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The development of oral controlled-release dosage forms 
has attracted much attention in recent years. Hydrogels 
are being increasingly investigated for controlled-release 
(Kudela 1987). In addition the hydrogels have the ability 
to release the entrapped drug in aqueous medium and 
to regulate the release by controlling the swelling (Heller 
et al. 1983; Graham and McNeill 1984). Hydrogels can be 
applied for the release of both hydrophilic and hydropho-
bic drugs and charged solutes. Hydrogel provide the basis 
for implantation, transdermal and oral controlled-release 
systems. Hydrophilic polymers, in particular cellulose 
derivatives, have been widely used in the formulation 
of hydrogel matrices which satisfy the key criteria for 
the development of controlled-release oral solid dosage  

forms. The hydration rate of these polymers depends on the 
nature of substitutes and the degree of substitution. Once 
the polymer hydrates quickly enough to form a gelatinous 
layer, a change in polymer viscosity will directly change 
the dissolution rate. Usually two main mechanisms are 
involved, diffusion and erosion. In the case of cellulose 
polymer-based matrix, drug release can be described as 
being controlled by the rate of swelling (Akbari et al. 2000; 
Peppas and Simmons 2004). However, drug release in 
general is not purely swelling controlled, since it occurs 
mostly as the result of a combination of polymer relaxa-
tion and Fickian diffusion (Lowman and Peppas 2000). 
In practice for the controlling and programming of drug 
release from matrix devices, different types of modified 
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Abstract
The objective of this study was to investigate the effect of lipophilic (Compritol® 888 ATO) and hydrophilic 
components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corre-
sponding tablet. Wet granulation followed by compression was employed for preparation of granules and 
tablets. The matrix swelling behavior was investigated. The dissolution profiles of each formulation were 
compared to those of Tegretol® CR tablets and the mean dissolution time (MDT), dissolution efficiency 
(DE%), and similarity factor (f2 factor) were calculated. It was found that increase in the concentration of 
HPMC results in reduction in the release rate from granules and achievement of zero-order is difficult from 
the granules. The amount of HPMC plays a dominant role for the drug release. The release mechanism 
of CBZ from matrix tablet formulations follows non-Fickian diffusion shifting to Case II by the increase of 
HPMC content, indicating significant contribution of erosion. Increasing in drug loading resulted in acceler-
ation of the drug release and in anomalous controlled-release mechanism due to delayed hydration of the 
tablets. These results suggest that wet granulation followed by compression could be a suitable method to 
formulate sustained release CBZ tablets.

Keywords:  Carbamazepine; Wet granulation; Compritol® 888 ATO; Hydroxypropyl methylcellulose; 
Dissolution studies; Swelling studies
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cellulose polymers are usually employed, either alone or 
in mixtures with other swellable polymers (Aïnaoui and 
Vergnaud 2000) or with hydrophobic polymers (Lotfipour 
et al. 2004) which may alter the release mechanism and 
rate. More recently, hydrophobic polymers, Glyceride 
such as Compritol (glyceryl behenate) have been used for 
the preparation of controlled release formulations since 
they possess some very interesting characteristics, i.e. 
chemical inertness against other materials and excellent 
flow properties. Several studies have been made on the in 
vitro release from matrices comprising hydrophobic and 
hydrophilic components (Malamataris and Ganderton 
1991; Kiortsis et al. 2005). Lipids may be suitable in this 
way as release modifiers for incorporation into cellulose 
matrices. The purpose of this study was to examine how 
diffusion and erosion combine in a matrix comprising an 
insoluble hydrophobic and hydrophilic gel-forming ele-
ment using Compritol® 888 ATO and cellulose polymer 
(HPMC and Avicel) together with carbamazepine (CBZ) 
and employing a conventional wet granulation technique. 
The objectives of this work are: (i) to evaluate the physical 
characteristics of the prepared granules and matrix tab-
lets; and (ii) to elucidate the effect of CBZ loading and of 
Compritol® 888 ATO:HPMC:Avicel® weight ratio on the 
release kinetics of CBZ from granules and matrix-tablets. 
A formulation without HPMC was also employed for 
comparison.

