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ABSTRACT
Air quality impacts from wildfires have been dramatic in recent years, with millions of people
exposed to elevated and sometimes hazardous fine particulate matter (PM2.5) concentrations for
extended periods. Fires emit particulate matter (PM) and gaseous compounds that can negatively
impact human health and reduce visibility. While the overall trend in U.S. air quality has been
improving for decades, largely due to implementation of the Clean Air Act, seasonal wildfires
threaten to undo this in some regions of the United States. Our understanding of the health effects
of smoke is growing with regard to respiratory and cardiovascular consequences and mortality. The
costs of these health outcomes can exceed the billions already spent on wildfire suppression. In this
critical review, we examine each of the processes that influence wildland fires and the effects of
fires, including the natural role of wildland fire, forest management, ignitions, emissions, transport,
chemistry, and human health impacts. We highlight key data gaps and examine the complexity and
scope and scale of fire occurrence, estimated emissions, and resulting effects on regional air quality
across the United States. The goal is to clarify which areas are well understood and which need
more study. We conclude with a set of recommendations for future research.

Implications: In the recent decade the area of wildfires in the United States has increased
dramatically and the resulting smoke has exposed millions of people to unhealthy air quality. In
this critical review we examine the key factors and impacts from fires including natural role of
wildland fire, forest management, ignitions, emissions, transport, chemistry and human health.

Introduction

Large wildfires in the United States are becoming
increasingly common, and smoke
from these fires is a national concern.
Figure 1 shows impacts from large
wildfires that burned in the western
U.S. in summer of 2017. These fires
generated smoke plumes that were
transported across North America,
resulting in measured PM2.5 (particu-
late matter with aerodynamic dia-

meter ≤2.5 micrometers) concentrations that reached
Unhealthy to Hazardous levels in many areas, based on
National Ambient Air Quality Standard definitions.

Fires emit PM directly along with hundreds of gas-
eous compounds. The gaseous compounds include
nitrogen oxides (NOx), carbon monoxide (CO),
methane (CH4), and hundreds of volatile organic

compounds (VOCs), including a large number of oxy-
genated VOCs (OVOCs). This chemical complexity
makes wildfire smoke very different from typical indus-
trial pollution. A key challenge for understanding fire
impacts on air quality is the large variability from fire
to fire in both the quantity and composition of emis-
sions. Emissions can vary as a function of the amount
and type of fuel (Prichard et al. 2019a), meteorology,
and burning conditions. These variations give rise to
large uncertainties in the emissions from individual
fires (Larkin et al. 2012). Once emitted, wildfire
smoke undergoes chemical transformations in the
atmosphere, which alters the mix of compounds and
generates secondary pollutants, such as ozone (O3) and
secondary organic aerosol (SOA).

Wildland fire is an essential ecological process inte-
gral to shaping most North American ecosystems.
Wildland ecosystems, broadly, include both forests
and rangelands, which are distributed across the
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spectrum of rural to urban environments; forests cover
360 million hectares (ha) and rangelands cover
308 million ha, 33% and 29% of land in the United
States, respectively. The scope and scale of fire within
these environments vary widely, with consequences for
both emissions and effects of smoke.

Figure 2 shows the progression of fire in the
U.S. throughout the year 2017 as seen by satellite detec-
tions. In winter, fires are found mainly in the Southeast,
typically as prescribed low-intensity understory burns
to maintain longleaf pine and other forest savanna
systems. As spring approaches, fire detections move
north, with increased prescribed fire activity across
the central U.S. in many rangelands. In summer, wild-
fire season peaks, especially in the western U.S. Late fall

can also be a time of many fires in California and the
Southeast. This progression of fire throughout the sea-
sons and ecosystems across the U.S. has implications
for the overall quantity and specific chemistry of the
emitted smoke.

Humans have a profound influence on both the use
and suppression of wildland fire. It is difficult to sepa-
rate human influence from the natural occurrence of
fire on the landscape (Pyne 1997). For example, Native
Americans used fire as a tool for agriculture and to
manage wildlife habitat and hunting grounds. These
frequent, low-intensity fires may have substantially
affected the landscape across the U.S, but modern
management practices, especially fire suppression
efforts, probably have been more important in

Figure 1. (A) (top) Observed smoke on September 4, 2017. (Top) NASA Worldview (https://worldview.earthdata.nasa.gov/) image
showing fire hotspot detections from the VIIRS and MODIS satellite instruments, along with visible satellite imagery from the VIIRS
instrument between 1200–1400 local time. Bright white areas are clouds; grayer areas are smoke. (B) (Bottom) 24-hour average
PM2.5, shown as the corresponding Air Quality Index (AQI) level category colors, based on surface PM sensors collected in the EPA’s
AirNow system (https://www.airnow.gov/).
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changing the forest structure (Ryan, Knapp, and Varner
2013). The result through the 1900 s has been less fire
on the landscape than in pre-settlement times
(Leenhouts 1998), and therefore, likely less smoke in
the air (Brown and Bradshaw 1994). Recent episodes of
smoke across extensive landscapes, driven by large
wildfires, may therefore to some extent be a return to
pre-suppression levels.

A number of studies have documented the impor-
tance of climate change on the increasing frequency
and size of fires in the western U.S. Large fires are
increasing in the West (Dennison et al. 2014). Rising
temperatures affect fuel aridity and the length of the
fire season (Abatzoglou and Williams 2016), the
amount of snow, the timing of snowmelt (Westerling
2016), and relative humidity, which has been related to
the increasing trend of area burned in California
(Williams et al. 2019). However, the relationship
between climate and human influences is complex
and not all fires should be attributed to climate change.
For example, Mass and Ovens (2019) suggested that the
2017 Wine Country fires in northern California likely
had little influence from recent climate change. Littell
et al. (2009) found that the effect of climate change on
area burned can vary with the ecosystem and fuels.

Complicating the role of climate change are the
effects of invasive species (Fusco et al. 2019) and direct
human ignitions. These ignitions are estimated to be
responsible for over 80% of wildfires, by number,
across the U.S., excluding prescribed and management
fires (Balch et al. 2017). Human ignition sources
include vehicles, construction equipment, power lines,
fireworks, camping, arson, and others. However, in the

Intermountain West, lightning appears to be the domi-
nant cause for ignitions (Balch et al. 2017). Human
ignitions have expanded the length of the wildfire sea-
son, but climate and human presence are interrelated
factors (Syphard et al. 2017).

Crop-residue burning is common across the U.S. to
remove or reduce biomass. Prescribed burning – planned
ignition in accordance with applicable laws, policies, and
regulations to meet specific objectives (NWCG 2018) –
also occurs for multiple reasons, including to reduce fuel
loading and ecosystem health. Both crop-residue fires and
prescribed burning tend to occur in the non-summer
months, and, depending upon the state, they may be
permitted under a smokemanagement program to ensure
that smoke exposure will not exceed air quality standards
or affect sensitive populations.

Although 98% of wildfires are suppressed before reach-
ing 120 ha (Calkin et al. 2005), the annual area burned by
wildfires is increasing. Figure 3 shows the large interann-
ual variability in wildfire area burned and the substantial
increase in area burned and federal suppression costs
between 1999 and 2018. In those two decades, wildland
fires burned an average of 2.8 million ha per year, which is
more than double the annual amount that burned in the
two decades before 1998 (National Interagency Fire
Center [NIFC], 2019). This comparison indicates that
a small number of fires are expanding in size and greatly
increasing the area burned.

