs present 
the antigens to T cells leading to immunological priming and 
generation of memory T cells. A relatively recent review indi
cates that, despite technical difficulties, more investigation, 
particularly in humans, is required into B cell activation and 
proliferation as well as hapten specific antibody production 
(Singleton et al. 2016). This represents a unique link to 
respiratory sensitization, where B cell response is dominant 
(Sullivan et al. 2017). The sparse knowledge of the nature of 
hapten protein conjugate is perhaps what hampers efforts in 
understanding the B cell and hapten specific antibody 
response in skin sensitization. The relative strength of the B 
cell response may be related to the type of antigen gener
ated during KE 1. For example, certain skin sensitizers are 
capable of crosslinking proteins or otherwise generating 
“larger” antigens (e.g. p-phenylenediamine (PPD), glutaralde
hyde, formaldehyde). Such complex antigens are likely to be 
less transient, not readily reversed, more persistent and thus, 
perhaps more likely to be recognized by an anti-hapten anti
body. This warrants further investigation as antibodies could 
influence the thresholds in induction of skin sensitization.

3.7. Adverse outcome

ACD, characterized by clinical symptoms ranging from mild 
(such as erythema, itching and burning) to severe (blistering, 
severe edema and cracking of the skin), is a common, wide
spread ailment which can become chronic and disabling, 
causing a public health issue (Uter et al. 2020). In recent 
studies it has been estimated that over 20% of the general 
population have acquired contact allergy to at least one 
environmental allergen (Alinaghi et al. 2019; Scheinman et al. 
2021). ACD is diagnosed by specialist dermatological investi
gations involving patch testing to identify the allergen to 
which an individual is allergic and enable allergen avoidance. 
In addition, the clinical patch test information can be used to 
detect emerging issues and identify predisposing factors for 
development of ACD (Schwensen et al. 2015). A number of 
opportunities may exist to make better use of the clinical 
evidence and experience within the safety assessment of 
contact allergens (Gilmour et al. 2019). Recently, clinical 
experience and established trends in contact allergy have 
been used within the SARA model DA to enable a prediction 
of the risk of induction of skin sensitization to a given expos
ure arising from a consumer product (Reynolds et al. 2022). 
Further utility of the clinical data and evidence could be 
found in understanding the sources of interindividual and/or 
population variability in susceptibility to sensitization. 
Understanding differences in individual phase II metabolizing 
enzymes may shed a light on differences in susceptibility to 
sensitization by chemicals ultimately removed by those 
enzymes (S�anchez-G�omez et al. 2016). For example, NAT1 
genotypes containing a rapid acetylator NAT1�10 allele were 
potentially associated with reduced susceptibility to PPD sen
sitization (Bl€omeke et al. 2009). Similarly, differences in epi
dermal PUFA make-up may help understand individual 
susceptibility to sensitization. These questions can potentially 
be answered by studying key molecular components on a 
population level.

4. Discussion and concluding remarks

When trying to understand the sensitizing potential of chemi
cals and make risk assessment decisions, particularly for those 
molecules for which the current tools provide limited or con
flicting information, there is considerable value in further 
mechanistic characterization of the molecular events in skin 
sensitization. Quantitative information about certain molecu
lar events or models utilizing multiple quantitative outputs, 
discussed above, could be instrumental in this endeavor.

The most promising area for thorough exploration remains 
chemical reactivity of sensitizers. Natsch and Emter (2017) 
made a strong case for better utilization of knowledge of 
chemical reactivity of sensitizers and made very useful sug
gestions on what future assays determining reactivity may 
look like. This study served as a catalyst for the current 
review of the AOP and strengthened the resolve to keep the 
mechanistic knowledge up to date and useful for non-animal 
risk assessment of skin sensitization potential and potency. 
The authors noted that the emphasis in the development of 
new assays for skin sensitization was almost exclusively 
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placed on the biological assays and that this bias is not 
mechanistically fully justified.

Cellular reaction following exposure to an electrophile is a 
dynamic process during which an electrophilic chemical 
interacts with several components of the cell defense sys
tems, which work in concert to prevent protein damage and, 
in this case, induction of sensitization. It is, therefore, likely 
that induction of sensitization occurs only once these 
defense systems are overwhelmed. While the defense mecha
nisms of cells are unlikely to change, they will differ for dif
ferent chemicals, depending on their electrophilicity and 
reaction mechanism to protein and other cellular nucleo
philes. Following on from this, quantitatively studying ways 
of how cell defense mechanisms are orchestrated together to 
prevent sensitization is the most promising path to explore 
and expand our understanding. Quantitative understanding 
of relevant components of cell defense may ultimately allow 
us to consider sensitizer potency across all mechanistic 
domains.