Materials and methods

Carbamazepine was kindly supplied by Novartis 
Pharma (Cairo, Egypt). The powdered excipients were: 
Compritol® 888 ATO (Gattefossê, Saint Priest, France) 
used as insoluble hydrophobic (non-wetting) matrix 
component, Hydroxypropyl methylcellulose (HPMC, 
Methocel K15 M, DOW Chemicals and Colorcon, 
Orpington, UK) and microcrystalline cellulose (Avicel® 
PH-102; FMC Corporation, Hamburg, Germany) used 
as hydroplilic matrix-components. Other reagents and 
solvents employed were of analytical grade.

Preparation and evaluation of granules

All powdered ingredients were passed through a 250 m 
sieve before use for deagglomeration. Fifty gram batches of 
powder mixtures composed of CBZ, Compritol®, HPMC, 
and Avicel in contact drug:matrix forming excipient ratio 
1:2 were tumble mixed for 20 min. The proportions of 
the matrix forming excipient (Compritol®:HPMC:Avicel) 
were 7:2:1; 6:3:1; 5:4:1; 4:5:1; 2:7:1; and 1:8:1 (given in 
Table 1). Ethanolic solution of 10% PVP was added at a 
slow steady rate to the blended mixtures. The quantity of 
alcoholic solution had been previously determined on 
the basis of over-wetting tests. The wet mass was allowed 

to pass through No 14 sieve. The passing granules were 
dried in an oven, at 40°C for 6 hr to a moisture level of 
about 1% w/w, then left to cool down at room tempera-
ture. The 500–710 m sieve fraction was obtained and 
stored in glass jars. Granules without any drug were also 
prepared to study the erosion and water uptake behavior 
of the inert matrix. The granules were evaluated on the 
basis of CBZ content, angle of repose, bulk (BD), and tap 
(TD) density. Also, the Carr’s index was calculated by 
using the following equation:

CI = TD 2 BD 3 100/TD	 (1)

Preparation of matrix tablets

An appropriate quantity of dried granules (size fraction 
710–500 µm) from each formulation (Table 1); enough 
to make 25 tablets, was weighed and placed in a glass 
container. Magnesium stearate 1% w/w was added and 
tumbled mixed for 5 min. Accurately weighed portions of 
lubricated granules from each formula containing CBZ 
equivalent to 200 mg were fed manually to the die of a 
single punch tableting machine equipped with flat faced 
punch of 9-mm diameter and compressed at the maxi-
mum force. The properties of the matrix tablets, such as 
CBZ content, friability, weight variation, thickness, and 
diametral tensile strength were determined. Control 
tablets containing Compritol®:Avicel® at 9:1 weight ratio 
were prepared under identical conditions.

CBZ content of the granules and tablets

Fifty milligrams of granules or tablets were further ground 
into fine powder and suspended in 50 ml acetonitrile in 
order to extract the CBZ content. The suspension was kept 
in an ultrasonic bath for 15 min and then was centrifuged 
for 15 min at 4000 rpm and filtered through a 0.5 m. After 
suitable dilution of the supernatant the content of CBZ was 
determined by applying UV spectroscopy. Each determi-
nation was performed with two powdered samples.

Table 1.  Composition of CBZ wet granulations comprising  
lipophilic–hydrophilic matrix components.

Formula 
code$

Matrix 
component’s 

ratio

Components

CBZ* Compritol® HPMC**
Avicel®  
PH-102

A1 7:2:1 200 280 80 40

A2 6:3:1 200 240 120 40

A3 4:5:1 200 160 200 40

A4 2:7:1 200 80 280 40

A5 1:8:1 200 40 320 40

Control 9:0:1 200 360 — 40
$ All the formulations prepared into granules and tablet.
* CBZ:matrix ratio was kept constant at 1:2.
** Hydroxypropyl methylcellulose K15M.
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Differential scanning calorimeter (DSC)

About 2–5 mg either pure drug, pure excipient, or 
drug:excipient physical and granulated mixture was ana-
lyzed in a Perkin-Elmer differential scanning calorimeter 
(Perkin Elmer DSC-7, Norwalk, CT), at a heating rate of 
10°C/min, from 25 to 200°C. The samples were heated in 
sealed aluminum pans, under a nitrogen flow (20 ml/min) 
and an empty sealed pan was used as reference. The appa-
ratus was calibrated with indium (99.98%, m.p. 156.65°C).