Although the area burned globally appears to be
declining (Andela et al. 2017), in the U.S. the area
burned by wildfires is on the rise, and federal costs of
wildfire suppression have risen substantially along with
area burned. In 2018, federal suppression costs were the

Figure 2. Progression of fires throughout the year using 2017 MODIS hotspot fire detections.
Source: U.S. Forest Service.
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highest ever, at over 3 USD billion (NIFC, 2019). As
towns and cities have grown and spread deeper into the
wildlands, creating a larger wildland-urban interface
(WUI), an increasing share of resources for forest
management and firefighting effort has gone toward
protecting human developments.

In recent years, smoke from large fires has caused
extreme concentrations of PM2.5 and O3, especially in
the western U.S. (Gong et al. 2017; Laing and Jaffe
2019; Mass and Ovens 2019). The highest PM2.5 con-
centrations ever observed in many western cities were
seen in the summers of 2017 or 2018, due to wildfires,
with some daily PM2.5 values of over 500 µg/m3 (see
box: The relationship between fire activity and smoke,
2004–2018). The U.S. has made steady progress in
reducing air pollution from industrial and vehicle emis-
sions, but the recent increase in wildland fires has
slowed or even reversed this progress in some parts of
the country (McClure and Jaffe 2018).

Although much of the recent attention on wildfires has
focused on the western U.S., large fires also burn in the
southeastern U.S. In November 2016, large wildland fires
burned in Tennessee, North Carolina, South Carolina, and
Georgia, generating PM2.5 concentrations exceeding
100 µg/m3 in many cities. The smoke and elevated PM2.5

persisted across the region for weeks. Prescribed and crop-
residue burning are also common in the Southeast, in some
cases with consequences to health (Huang et al. 2019).

As smoke plumes move over populated areas, they
can elevate PM2.5 and/or O3 levels over health stan-
dards. Large and extended wildfires can be associated
with respiratory issues and premature mortality (e.g.,
Liu et al. 2015a; Reid et al. 2019). The plumes can affect

regions directly and/or mix with other urban pollu-
tants. In the U.S., the Clean Air Act of 1963 was
enacted to protect public health and welfare. In 1970
the U.S. Environmental Protection Agency (EPA)
established the National Ambient Air Quality
Standards (NAAQS) for six criteria pollutants. The
criteria pollutants most relevant to wildland fire emis-
sions are PM2.5, O3, and CO. For daily average PM2.5,
the current primary standard is 35 µg/m3 at the 98th

percentile, averaged over three years. For O3, the cur-
rent primary standard is 0.070 ppm for the annual
fourth-highest daily maximum 8-hour concentration
(MDA8), averaged over three years. For CO, the cur-
rent primary standards are 9 ppm for an 8-hour aver-
aging time, and 35 ppm for a one-hour averaging time,
not to be exceeded more than once per year. Although
CO from fires is rarely a concern to the public, it can
affect wildland firefighters, and recent work analyzes
exposure in terms of National Institute of Occupational
Safety and Health (NIOSH) standards (Henn et al.
2019). Smoke plumes from wildland fires have caused
substantial exceedances of the EPA standards for both
PM2.5 and O3, but a state may try to exclude these data
from regulatory consideration under the exceptional
events rule (See Section 8, Regulatory context for air
quality management, for further discussion).

The EPA’s National Emission Inventory (NEI) is
generated every three years and includes all significant
categories of emissions for the major pollutants. The
2011 and 2014 NEI show that wildland fire emissions
represented approximately 32% of the total primary
PM2.5 emissions in the U.S. (Larkin et al. 2020). Liu
et al. (2017a) estimated that, in 2011–2015, fires in 11
western states emitted on average twice as much pri-
mary PM2.5, compared to the annual emissions from all
industrial sources in the region. Although prescribed
burning remains relatively constant interannually
(5.03 million ha in 2011, 4.42 million ha in 2014),
wildfires are subject to large interannual variability
(4.32 million ha in 2011, 1.72 million ha in 2014)
(Larkin et al. 2020). Furthermore, emissions are not
necessarily proportional to area burned. The fuel type
and amount of fuel consumed are large drivers in
determining emissions. For example, in 2011, both
Minnesota and North Carolina had relatively moderate
area burned, but some of the largest emissions of PM2.5

were caused by consumption of deep organic fuels
(Larkin et al. 2020). Liu et al. (2017a) found that
PM2.5 emissions from prescribed burning was lower
per kg of fuel consumed.

Most smoke in the U.S. is associated with wildland fires
in the U.S., but fires outside the country can also have

Figure 3. Total U.S. wildfire area burned (ha) and federal sup-
pression costs for 1985–2018 scaled to constant (2016)
U.S. dollars. Trends for both wildfire area burned and suppres-
sion indicate about a four-fold increase over a 30-year period.
Source: National Interagency Fire Center (NIFC) (2019).
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major impacts on U.S. air quality. In 2017, high PM2.5 in
the Pacific Northwest was associated with large fires in
British Columbia (Laing and Jaffe 2019). These same fires
were associated with smoke transport to Europe and
strong thunderstorm-pyrocumulonimbus activity, which
injected smoke into the stratosphere (Baars et al. 2019).
Large fires in Quebec have significantly affected air qual-
ity in the northeast U.S. (DeBell et al. 2004), fires from
Mexico and Central American can impact Texas (Kaulfus
et al. 2017; Mendoza et al. 2005), and even large fires in
Siberia can affect surface air quality in the U.S. (Jaffe et al.
2004; Teakles et al. 2017).

In this review, we examine the current capabilities
for observing and quantifying smoke, what is known
about wildland fire emissions, the development of mod-
els for smoke plumes and transport, and the chemical
makeup and transformations of smoke. We also exam-
ine current understanding of modeling smoke impacts,
understanding of effects of smoke on health, and the
state of air quality regulations involving smoke, all with
an emphasis on the continental U.S. We conclude by
looking at future U.S. national fire patterns and trends
and suggest a set of recommendations for future
research.

Observations of smoke

In-situ observations

Ground-based smoke impacts are observed by
a combination of established permanent in-situ air
quality monitoring networks, temporarily deployed
monitors and, most recently, low-cost sensor networks.
Permanent in-situ measurements include monitoring
networks maintained by federal, state, and tribal agen-
cies. The agency monitors use a mix of Federal
Reference Methods (FRMs) or Federal Equivalent
Methods (FEMs) and other sampling and analysis
approaches. Data are generally provided to the EPA
AirNow system (for access in near-real time) and the
AQS system (for QA/QC’d data). The Interagency
Monitoring of PROtected Visual Environments
(IMPROVE) network is a permanent network of moni-
tors that measure the major chemical composition of
PM2.5 every three days (24-hour averages) at remote
locations across the U.S. The EPA Chemical Speciation
Network (CSN) provides a similar suite of measure-
ments as the IMPROVE system at urban locations.
Figure 1 shows an example of PM2.5 data from the
regulatory network and the relationship to fires.

In addition to the permanent networks, several agen-
cies across the U.S. now deploy ground-based PM2.5

monitors to under-sampled areas where smoke impacts

are large or anticipated to be so. While not regulatory
monitors, these temporary monitors can substantially
increase the smoke observations available in affected
areas. For example, the U.S. Forest Service’s
Interagency Wildland Fire Air Quality Response
Program (IWFAQRP; https://wildlandfiresmoke.net)
maintains and deploys a combination of MetOne
Environmental Beta-Attenuation Mass monitors
(E-BAMs) and E-Sampler monitors (using light scatter-
ing) on both prescribed fires and wildfire incidents,
with over 100 such deployments per year. Other agen-
cies, such as the California Air Resources Board, also
maintain and deploy such monitors as needed.
Deployments are generally made to town and city loca-
tions based on need and expected level of impacts and
are prioritized where other air quality monitoring is not
available. These monitors have found much higher
concentrations and a greater frequency of days with
PM2.5 exceeding 35 ug/m3, compared to the permanent
monitoring networks (Larkin 2019). This pattern sug-
gests that current permanent monitors lack the spatial
distribution to fully represent the overall human expo-
sure to wildfire smoke, especially in rural areas.