While the MIE in sensitization is now better understood, 
not all reactivity relevant events which have the potential to 
influence sensitization threshold are currently always consid
ered in risk assessment. Questions remain about the quantita
tive impact of oxidative stress and LP on induction of 
sensitization. It is further unclear if and how the RCS impact 
the kinetics of antigen generation and whether PUFA make- 
up of individual’s keratinocytes may be influencing their 
susceptibility to sensitization. Furthermore, as skin lipids are 
proportionally the highest constituents of human skin (Knox 
and O’Boyle 2021) and evidence is emerging of their involve
ment in an alternative antigen presentation pathway (Betts 
et al. 2017), it is prudent to investigate further how skin lipids 
may contribute to induction of sensitization. Another phe
nomenon which has not received much attention is the sta
bility or reversibility of covalent protein adducts and what 
impact this may have on antigen formation. Both LP (and, 
therefore, levels of RCS) and cellular capacity to reverse cova
lent modification are likely to be stable in models and could 
potentially be determined, at least for the best known mech
anisms. However, they may differ qualitatively and quantita
tively between individuals and populations.

The repertoire of reactivity-driven events secondary to 
antigen formation is often regarded as part of inflammatory 
response and is, traditionally, considered in KE2. These events 
occur as a direct consequence of electrophile reactivity, 
either prior to or concomitantly with MIE in sensitization. It 
is, therefore, vital to understand their quantitative relevance 
to antigen formation. The established concept of direct rela
tionship between chemical reactivity and sensitizing potency 
could be deepened by expanding the quantitation of reactiv
ity from a solely “antigen generating” event to a more holis
tic “interaction with epidermal cells.” This encompasses 
detoxification, redox balance disturbance, initiation of LP, and 
reversibility of covalent adducts. It is possible that several of 
these elements could influence the potency of a sensitizer: 
(a) electrophilic reactivity of the chemical (including the com
plexity and chemoselectivity), (b) reversibility of covalent 
adducts formed with skin proteins, (c) type and capacity of 
detoxification, (d) level of redox imbalance and immediate 

oxidative stress induced and (e) amount of LP (and, therefore, 
RCS). A very potent sensitizer should be highly reactive with 
multiple nucleophiles and/or have complex reactivity mech
anism (making adducts in several steps and/or crosslinking 
proteins), generate less readily reversible adducts, be subject 
to an exhaustible mode of detoxification and generate rapid 
and extensive redox balance disturbance, resulting in imme
diate effect on proteins and lipids, in turn generating large 
amount of RCS. Conversely, sensitizer at the weak end of 
potency spectrum should be less reactive with fewer nucleo
phile types, have simpler reactivity mechanism without ability 
to cross link, make readily reversible adducts, be subject to 
effective and less exhaustible (or multiple) modes of detoxifi
cation and generate less redox balance disturbance and lipid 
peroxidation and, therefore, less RCS.

It is plausible that simple, in chemico assays could be 
developed (or adapted) for detoxification mechanisms cur
rently best understood. The sensitivity and specificity of ana
lytical techniques is continually improving and it is likely that 
phenomena such as LP and reversibility mechanisms/rates 
could be quantitatively studied in this context using omics 
approaches (such as HR MAS NMR metabolomics (e.g. 
Moussallieh et al. 2020) or adapting existing proteomic meth
ods (e.g. Lu et al. 2022). Utilization of the quantitative data of 
KEs and additional elements of AOPs may ultimately be 
achieved through quantitative AOP models (qAOP) (Zgheib 
et al. 2019; Spinu et al. 2020), which may help us avoid the 
linear interpolation of the quantitative outputs of the KEs in 
the AOP and adopt a more mechanistically relevant interpol
ation. Emphasis should be firmly on quantifying highly 
informative parts of the AOP in such models, rather than 
attempting to fully quantify the entire set of KEs. While the 
current approaches for skin sensitization risk assessment of 
chemicals serve us well, the ability to derive more mechanis
tic information on chemicals that have been identified as 
sensitizers may ultimately allow more informed decisions on 
a chemical-specific basis.

Finally, besides skin sensitization, electrophilic chemicals 
are implicated in other pathologies. Numerous examples exist 
of toxicity of electrophiles (or their metabolites), ranging 
from respiratory sensitization (Cochrane et al. 2015; Ferreira 
et al. 2018), systemic toxicity of certain antibiotics, anticon
vulsants and antiretrovirals (e.g. Evans et al. 2004; Zhou et al. 
2005; Hernandez-Jaimes et al. 2022), specific organ toxicities 
(liver and kidney) caused by non-steroidal anti-inflammatory 
drugs (NSAIDs) (e.g. acetaminophen (Bessems and Vermeulen 
2001)) to mixed modes of toxicity. Some of the phenomena 
discussed above, including ways to utilize the assays with 
quantitative output should ultimately be applicable to variety 
of exposure scenarios to electrophilic chemicals or electro
philic metabolites.
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