Fourier transform infrared spectroscopy (FT-IR)

The infrared spectra of the CBZ, Compritol®, HPMC, 
Avicel®, the physical mixture, and the prepared granules 
were obtained on a Fourier transform infrared spectrom-
eter (Perkin-Elmer, Norwalk, CT) in order to detect the 
existence of interactions between CBZ and hydrophobic 
or hydrophilic excipients in the granulation. The sam-
ples were first ground gently in a mortar and mixed with 
KBr before being compressed into tablets. Scans were 
obtained at a resolution of 2 cm−1, over a frequency range 
of 4000 to 400 cm−1.

In Vitro release studies

The in vitro drug release was evaluated by using the 
USP/NF dissolution apparatus II (Erweka Apparatus, 
Germany). An accurately weight amount of granules, 
equivalent to 200 mg CBZ, or one tablet, was added to 
900 ml of 1% sodium lauryl sulfate aqueous solution 
maintained at 37 ± 0.5°C. Rotational speed of the paddles 
was 75 rpm. Aliquots of 5 ml of dissolution medium were 
withdrawn at 15, 30, 60, and 120 min and then at regular 
intervals of 1 hr for up to7 hr, and replaced with equal vol-
umes of fresh dissolution medium. The CBZ content was 
determined using a UV spectrophotometer (Ultrospec 
2100 Spectrophotometer, UK) at 285 nm. Granules with-
outh CBZ were used as blank and their absorbance due 
to the lipophilic and hydrophilic excipients was negligi-
ble compared with that of the drug. The results of three 
determinations were expressed as CBZ % released.

Water uptake (Swelling) of compacted matrix 
components

Swelling was evaluated as water uptake determined 
gravimetrically (Sutananta et al. 1995a, b). Compacts of 
the same size and shape as the matrix-tablets used for 
drug release testing were prepared without drug or mag-
nesium stearate. They were placed in small baskets and 
soaked in vessels containing 100 mL of distilled water 
at 37 ± 1°C. At 0.25, 0.5 hr, and then at hourly intervals 
up to 7 hr, the previously weighed baskets containing 

the compacts were removed, gently wiped with a tissue 
in order to remove surface water, reweighed, and then 
placed back into the vessel as quickly as possible. The 
mean weights were determined for three compacts of 
each formulation, and the percentage of swelling (S%) 
was calculated according to the following relationship 
(Efentakis et al. 1997):

S% =
 W

s
 2 W

d
  
3 100	 (2)

	 W
d

where W
d
 and W

s
 are the dry and swollen compact 

weights, respectively, at immersion time t in the test 
liquid.

Elucidation of release mechanism

Mechanism of CBZ release was elucidated by fitting 
zero order, first order, and Higuchi’s square root of time 
equations (models) to the release data. Qt vs t for the 
zero order kinetic model; log (Q

0
 − Q

t
) vs t for the first 

order kinetic model; and Q
t
 vs √t for the Higuchi’s model, 

where Q
t
 is the percentage of drug released at time t and 

Q
0
 is the initial amount of drug. The release constants 

(k
i
) and the correlation coefficient (r) were calculated by 

means of a computer EXCEL program.
Furthermore, to the CBZ release data of the granula-

tions were fitted the simple power law Korsmeyer et al. 
(1983) expression which can best describe the kinetic of 
drug release from controlled-release matrices.

Q
t
/Q

∞
 = ktn	 (3)

where Q
t
/Q

∞
 is the fraction of drug release at time t, k is 

the release rate constant and n is the release exponent 
that characterizes the mechanism of drug release. Values 
of n near 0.5 indicate predominantly diffusion control 
and of 1.0 correspond to zero-order release. To the CBZ 
release data of matrix-tablets were fitted the Peppas and 
Sahlin (1989) equation considering the two controlling 
mechanisms (Fickian and relaxational diffusion) of drug 
release from swellable matrices as additive:

M
t
/M

∞
 = k

1
tm + k

2
t2m	 (4)

where M
t
/M

∞
 is the fraction of drug released and the first 

term of the right-hand is the Fickian release contribution 
and the second term is the Case II relaxational release 
contribution. The coefficient m is the purely Fickian dif-
fusion exponent and k

1
 and k

2
 are the kinetic constants.