Increasingly, low-cost sensors are being used by
households and businesses concerned with air quality,
as well as agencies concerned with cost effectively
expanding coverage (Morawska et al. 2018). These sen-
sors, mostly based on light scattering, are less accurate,
but they can be highly correlated with regulatory moni-
tors and can be adjusted to regulatory instrument cali-
brations for typical aerosols to improve accuracy
(Mehadi et al. 2019). Reliability, maintenance, and
ambient relative humidity concerns are larger than
with more systematically setup and maintained perma-
nent networks, and this can cause large biases (e.g.,
Feenstra et al. 2019; Li et al. 2020; Manibusan and
Mainelis 2020; Singer and Delp 2018). Unfortunately,
the public usually does not recognize these issues and
can misinterpret the results. The number of available
low-cost sensors does provide enhanced spatial cover-
age. For example, the most common such sensor, made
by PurpleAir, now has over 4,000 units deployed within
the continental U.S. (PurpleAir 2019), compared with
approximately 1,100 publicly accessible permanent in-
situ PM2.5 monitors available in the EPA’s AirNow
database. The net result is that, in large portions of
the continental U.S., the only nearby measurements
are from low-cost sensors.

Satellite sensors and products

A wide array of satellite-borne instruments rely on
spectral measurements of infrared, visible, or UV light
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to detect aerosol plumes and some gaseous pollutants.
These instruments provide an important and unique
view of fires and their associated air quality impacts.
Polar-orbiting satellites can view nearly all of the
U.S. every day, at least once per day, whereas geosta-
tionary satellites get near-continuous coverage during
the daytime, but at lower spatial resolution. Satellite
measurements also have specific biases and issues that
limit their use. Satellites preferentially detect large,
energetic fires and their plumes, but they may miss
smaller, less energetic, or obscured fires, resulting in
a systemic bias. For air quality, satellite products can
provide information where no other observations are
available, but most satellite instruments cannot distin-
guish between impacts at the ground versus impacts
aloft. Even with these issues, satellite fire detections are
critical inputs for emissions inventories and are used in
both real-time air quality forecasts and, retrospectively,
for model evaluation and improvement.

Satellite fire detections

Satellite fire detection can be based on thermal anoma-
lies or vegetation changes (e.g., Chuvieco and Martin
1994; Hao and Larkin 2014; Roy, Boschetti, and Smith
2013). Thermal anomaly detection uses the measured
energy received across multiple wavelengths to deter-
mine both a temperature and a radiative energy per
imaged pixel. When the detected temperature and
amount of energy is above a non-fire threshold, these
are flagged as fire detections, also referred to as hotspot
detections. The radiant energy received is used to cal-
culate the fire radiative power (FRP) (instantaneous
reading) and fire radiant energy (FRE) (time-
integrated measurement) of the pixel. This is the most
common satellite fire detection scheme, and it is used
by a number of satellite platforms, including the follow-
ing polar-orbiting and geostationary platforms:

(1) The older Advanced Very-High-Resolution
Radiometer (AVHRR; Flasse and Ceccato
1996; Lee and Tag 1990) has been used on
various National Oceanic and Atmospheric
Administration (NOAA) polar-orbiting satel-
lites since 1978.

(2) The Moderate Resolution Imaging
Spectroradiometer (MODIS; Justice et al.
2002, 2011) is carried by NASA’s polar-orbit-
ing Terra and Aqua platforms, launched in
1999 and 2002, respectively.

(3) The newer Visible Infrared Imaging Radiometer
Suite (VIIRS; Koltunov et al. 2016; Schroeder et
al. 2014) is carried aboard the NASA/NOAA

Joint Polar-orbiting Satellite Systems (JPSS) satel-
lites. These satellites currently are the Suomi
National Polar-Orbiting Partnership (NPP),
launched in 2001, and the NOAA-20/JPSS-1,
launched in 2017; three additional satellites are
planned.

(4) The Advanced Baseline Imager (ABI; Schmit
et al. 2017, 2005, 2008) and other radiometers
are carried on the various NOAA Geostationary
Orbiting Environmental Satellite (GOES) series
of geostationary satellites. These include the
recently deployed GOES-16 and GOES-17 satel-
lites (Schmidt 2020), launched in 2016 and 2018,
respectively.

Polar-orbiting platforms provide once- or twice-daily
coverage of an entire region, while geostationary plat-
forms can provide near-continuous measurements. For
example, GOES-16 and GOES-17 can image the con-
tinental U.S. every five minutes and provide a rapid
update of a specific region every minute.

The disadvantage of thermal anomaly detection is
that smaller and/or obscured fires (e.g., by clouds) will
often be missed. A high percentage of prescribed fires
are purposely designed to burn at low intensity and/or
as understory burns; consequently, these are harder for
satellites to detect (e.g., Nowell et al. 2018). That satel-
lites miss a larger portion of prescribed fires compared
to wildfires has been confirmed by comparisons with
ground-based prescribed burning databases (Larkin
et al. 2020; Larkin, Raffuse, and Strand 2014). Polar-
orbiting satellites also need the fire to be active at the
time of the satellite overpass, which may not corre-
spond with the period of most active fire behavior.
The Terra and Aqua polar-orbiting satellites have day-
time overpass times of 10:30 am and 1:30 pm local
time, generally ahead of the peak fire energetics that
occur later in the afternoon when temperatures are
higher, relative humidities are lower, and the mixed
layer is more fully developed. Overpass timing can
cause even larger fires to be missed if they are short
in duration, a problem typical of quick-burning fuels
such as grasslands. Geostationary satellites have the
advantage of near-continuous daytime coverage, but,
due in part to their higher orbits, the resolution (pixel
size) reflects larger ground areas compared to polar-
orbiting systems, thereby limiting their detection cap-
abilities. Figure 4 shows an example of how different
satellite systems can see the same fire, showing the
GOES-16 and VIIRS hotspot detections for one day of
the 2019 Kincade fire in California.

The NOAA Hazard Mapping System (HMS; NOAA,
2019; Ruminski et al. 2006; Schroeder et al. 2008) is an
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operational system that aggregates fire and smoke
information from across various satellite systems and
does quality control to remove identified false detec-
tions. Additionally, obscured fires that are not detected
are added back in where visible imagery allows for
geolocating the source of the plume. HMS fire detec-
tions are gridded onto a 1-km grid and are commonly
used in smoke forecasting systems (O’Neill et al. 2008).

Burned area also can be detected by comparing
satellite imagery on successive passes and identifying
areas of vegetative change that are likely due to fire.

This is typically done using LANDSAT (Tucker, Grant,
and Dykstra 2004), AVHRR, or MODIS imagery. The
result is an overall burned area or burn scar estimation
(e.g., Kasischke and French 1995; Koutsias and Karteris
1998; Roy et al. 1999). Active hotspot detection can also
be folded into the burn scar estimation (Giglio et al.
2009). The amount of change between overpasses at
a given pixel reflects the change in biomass due to the
fire. This measure is used by the U.S. Forest Service
Monitoring Trends in Burn Severity (Eidenshink et al.
2007) project. Although such systems can provide
highly detailed maps of specific burns, the process is
generally applied only to larger burns, and in specific
cases it can also have issues such as extremely large or
small area estimations (e.g., Drury et al. 2014). The
largest limitation for air quality purposes, however, is
that such systems are based on 8-day LANDSAT 30-m
resolution imagery, and so are too delayed for air
quality forecasting purposes. MODIS-based products
are available faster but with lower resolution (approx-
imate 1-km resolution).

Satellite air quality measurements

Satellites provide a number of measurements relevant
to air quality (Kahn 2020). The simplest is smoke extent
polygons, such as those created operationally by the
NOAA HMS (Ruminski et al. 2006; Schroeder et al.
2008). HMS smoke plumes extents are often used as
a marker of being in a smoke plume but do not neces-
sarily represent ground smoke impacts (Buysse et al.
2019; Kaulfus et al. 2017). For example, Figure 5 shows
the HMS plumes extents for 11/8/2018 for the Camp
wildfire (left panel) and surface measurements of 1-hr
average PM2.5 concentrations overlaid with the visible
smoke plume from GOES-16 (right panel). Note that
HMS vertically integrated smoke plumes extents may
not represent ground-level concentrations: good air
quality conditions at the surface (i.e., green) are present
in some locations under the thickest visible smoke.
Conversely, many monitors show poor air quality con-
ditions (i.e., red) at locations where the visible satellite
plume is much less dense. This comparison highlights
how the satellite top-down view of the earth may not
represent what we experience at the surface. Buysse
et al. (2019), for example, found that surface PM2.5

was enhanced on 30–80% of days with overhead HMS
smoke plumes across 18 western U.S. cities. Locations
closer to fire sources are more likely to have ground
impacts when inside an identified smoke plume peri-
meter. In this way, satellite-derived smoke plume extent
is a weak marker of ground impacts. However, the
shape of the HMS plumes can be used to connect

Figure 4. Satellite detections of the Kincade fire in northern
California on October 27, 2019 by Geostationary Orbiting
Environmental Satellite (GOES) and the polar-orbiting Visible
Infrared Imaging Radiometer Suite (VIIRS). Hotspot detections
by each are shown at the center points of the sensor pixels
(yellow squares: GOES-16; red circles: VIIRS). Black outline: final
fire perimeter. The VIIRS detections provide a higher resolution
detection (~375 m), but only during overpasses. The geosta-
tionary GOES-16 provides a continuous observation but at
a lower resolution (~2 km). The size of squares and circles is
illustrative and not related to hotspot detection strength or
size. Data sources: GOES and VIIRS detections based on NOAA
Hazard Mapping System–collected detections; perimeter based
on GeoMac data. Image source: U.S. Forest Service.

JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION 589



identified impacts back to fire sources (e.g., Brey et al.
2018) and to validate smoke forecasts (Rolph et al.
2009).

Other smoke characteristics are available from satel-
lites (e.g., Paugam et al. 2016). Plume top height is
available from the Multi-angle Imaging
SpectroRadiometer (MISR; Diner et al. 1998) instrument
aboard the NASA polar-orbiting Earth Observing
System (EOS) Terra satellite. MISR uses stereographic
imagery to calculate plume top height. This system has
been used to identify and evaluate overall fire plume top
heights (Val Martin, Kahn, and Tosca 2018) since 1999
and provides the longest history of satellite-observed
plume heights. Beyond providing plume top measure-
ments, the vertical structure of plumes can be measured
with the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP; Hunt et al. 2009) satellite
LiDAR system on the NASA Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO)
satellite, launched in 2006. With the downward-facing
LiDAR, CALIOP provides a vertically allocated measure
of backscattering along the track of the satellite. Where
this intersects smoke plumes, it can provide measures of
the aerosol both at ground level as well as throughout
the vertically sampled plume (Liu et al. 2009). Both
MISR and CALIOP data have been used to examine
plume rise models (e.g., Kahn et al. 2008; Raffuse et al.
2012; Val Martin et al. 2012; Val Martin, Kahn, and
Tosca 2018), with modeled plumes showing generally
consistent trends compared to the satellites, but with
a large amount of variability.

Limitations of the use of these data to constrain mod-
eled smoke plumes include both the timing of the over-
pass of the fire for MISR and the paucity of the number of
times CALIOP, which is not a scanning instrument, inter-
sects major plumes. MISR overpass times are typically in
the mid-morning over the continental U.S., but fire
plumes continue to grow into the afternoon when humid-
ity, temperature, and development of atmospheric
boundary layer typically lead to the highest plume heights.
For CALIOP, Raffuse et al. (2012) found only 157
CALIPSO orbit paths (out of 25,000 orbits) intersecting
HMS smoke plumes during a three-year period. The
recent launch in 2017 of the TROPOspheric Monitoring
Instrument (TROPOMI; Veefkind et al. 2012) on the
European Space Agency sun-synchronous orbiting (simi-
lar to polar-orbiting) Sentinel-5 Precursor satellite, with
its Aerosol Layer Height-derived product, offers the
potential for daily global coverage and fast retrieval, and
examination of this product has only recently started
(Griffin et al. 2019). Additionally, Lyapustin et al. (2019)
have recently derived a newmethodology for determining
plume injection height based on thermal differences of the
rising plume with the surrounding air based on MODIS
observations. Their algorithm is part of the Multi-Angle
Implementation of Atmospheric Correction (MAIAC)
MODIS collection six products, available daily at a 1-km
resolution.

Aerosol optical depth (AOD) is a measure of the
integrated amount of aerosol within the full vertical
column of the atmosphere, derived from an estimation
of the column-integrated attenuation of light due to

Figure 5. Camp wildfire, northern California, November 8, 2018. A NOAA HMS smoke plume at 12:30:00 PST. Colors are qualitative
representation of smoke intensity (green: light, yellow: medium, red: heavy). (b) Visible satellite imagery from GOES-16 overlaid with
surface measurements of 1-hr average PM2.5 concentrations at 13:02:00 PST. Colors for the PM2.5 data are associated with the AQI
scale (see Figure 1). The right figure is from the NOAA Aerosol Watch program (https://www.star.nesdis.noaa.gov/smcd/spb/aq/
AerosolWatch/).
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scattering and absorption. AOD is available from both
the polar-orbiting MODIS, the geostationary GOES,
and the sun-synchronous TROPOMI. AOD is also
available from VIIRS, where it is called aerosol optical
thickness. AOD is useful for showing overall plume
extent from major wildfires and, despite being column-
integrated, statistical connections with ground-based
AERONET measurements and others have allowed for
the estimation of surface PM2.5 from AOD (Drury et al.
2010; Gupta and Christopher 2009; Hu et al. 2014; Liu
et al. 2005a; van Donkelaar, Martin, and Park 2006; Xie
et al. 2015).