To further characterize the drug release process, 
the mean dissolution time (MDT), the dissolution 
efficiency (%DE) and the similarity (f

2
) and differ-

ence (f
1
) factor of dissolution profiles between the 

commercial product (Tegretol® CR) and experimental 
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formulations were calculated according to the following  
equations:

where j is the sample number, n the number of time 
increments considered, tˆ

j
 is the time at midpoint 

between t
j
 and t

j
 − 1, and Qj the additional amount of 

drug dissolved in the period of time tj and t
j
 − 1 (Voegele 

et al. 1983).

where y is the drug percent dissolved at time t and DE is 
defined as the area under the dissolution curve up to a 
certain time, t, expressed as a percentage of the area of 
the rectangle described by 100% dissolution in the same 
time (Khan 1975).

where n is the sampling number, Rj and Tj are the per-
cent dissolved of the reference and test products at each 
time point j (Moore and Flanner 1996). The similarity 
factor f

2
 is used to compare the difference and the dif-

ference factor (f
1
) measures the percent error between 

two curves over all time points. f
2
 value greater than 50 

(50–100) represents equivalence of the two curves and 
the percent error is zero when the test and drug reference 
profiles are identical and increase proportionally with 
the dissimilarity between the two dissolution profiles.

Statistical analysis

All the results were expressed as mean value and stand-
ard deviation (SD). In order to assess the statistical sig-
nificance between the data, a single-factor analysis of 
variance (ANOVA) was carried out, using a computer 
program PC-INSTAT at a 5% significance level.

Results and discussion

Physical properties of the granules

Flowability of the granules was evaluated by determin-
ing the angle of repose and Carr index, CI, because it 

is a prerequisite to obtain solid dosage form with an 
acceptable weight variation. According to the literature 
data excellent flow properties are seen for granules with 
a compressibility index, CI, between 15–25 (Wells 1997). 
The compressibility index of the different granulations 
ranged between 14.3 and 26.1 and therefore indicate 
their suitability for tableting. Also the granulations 
showed acceptable angle of repose ranged between 28° 
and 35.5°.

Evaluation of the tablet properties

All the granules comprising lipophilic–hydrophilic 
components were successfully compressed into tab-
lets. It is noticeable that the drug content of all the 
tested tablets was found to lie between 96.49% and 
100.55% of the labelled amounts that reflect good drug 
distribution and homogeneity. The diametral tensile 
strength was considered acceptable; it varied from 
6.65 to 8.3 kg/cm2. Friability of all formulations was 
less than 1%.

Differential scanning calorimetric studies

The differential scanning calorimeter curve of CBZ 
(Figure 1) displayed a single sharp endothermic peak at 
198°C corresponding to its m.p. A single sharp peak at 
72°C corresponded to the melting point of Compritol® 
and large shallow broad endothermic effects, over the 
temperature range 60–160°C, were observed for the 

DSC 

Avicel 
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CBZ 

100.00 200.00 

Temp [C] 

HPMC 
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−30.00 

−40.00 

 

Figure 1.  DSC thermograms of pure CBZ, Compritol®, HPMC, 
and Avicel® and of physical and granulated mixture at 7:2:1 
Compritol®:HPMC:Avicel® weight ratio.
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polymers HPMC and Avicel, probably due to evaporation 
of adsorbed water. The DSC curve of the physical mixture 
of CBZ, Compritol®, HPMC, and Avicel® shows identical 
endothermic peaks to pure components but less intense 
due to the smaller concentration, indicating that the 
matrix forming components selected neither interfered 
with CBZ nor made any shift of its melting peak.

FT-IR spectra

IR spectra of CBZ, Compritol, HPMC, Avicel, and 
their physical and granulated mixtures are shown in 

Figure 2. Bands of CBZ are observed at 3474 cm−1 (-NH 
valence vibration), 1686 cm−1 (-CO-R) vibration, 1603 
and 1593 cm−1 (range of –C=C= and –C=O vibration and 
–NH deformation), and 1395 cm−1, which are the same 
as described for CBZ polymorph II. The presence of 
–NH valence vibration at an intermediate wave number 
(3474 cm−1) was the major indicative sign that CBZ could 
be neither polymorph III (3464 cm−1) or polymorph I 
(3484 cm−1). The spectrum of wet granulations shows 
that the peak at 3474 cm−1 was partially reduced; as was 
expected, since CBZ content was only 40% w/w, but the 
main CBZ characteristic peaks were not affected.

25
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Figure 2.  Infrared spectra of pure CBZ, Compritol®, HPMC, and Avicel® and of physical and granulated mixture at 7:2:1 Compritol®:HPMC:Avicel® 
weight ratio.
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In vitro drug release kinetics from granulations

The dissolution profile of CBZ from the granules is shown 
in Figure 3. The release patterns showed fast dissolution 
and burst effect during the first hour. In the case of for-
mulae with more than one weight ratio of Compritol®/
HPMC or CBZ/HPMC (A1, A2, and A3), the drug release 
rate was not affected by the content of HPMC, since they 
produced a very similar release profile to the control 
formulation which did not contain HPMC. However, 
further increase of HPMC content (formulae A4 and A5, 
with less than one Compritol®/HPMC or CBZ/HPMC 
weight ratio) led to decrease of the burst effect and 
showed a more sustaining effect (less than 70% CBZ 
release over 1 hr). The release rate of CBZ considerably 
slowed after the first hour probably due to hydration of 

HPMC and formation of a gel layer with a longer diffu-
sion path length as the content of HPMC was increased. 
This indicates that concentration of HPMC is an impor-
tant factor which may control the mechanism and the 
rate of drug release (Alderman, 1984. Skoug et al. 1993; 
Wan et al.1993; Gao et al. 1996; Rekhi et al. 1999). Burst 
release is often observed prior to or during develop-
ment of a diffusion barrier capable of controlling the 
penetration of dissolution medium and drug diffusion 
(Huang and Brazel 2001). Additionally when polymer 
concentration is low, the hydrated matrix would be 
highly porous with a low degree of tortuosity leading 
to low gel strength and rapid diffusion of the drug from 
matrix (Khurahashi, Kami, and Sunada 1996).

Table 2 summarizes the results of CBZ release mod-
elling for the granulations under investigation. For the 
Korsmeyer et al. model results are given only with for-
mula A4 showing less than 70% of drug release during 
the first hour. The goodness of fit for the various models 
ranked in the order: Higuchi ≅ Korsmeyer et al. > first-
order > zero-order. The facts that drug release from 
granules follows the Higuchi and Korsmeyer et al. mod-
els and the values of the exponent n are around 0.5 in 
Table 2 (0.342–0.447) are indicative of diffusion control-
led release.

Regarding the other dissolution indices, the 
Dissolution efficiency was relatively high (%DE7h 
63.3–85.4%) and the change in MDT-80% was minimal 
(0.6–1.0 hr) for all the formulations under investiga-
tion, p > 0.05. The difference factors f

1
, presented in 

Table 3, reveal that all the prepared formulations were 
significantly different to the Tegretol®. Formula A5 
(Compritol®:HPMC:Avicel® at 1:8:1 weight ratio) had a f

1
 

value of 4.3, indicating that it has the closest dissolution 
profile to the reference (Tegretol®).
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Figure 3.  % Carbamazepine released from Compritol:HPMC matrix 
granules (size fraction 710–500 m).

Table 2.  Fitting of release kinetic models to CBZ release data for wet granulations (size fraction 710–500 m).