In addition to aerosols, satellites can detect other
atmospheric components that can be used to track
smoke plumes, including CO and NO2. The
Measurements of Pollution in The Troposphere
(MOPITT) instrument onboard the Terra satellite,
launched in 1999, measures column-integrated CO
through the use of an array of specific wavelength
channels where CO absorbs (Drummond et al. 2010).
However, the instrument has non-uniform vertical sen-
sitivity, complicating application and interpretation.
Nonetheless, the result is the ability to record column-
integrated CO levels across a substantial fraction of the
planet each day. MOPITT data have been used to track
smoke plumes over large areas (e.g., Lamarque et al.
2003; Liu et al. 2005b; Pfister et al. 2005). TROPOMI
(on the Copernicus Sentinel-5 Precursor satellite) also
measures CO, as well as CH4, NO2, SO2, and other
aerosol properties (Veefkind et al. 2012). Observations
from OMI (on the NASA Aura satellite) have been used
to understand NO2 emissions from biomass burning
(Mebust et al. 2011; Tanimoto et al. 2015). The upcom-
ing Tropospheric Emissions: Monitoring of Pollution
(TEMPO; Zoogman et al. 2014) geostationary mission
is designed to augment and enhance current satellite
capabilities for measuring atmospheric composition,
and it will include a wide array of species, including
O3, NO2, SO2, and various aerosol properties of smoke
plumes. By combining ultraviolet and visible wave-
lengths, TEMPO will, for the first time, allow satellite
measurement of lower tropospheric (0–2 km altitude),
free tropospheric, and stratospheric O3. TEMPO also
offers the promise of observing near-surface O3, PM2.5,
and other pollutants at a higher resolution (e.g., 4.4 km
x 2.1 km).

Field campaigns

Smoke has received increasing scrutiny from the atmo-
spheric sciences and chemistry community via a number
of large field campaigns that include ground-based, air-
borne, and satellite observations. These include the

Department of Energy–sponsored Biomass Burning
Observation Project (BBOP) campaign (https://www.arm.
gov/research/campaigns/aaf2013bbop) (Briggs et al. 2016;
Collier et al. 2016; Zhou et al. 2017), Studies of Emissions
and Atmospheric Composition, Clouds and Climate
Coupling by Regional Surveys (SEAC4RS) project (Toon
et al. 2016), the NOAA-NASA Fire Influence on Regional
to Global Environments and Air Quality (FIREX-AQ)
campaign (https://www.esrl.noaa.gov/csd/projects/firex-aq
/), the NSF-sponsored Western Wildfire Experiment for
Cloud Chemistry, Aerosol. Absorption andNitrogen (WE-
CAN) campaign (https://www.eol.ucar.edu/field_projects/
we-can), and the U.S. Department of Agriculture–spon-
sored Fire and Smoke Model Evaluation Experiment
(FASMEE) experiment (https://sites.google.com/firenet.
gov/fasmee/) (Prichard et al. 2019b). As of early 2020,
much of this research has yet to be published, but as this
work becomes available we anticipate many new findings
and advances in the field, particularly in the areas of better
estimations and models of emissions, speciation within
smoke, and how smoke chemically ages and interacts with
other pollutants in the air throughout the plume.

Emissions

Emissions from wildfires and prescribed fires in
2017

2017 was a major fire year; wildfires burned over
4 million hectares and prescribed fires almost
5 million ha. Tables 1 and 2 show the top five states
for annual areas burned in 2017 for wildfires (Table 1)
and prescribed fires (Table 2), along with some of the
highest monthly areas burned for each state. The tables
also show the PM2.5 emissions for those months and
the maximum observed daily mean PM2.5 concentra-
tions at any regulatory monitor for the month.

Table 1. Top five states for annual area burned as wildfires,
from the EPA draft National emissions inventory for 2017. Also
shown are the peak monthly areas burned (blue shading), peak
monthly PM2.5 emitted (orange), and the maximum PM2.5 con-
centration measured at any regulatory monitor for the month
(green; data from AirNowTech).

State

Annual
Area

Burned
(ha) Month

Month
Area

Burned
(ha)

Month
PM2.5

Emitted
(tons)

Maximum Daily
PM2.5 Measured in
the Month (µg/m3

24-hr avg)

California 641,440 August
October

93,388
151,492

126,331
106,657

310
215

Montana 584,527 September 222,497 158,647 550
Nevada 519,250 July 373,169 21,742 135
Oregon 381,294 August 152,505 142,845 314
Idaho 367,205 August

September
129,799
80,922

51,974
93,048

125
361
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These tables convey several important results. First, area
burned did not correspond to either PM2.5 emissions or
peak measured concentrations. Rather, the emissions
depended strongly on fuel type and density as well as
burning conditions. Compared to flaming combustion,
smoldering fires emitted more PM2.5 per unit of fuel con-
sumed. Heavily forested regions, such as northern
California and the Pacific Northwest, had much higher
fuel loadings than rangelands (e.g., Nevada) and conse-
quently much higher PM2.5 emissions.

Second, even where PM2.5 emissions were large, air
quality monitors may not have measured high concen-
trations. This depended on the location of the fires
relative to the monitors and transport. For example,
the highest wildfire emissions in California were in
August, and although the measured PM2.5 concentra-
tion of 310 µg/m3 is notable, some state and USFS
mobile monitors in several parts of the state reported
even higher values on some days. The highest daily
mean observed PM2.5 in August at a non-regulatory
monitor was 745 µg/m3 for a site near Happy Camp,
CA, on 8/24/2017. (See https://wildlandfiresmoke.net
for near-real time data access. Note that past non-
regulatory data is not routinely made available.
Contact the authors for more information about acces-
sing this data.) In October, large areas burned in the
Napa Wine Country fires. Although the emissions were
somewhat lower compared to August, a large popula-
tion was exposed to unhealthy to very unhealthy levels
of PM2.5 across the San Francisco Bay area (>200 µg/
m3). These data show the clear signature of wildfires
dominating the western U.S. in the summer months
and into late fall in California.

In the central and southeastern U.S. (Table 2), pre-
scribed burning peaks in late winter and spring.
Although the area burned by prescribed fires was of
a similar magnitude as wildfires in the West, the PM2.5

emissions were approximately an order of magnitude
lower, and the levels of measured PM2.5 concentrations
were also much lower. This difference is due to both
the fuel types (e.g., rangelands) and the management
practices in forest systems, where prescribed fires typi-
cally do not burn canopy or duff fuels. Thus, these data
show that prescribed burning in the southeastern
U.S. had much lower emissions per ha, likely due to
the fuels and management goals for each fire.

The relationship between fire activity and smoke,
2004–2018

The relationship between the amount of fire in a region
and human exposure to PM2.5, O3, and other pollutants
is complex. Generally, increases in regional fire result in
reduced air quality due to smoke, but this relationship
is complicated by smoke transport from other regions
and the locations of the fires with respect to in-situ air
quality monitors. Figures 6 and 7 show the percentage
of monitor-days that exceeded a daily average of 35 µg/
m3 as well as the area burned in 2004–2018 for two
states, California and Washington. California (Figure 6)
showed a general trend to fewer days over 35 µg/m3,

due to decreasing industrial emissions (McClure and
Jaffe 2018), but this number of days clearly increased
with the high area burned in 2007, 2008, 2017, and
2018. If the temporal trend is removed, there is
a significant correlation between area burned in
California and the percentage of monitor-days over
35 µg/m3 (R2 = 0.54).

Washington (Figure 7) had fewer days over 35 µg/
m3, but the frequency increased with the large area
burned in 2006 and 2015. In 2017 and 2018, the per-
centage of days above 35 µg/m3 was much higher than
in the previous decade, due not only to fires in
Washington but also to transport of smoke from fires
in Montana, British Columbia, and Oregon. This
reflects the spatial pattern of fires and smoke and the
spatial coverage of monitors within each state.