Release model

Formula code

 A1 A2 A3 A4 A5 controlc Tegretol®
Zero-order r** 0.765 0.938 0.767 0.842 0.713 0.665 0.939

k
0

6.531 7.493 8.482 8.472 45.590 5.272 11.88

First-order r 0.856 0.989 0.843 0.923 0.848 0.889 0.995

k
1

0.146 0.112 0.163 0.144 1.728 0.326 0.427

Higuchi diffusion r 0.860 0.992 0.859 0.949 0.855 0.815 0.998

k
H

23.69 22.55 24.63 25.72 32.67 19.24 36.6

Korsmeyer-Peppasn# r — — — 0.905 0.845 — 0.999

k−n — — — 80.31 47.83 — 44.46

 — — — 0.447 0.342 — 0.433

* Analyzed by the regression coefficient method.
** Correlation coefficient.
# Release exponent evaluated for < 70% released drug.
c Matrix composed of Compritol®:Avicel (9:1).
Best fit in bold.
— Too rapid release to allow calculation for < 70% release.
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In vitro drug release kinetics from  
matrix-tablets

The release profiles obtained from the matrix-tablets 
and the Tegretol® tablets are presented in Figure 4. They 
show that the release rate from the control tablets (with 
Compritol®:Avicel® at a 9:1 weight ratio) was very slow. 
Also they show that the increase of HPMC content affects 

significantly the matrix tablet release behavior. The per-
centage of CBZ released over 7 hr from the formulation 
of highest HPMC content (formula A5 with Compritol®/
HPMC weight ratio 1:8) was 76.8%. In general the faster 
CBZ release rate with the HPMC increased content could 
be due to more rapid penetration of water into the matrix 
and/or more matrix erosion. However, a gradual disinte-
gration of the swollen HPMC-based tablets was observed 
during the release studies. This may be explained by an 
axial expansion of the tablets as described by Rajabi-
Siahboomi et al. (1994). Close examination of the HPMC 
containing matrix-tablets showed that the extent of 
their deformation was greater for those of higher HPMC 
content.

To analyze the mechanism of drug release from the 
matrix-tablets, the dissolution data were fitted to vari-
ous kinetic models, the release kinetic parameters and 
the fitting ability (correlation coefficient, r) are listed in 
Table 4. The formulae A1–A3 give n values in the range of 
0.624 to 0.884, corresponding to an anomalous diffusion 
mechanism. Also, both Higuchi model (Fickian) and first 
order kinetics were fitted similarly well. Increase of the 
HPMC content in the matrix-tablets (formulae A4 and 
A5) results in exponents n values (n = 1.01 and 0.938) 
which markedly exceed the value of 0.50 corresponding 
to diffusion controlled release and furthermore together 
with the good fitting of the zero-order model indicate 

Table 3.  Mean dissolution time (MDT), dissolution efficiency (%DE) and difference factor (f
1
) of release behavior between experimental wet 

granulations and matrix tablets and reference CBZ.

Formula code

Granules Tablet

MDT# (h) %DE* f
1
** MDT (h) %DE f

1

A1 0.6 85.4 34.9 3.10 7.4 89.8

A2 0.8 80.7 26.4 3.34 13.8 81.9

A3 0.63 79.6 26.9 2.70 26.3 65.9

A4 0.6 72.5 13.1 2.60 43.5 44.8

A5 1.0 63.3 4.3 2.44 50.1 34.7

Tegretol    1.91 71.32  

# Mean dissolution time (MDT-80%) calculated from equation (5).
* Dissolution efficiency over 7 hr calculated according to equation (6).
** Difference factor calculated according to equation (7).
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Figure 4.  % Carbamazepine released from prepared matrix tablets 
and commercial product Tegretol®.

Table 4.  Fitting of release kinetic models to Tetretol release data for matrix-tablets.

Formula code

Zero Order First Order Higuchi model Peppas-Sahlin model

n#r k
0
 (%h−1) r k

1
 (h−1) r k

H
 (%h−1/2) r k

d
 (%h−m) k

r
 (%h−2m)