Emissions from fires

About 80–90% of the emissions by mass from biomass
fires are of CO2. Of the non-CO2 portion, CO repre-
sents the largest fraction (~60%), followed by volatile
organic compounds (VOC, ~15%), primary PM2.5

(~8%), and CH4 (~2%) (Akagi et al. 2011; Andreae
2019). Other gas phase emissions include inorganic
species, including NOx, HCN, NH3, and HONO. To

Table 2. Top five states for annual area burned as prescribed
fires, from the EPA draft National Emissions Inventory for 2017.
Also shown are the peak monthly areas burned (blue shading),
peak monthly PM2.5 emitted (orange), and maximum PM2.5

concentration measured at any regulatory monitor for the
month (green; data from AirNowTech).

State

Annual
Area

Burned
(ha) Month

Month
Area

Burned
(ha)

Month
PM2.5

Emitted
(tons)

Maximum Daily
PM2.5 Measured in
the Month (µg/m3,

24-hr avg)

Texas 632,470 February 143,468 12,807 29
Georgia 465,219 February 92,595 10,217 32
Oklahoma 449,616 March 140,656 18,615 49
Florida 386,518 February 90,367 8,733 30
Alabama 366,899 March 66,059 8,344 38

592 D.A. JAFFE ET AL.

https://wildlandfiresmoke.net


Figure 6. (Top) Box and whisker plots of all daily PM2.5 concentrations by year for air quality monitors in California. The numbers at
the top of the panel show the total number of monitor-days above the daily PM2.5 standard (35 µg/m3). Colored horizontal lines
show the six AQI cut points: Good, <12 µg/m3; Moderate, <35.4 µg/m3; Unhealthy for Sensitive Groups, <55.4 µg/m3; Unhealthy,
<150.4 µg/m3; Very unhealthy, <250.4 µg/m3; Hazardous, >250 µg/m3 (see Figure 1 for color key). (Bottom) Annual area burned (left
y-axis) and percentage of all monitor-days that exceeded the daily PM2.5 standard (right y-axis). All PM2.5 data from the EPA AQS
system are included (regulatory and non-regulatory). Sources: Burned area for each state is from NIFC, and PM2.5 data are from the
EPA AQS database.

Figure 7. As in Figure 6, but for Washington.
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date, more than 500 individual VOCs have been iden-
tified in smoke (Hatch et al. 2017), and these com-
pounds are highly reactive with the OH radical
(Kumar, Chandra, and Sinha 2018). Although VOCs
represent only a fraction of the total gaseous emissions
from biomass fires, many are associated with adverse
health effects, and the mixture is more reactive than
typical industrial emissions, with a high potential for
secondary organic aerosol (SOA) and O3 formation.

Primary smoke PM2.5 emissions are composed
mainly of organic compounds (>90%), with lesser
amounts of elemental carbon (ca 5–10% by mass),
NO3

−, K+, Cl−, NH4
+, and other constituents (Kondo

et al. 2011; Liu et al. 2017b; Park et al. 2003; Zhou et al.
2017). Despite their much lower emissions compared to
the organic compounds, these and other trace-level
elements can be important for biogeochemical cycles
and as tracers for source apportionment. For example,
fires emit fluorine in globally significant amounts
(Jayarathne et al. 2014). Smoke particles are mostly
small, with median diameters in the range of
50–200 nm (Carrico et al. 2016; Laing, Jaffe, and Hee
2016), although a few larger particles can extend into
the super micron range (e.g., Maudlin et al. 2015). The
emissions are variable from fire to fire and depend on
fuel type, fuel moisture, fire conditions, temperature,
weather, and other factors (Cubison et al. 2011;
Hecobian et al. 2011). This variability is a major chal-
lenge for understanding the emissions, chemistry, and
subsequent impacts of smoke.

Emissions inventories

An emissions inventory (EI) provides a detailed
accounting of hectares burned and the pollutants
emitted from each fire. An EI is typically used both as
an input for air quality models and health assessments
and to gauge the relative amounts of different pollu-
tants emitted to the atmosphere. Emissions of species
x is often calculated from:

Ex ¼ A� B� FB� EFx (1)

Where Ex is the mass of species x emitted, A is the area
burned, B is the mass of biomass per unit area, FB is
the fraction of biomass consumed, and EFx is the emis-
sion factor per unit fuel consumed for species x (Seiler
and Crutzen 1980; Urbanski 2014; Wiedinmyer et al.
2011).

North America has two national EIs: the EPA’s NEI
(U.S. EPA, 2019a) and the Canadian Air Pollutant
Emissions Inventory (APEI; Canada, 2019). At
a global scale, there are several EIs for fire emissions,
including the Fire Inventory from National Center for

Atmospheric Research (FINN; Wiedinmyer et al. 2011),
the Global Fire Emissions Database (GFED; van der
Werf et al. 2017), the Global Fire Assimilation System
(GFAS; Kaiser et al. 2012), and the Integrated System
for wild-land Fires (IS4FIRES; Soares, Sofiev, and
Hakkarainen 2015).

Unlike the other EIs, which rely solely on satellite
fire detects, the NEI uses fire activity data obtained
from national, regional, and state reporting (e.g., fed-
eral incident reports used to calculate National
Interagency Fire Center [NIFC] statistics, Fire
Emissions Tracking System [FETS, htto://wrapfets.
org]), augmented and reconciled with satellite data
(e.g., from NOAA’s Hazard Mapping System) (Larkin
et al. 2020). The BlueSky emissions modeling frame-
work (Larkin et al. 2009) is then used to generate daily
fire emissions, and the EPA applies PM chemical spe-
ciation, vertical allocation, and a temporal profile
according to the fire type: agricultural, prescribed fire,
or wildfire and by season and location (Eyth et al. 2019;
Pouliot et al. 2017).

EIs developed from activity reports require consider-
able effort to develop and are reported retrospectively
on a temporally resolved annual (e.g., Canada’s APEI)
or triennial basis (e.g., NEI); in contrast, EIs based
solely on satellite detection can, in principle, be
reported in near-real time. Between NEI years, the
EPA also develops fire emissions for air quality model-
ing purposes, using the same data sources but without
the extensive review process done for the NEI (Koplitz
et al. 2018). By consolidating multiple sources for fire
activity, the NEI hectares burned are nearly 20% higher
than NIFC–reported wildfire areas and over 100%
higher than GFED burned areas, likely due to the
inclusion of smaller prescribed fires that may not be
reported to NIFC or detected by satellite (Larkin et al.
2020). Emissions can also be estimated by applying
smoke emission coefficients to fire radiative power
(FRP), avoiding some of the uncertainty in fuel loading
and amount consumed (e.g., the NASA Fire Energetics
and Emissions Research algorithm; Ichoku and Ellison
2014). However, this approach can miss low-intensity,
short-duration, understory fires, resulting in a 54%
lower PM2.5 emission estimate compared to the NEI
(Li et al. 2019a). Comparisons among EIs and the NEI
are still sparse.

Emission factors

Emission factors (EFs; see equations 1 and 2) are
a critical input parameter in wildland fire EIs and
emissions models (e.g., BlueSky Modeling Framework;
Larkin et al. 2009). EFs are defined as a mass of species
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emitted per unit mass of dry fuel consumed (Andreae
2019). The carbon balance method (Radke et al. 1988;
Ward et al. 1982) is the most widely used approach to
calculate EFs:

EFx ¼ Fc
ΔCxP
iΔCi

(2)

Where EFx is the EF of species x, Fc is the fraction of
carbon in the fuel, ΔCx is the excess carbon mass
concentration of species x (often concentrations are
replaced with normalized excess emissions ratio to
CO2 or CO), and the denominator is the sum of the
carbon from all carbon-containing species, often lim-
ited to CO2 and CO. The carbon balance method has
several assumptions that may introduce error into the
EF calculation:

(1) All carbon in the burned fuel is consumed –
Carbon remaining in the fuel as char is fre-
quently omitted in the carbon balance, which
results, on average, in a 4% overestimate
(Surawski et al. 2016).

(2) All major carbon-containing species emitted
are accounted for – CO2 and CO typically
account for ~96% of the carbon emissions
(Yokelson et al. 1999); ignoring VOCs and
particulate carbon results in an overestimate
in EFs of about 4%.

(3) Carbon fraction of the fuel is known and
approximately constant – Carbon fractions of
0.45–0.50 (Andreae 2019; Yokelson et al. 1999)
are commonly used when fuel-specific infor-
mation is not known, increasing uncertainty
in the EF about 10% (Susott et al. 1996).

(4) All species are transported to the measurement
location with no losses or deposition – The
effect of this assumption is unknown (Hsieh,
Bugna, and Robertson 2016).

(5) Background concentrations are accurately
accounted for – Background CO2 enhancement
in dilution air underestimates the EFs by about
6% (Hsieh, Bugna, and Robertson 2016).
Aircraft measurements downwind encounter-
ing background air masses of varying pollutant
levels (e.g., at boundary layer vs. free tropo-
sphere) can result in a large (>50%) change in
normalized excess emission ratios (Chatfield
et al. 2019; Yokelson, Andreae, and Akagi
2013). Briggs et al. 2016, see supplemental
information) propose a method to compute
the uncertainty in these values due to this
effect.

These assumptions introduce a positive bias, with
added uncertainty from approximating a constant car-
bon fraction in the fuel. These errors are outside mea-
surement errors, which for some species, like PM, may
be sizable as well. However, the uncertainties in the
measurement and calculation of EFs are eclipsed by
the immense variability of emissions from varying
fuels and combustion conditions, as evidenced by the
wide range of EFs reported in the literature. Note that
the EF equation is similar to one used for enhancement
ratios (ERs), but EFs are reserved for cases where fire
emissions are observed directly, and ERs are used for
downstream measurements, where significant proces-
sing of the emissions may have occurred (e.g., Briggs
et al. 2016).

The large variability in EFs has been a major driver
of research on the emissions from wildland fires. Over
the past two decades, a number of EF compilations
have been published for global wildland fires and
other types of biomass fires (e.g., charcoal making,
home biofuel, trash burning; Akagi et al. 2011;
Amaral et al. 2016; Andreae 2019; Andreae and
Merlet 2001). Other EF compilations have focused on
North American wildland fires including wild and pre-
scribed fires (e.g., Lincoln et al. 2014; Prichard et al.
2020; U.S. EPA, 1995; Urbanski 2014; Ward et al.
1989). New emissions studies investigating different
fuels, fire types, and emissions characteristics are pub-
lished frequently, which is why some compilations pro-
vide periodic updates. The FINN emission factor
compilation is periodically updated with emission fac-
tors from recently published studies (http://bai.acom.
ucar.edu/Data/fire/). Prichard et al. (2020) developed
the Smoke Emissions Reference Application (SERA;
https://depts.washington.edu/nwfire/sera/index.php) to
be a searchable online EF repository.

Compiling EFs into a cohesive database also facil-
itates the assessment of data gaps for fuel types/ecor-
egions, combustion conditions, and pollutants, and it
provides a tool for understanding how emissions vary
with these parameters. Comparing the EF observations
with the average hectares burned in each state from
2006 to 2016 (U.S. EPA, 2019a) reveals that some areas
of the U.S. with high fire activity are overlooked in
emissions studies (Figure 8). For example, Texas,
which has the highest average burned area in the coun-
try, has only two EF observations in the SERA database.
Other central and southern U.S. states also have high
areas burned but few or no EFs in SERA. This limits
our understanding of the impact of these fires on air
quality.

Of the major species in SERA, 75–90% of the EFs are
from laboratory studies, 10–20% are from prescribed
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fires, and <5% are from wildfires. The exception is for
CO2 and CO, for which there are ~600 observations,
with approximately 15% fromwildfires and the remain-
ing EFs evenly split between lab and prescribed fires.
Other pollutants, like NOx, NH3, or some of the more
commonly measured VOCs, like CH4, have only
around 200 EFs across all fuel and ecosystem types
(Table 3).

Historically, wildland fire emissions have been mod-
eled using the two basic combustion phases: flaming or
smoldering (Prichard, Ottmar, and Anderson 2007).
The modified combustion efficiency (MCE) is used as
the primary indicator of combustion phase, with MCE
> 0.9 considered flaming combustion and MCE < 0.9 as
smoldering combustion (Urbanski 2014). MCE is
defined as:

MCE ¼ ΔCO2

ΔCO2 þ ΔCO
(3)

Where ΔCO2 is the excess CO2 concentration and ΔCO
is the excess CO concentration. EFs for pollutants asso-
ciated with incomplete combustion (CO, CH4, and PM)

are all moderately to strongly correlated with MCE
(r2 = 0.64, 0.71, and 0.47, respectively; Prichard et al.
2020). Some compounds, like NOx, are poorly pre-
dicted by MCE (r2 = 0.07; Prichard et al. 2020) but
have been found to be linearly correlated with fuel
nitrogen (Delmas, Lacaux, and Brocard 1995).
Elements such as K, Cl, and Ca also appear; these can
vary widely among fuel types and depend more on fuel
composition, with combustion conditions playing
a secondary role.

Prichard et al. (2020) analyzed the SERA EF data-
base to identify conditions with few EF observations.
More information is still needed for wildfire EFs,
particularly because some studies indicate much
higher wildfire EFs, possibly due to the greater con-
sumption of coarse wood, duff, and moist canopy
fuels (Liu et al. 2017a). There is also a need for
more EFs for smoldering conditions, especially from
coarse wood and duff fuel types. Information is lim-
ited on how the environmental conditions and the
fire behavior affect emissions, which are important
considerations for prescribed fire burn plans

Figure 8. Comparison of the annual average hectares burned for each state in the continental U.S. (2006–2016) with the number of
particulate matter emission factor observations for each state in the SERA database.
Source for hectares burned: U.S. Environmental Protection Agency (U.S. EPA) (2019a).

Table 3. Comparison of average emission factors (EFs) from non-biomass fuels (e.g., structures, furnishings, vehicles) at the wildland-
urban interface (WUI) and from natural fuels from wildland fires, derived from SERA. EF units are g/kg fuel consumed, unless
otherwise noted.

CO2 CO HCN NOx HCl SO2 PM
C6
H6

Benzo(a)
pyrene

Polychlorinated
dibenzo-p-dioxins

(µg/kg)
Polychlorinated

dibenzofurans (µg/kg)

Average EF for non-
biomass WUI fuels

1514 124 8.8 5.7 153 62.2 66.7 31.4 0.12 0.53 14.0

# EFs observed 143 145 49 21 32 14 97 41 18 4 4
Standard deviation 917 130 41.6 19.4 404 164 84.9 67.2 0.19 1.04 28.0
Average EF for wildland
fires

1550 104 0.5 2.2 0.3 1.1 25.1 0.4 0.0003 0.032 0.021

# EFs observed 597 640 188 202 37 125 688 84 11 13 13
Standard deviation 313 58 0.6 2.1 0.9 0.7 34.8 0.3 0.0002 0.020 0.017
WUI/wildland fire EF ratio 0.98 1.2 19 2.6 488 56 2.7 85 366 16 667
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(Waldrop and Goodrick 2012). The observations on
prescribed fires also presents contradictory results.
Bian et al. (2020) reported that prescribed fires in
the southeastern U.S. tend toward more-smoldering
conditions compared to other parts of the country,
which would presumably increase the PM2.5 EFs
(Prichard et al. 2020). But Liu et al. (2017a) reported
lower PM2.5 EFs from southeastern prescribed fires
compared to western wildfires. A better understand-
ing of the factors and environmental controls asso-
ciated with prescribed burning is needed to improve
our estimates of their emissions.