A1 0.991 1.63 0.997 0.02 0.989 5.19 0.979 4.78 1.63 0.624

A2 0.995 3.72 0.992 0.04 0.976 11.7 0.997 8.76 2.91 0.846

A3 0.997 6.26 0.994 0.08 0.996 20.3 0.996 7.84 11.87 0.884

A4 0.998 10.9 0.992 0.19 0.992 35.4 0.999 7.71 27.72 1.010

A5 0.996 11.18 0.994 0.22 0.988 36.6 0.987 7.83 28.71 0.938

Experimental control C 0.664 5.272 0.889 0.33 0.815 19.24    0.668

Tegretol® 0.9393 11.88 0.995 0.427 0.998 36.6    0.433

* Analyzed by the regression coefficient method.  
# Release exponent evaluated for < 70% released.  
c Matrix composed of Compritol® 888ATO:Avicel (9:1). k

d
 and k

r
 calculated according to equation (4). Best fit in bold.
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significant contribution of erosion. Furthermore, the 
higher value of the relaxation constant, kr, compared to 
the diffusion constant, kd, in the Peppas-Sahlin model 
(equation 3), combined with the low CBZ solubility, 
indicate the prevalence of the erosion vs swelling mecha-
nism. The MDT results showed almost insignificant dif-
ference due to increase of the HPMC content while the 
dissolution efficiency (%DE) result showed significant 
difference (Table 3). The difference factor f

1
 between the 

dissolution behavior of the experimental formulae and 
the reference (Tegretol®) are above 15, indirectly indi-
cating significant differences between the experimental 
matrix-tablets as well.

Water uptake (Swelling) of compacted matrix 
components

Figure 5 summarizes the results obtained from the 
hydration process of the compacted matrix compo-
nents (tablets without CBZ). They support the dis-
solution results (Figure 4). The compacted matrix 
components of formulae A1, A2, and A3 (with more 
than one weight ratio of Compritol®/HPMC) exhib-
ited relatively faster water uptake (swelling) during 
the first 1 hr of immersion followed by a steady hydra-
tion rate (water uptake plateau) for the next 6 hr. In 
contrast, the compacted matrix components of for-
mulae A4 and A5 (with less than one weight ratio of 
Compritol®/HPMC) showed significant erosion which 
was becoming faster with the increase in the HPMC 
content. From the above mentioned we can conclude 
that the overall CBZ dissolution rate and, ultimately, 
availability for absorption should be controlled by 
the rate of matrix swelling, drug diffusion through the 
gel layer, and erosion of the outer gel layer (Roy and 
Rohera 2002).

Effect of drug loading

The increase of drug loading from 33.3 to 75% resulted in 
acceleration of the release rate (Figure 6), which is attrib-
uted to increased presence of drug particles close to the 
surface of the matrix-tablets. Furthermore, the kinetic 
model fitting results show that increase of CBZ loading 
from 33.3% to 75% w/w causes a significant decrease 
in the release exponent n (from 0.939 to 0.637), which 
means shift of erosion-controlled (zero-order) release to 
anomalous mechanism. This may be caused by a delayed 
hydration of the matrix-tablets because of the poor water 
solubility and the hydrophobicity of the incorporated 
CBZ. Polymer erosion is less evident for tablets of high 
CBZ loading (75% w/w), and this was reflected on higher 
value of diffusion constant kd (26.753 %h−m) in compari-
son of relaxation constant, kr (8.651%h−2m) in the Peppas-
Sahlin equation. On the contrary, Zuleger and Lippold 
found that for acetophenetidin the release was faster for 

the tablets with higher drug loading and this caused a sig-
nificant increase in the release exponent at values strongly 
exceeding the expected n values for erosion controlled, 
zero order release. It was attributed to increased release 
area due to erosion and disintegration of the tablets.

Conclussions

Combination of Compritol® with HPMC and Avicel as 
matrix former offers a flexible system able to sustain the 
CBZ release (85% release after 7 hr). Since the hydration 
ability and the mechanical strength of the gel developed 
in combination with the mechanical stress applied in 
the stomach and intestine can influence the integrity 
and subsequently the in vivo drug release mechanism, 
the formulation containing 75% w/w CBZ in a matrix 
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Figure 5.  Water uptake (swelling %) of compacted matrix-forming 
components.
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Figure  6.  % Carbamazepine released from matrix tablets of increased 
CBZ loading.
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composed of Compritol®:HPMC:Avicel at 1:8:1 weight 
ratio was selected for further in vivo study in dogs 
(Barakat et al. 2008).
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