Primary gas phase emissions

Gas phase emissions are composed of oxidized species
associated with flaming conditions, including CO2,
NOx, HONO, SO2, and more reduced species asso-
ciated with smoldering conditions, including CO,
CH4, HCN, and NH3. Both combustion phases are
associated with emissions of VOCs, and these have
a range of volatilities, oxygenation, heteroatoms (N, F,
S, Cl, Br, I), and functional groups (e.g., ketones, car-
bonyls, alcohols) (Prichard et al. 2020). Most of the
VOCs are unsaturated compounds (>80%), and around
60% are oxygenated-VOCs (OVOCs) (Gilman et al.
2015). The most abundant OVOCs emitted from typi-
cal U.S. fuels are formaldehyde, formic acid, methanol,
acetaldehyde, and acetic acid. Levoglucosan and phe-
nolic compounds (e.g., cresols, guaiacol) are also nearly
ubiquitous, but in highly variable amounts (Hatch et al.
2018). Most VOCs vary greatly in their relative abun-
dance across different fuels, and some are unique to
specific fuel types (Hatch et al. 2018), demonstrating
the difficulties of attempts to simplify emissions models
for even the most commonly emitted molecules.

Many of the VOCs correlate only modestly with MCE
and are better categorized as products of the initial dis-
tillation of fuel or from low or high temperature pyrolysis
reaction pathways (Sekimoto et al. 2018). During the brief
initial distillation phase, the higher volatility of unburned
fuel compounds, like monoterpenes and other biogenic-
derived VOCs, are emitted (Sekimoto et al. 2018). Despite
contributing minimally to the overall VOC emissions,
these biogenic VOCs may have an important role in
flammability, by reducing ignition times (De Lillis,
Bianco, and Loreto 2009; Owens et al. 1998) and enhan-
cing the rate of fire spread (Chetehouna et al. 2014). The
low-temperature pyrolysis products include a greater
fraction of low volatility compounds, oxygenates, furans,
and ammonia, while the high-temperature products have

few low-volatility compounds and are enriched in alipha-
tic hydrocarbons, PAHs, HCN, HCNO, and HONO
(Sekimoto et al. 2018).

Primary particle emissions – chemical, physical,
and optical characteristics

Particle emissions from wildland fires are complex,
with time-varying size, morphology, chemical composi-
tion, and volatility, all of which determine their impact
on human health and the environment. PM emissions
are composed mainly of organic carbon (50–75%), with
5–10% elemental carbon (EC) or black carbon (BC),
and typically less than 5% of inorganic ions (e.g., K, Cl)
and metals (Ward and Hardy 1988); the balance of the
PM mass is from elements associated with organic
carbon (e.g., H, O, N, S). Note that EC and BC are
not equivalent and depend on the measurement meth-
odology (Andreae 2019; Petzold et al. 2013).
Measurements of complete particle composition are
still relatively sparse (Balachandran et al. 2013;
Einfeld, Ward, and Hardy 1991; Lee et al. 2005; Ward
and Hardy 1988), with many not reporting either the
organic fractions (Alves et al. 2019, 2011; Reisen et al.
2018) or the inorganic fractions (Aurell and Gullett
2013; Aurell, Gullett, and Tabor 2015; Holder et al.
2016; Vicente et al. 2013). Toxic metals are also present
in PM at very low levels (Alves et al. 2011; Gaudichet
et al. 1995; Popovicheva et al. 2016), but they may be
enriched in emissions from wildland fires that occur on
or near contaminated sites (Kristensen and Taylor
2012; Odigie and Flegal 2014; Wu, Taylor, and
Handley 2017).

Organic emissions have a range of volatilities (gas
phase, intermediate volatility, semivolatile, low volati-
lity, particle phase), which makes measuring PM diffi-
cult, because up to 40% of the PM mass may be lost due
to evaporation of the semivolatile compounds (Hatch
et al. 2018). The distribution across the volatility range
is relatively constant for most combustion conditions
and fuels (May et al. 2013). The lowest-volatility frac-
tion consists primarily of anhydrosugars, whereas alco-
hols and acids dominate the semivolatile range, and
phenols dominate in the higher volatility range
(Hatch et al. 2018).

Most lab and field studies have demonstrated
that BC emissions increase with MCE (e.g., Jen et al.
2019; Selimovic et al. 2018), but other studies have
found a weaker relationship (e.g., Hosseini et al. 2013;
McMeeking et al. 2009). Laboratory burning studies
have suggested larger BC particle mass fractions
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compared to field observations under flaming condi-
tions (lab: 15 ± 12%, field: 8 ± 5%) as well as higher
inorganic content (lab: 12 ± 13%, field: 8 ± 5%) (Alves
et al. 2011; Balachandran et al. 2013; Ferek et al. 1998;
Guo et al. 2018; Hosseini et al. 2013; McMeeking et al.
2009; Turn et al. 1997; Ward and Hardy 1988). Both
results suggest that laboratory burning cannot fully
capture the characteristics of wildland fire emissions.

The composition of PM affects its size, morphology,
and hygroscopicity, all of which impact optical proper-
ties. The BC fraction is formed during flaming combus-
tion; it is composed of graphitic-like primary particles,
with diameters of 20–50 nm that aggregate into larger
particles of approximately 200 nm (volume equivalent
diameter) (Holder et al. 2016; Sahu et al. 2012; Schwarz
et al. 2008) that are hydrophobic (Petters et al. 2009).
However, most PM is organic with moderate hygrosco-
picity (Petters et al. 2009) and, for fresh emissions, has
a single size mode with count median diameters
(CMD) of ~120 nm and geometric standard deviations
(GSD) of ~1.7 (Janhäll, Andreae, and Pöschl 2010; Reid
et al. 2005; Virkkula et al. 2014; Wardoyo et al. 2007).
Some fuels, like grasses and some shrubs, emit PM with
a larger inorganic fraction, resulting in larger hygro-
scopicity (Carrico et al. 2010; Petters et al. 2009) that
may impact light-scattering properties of biomass
burning aerosols at high relative humidities (Gomez
et al. 2018). Aging causes the PM to converge to
a moderate hygroscopicity, likely due to secondary
organic aerosol formation (Engelhart et al. 2012;
Lathem et al. 2013), making these particles able to
serve as cloud condensation nuclei under some condi-
tions. Aging also results in larger particles but with
a narrowed size distribution, with CMDs around
175–300 nm and GSDs of 1.3–1.7 (Janhäll, Andreae,
and Pöschl 2010); however, wide ranges of CMDs and
GSDs have been observed in plumes of various ages
and transport histories (Laing, Jaffe, and Hee 2016).
PM from flaming emissions are mostly larger than
those from smoldering (Janhäll, Andreae, and Pöschl
2010), but mixed results have been seen in the lab from
the same fuel (Ordou and Agranovski 2019), and some
smoldering fires produce larger particles (Iinuma et al.
2007). PM (both the OC and BC fraction) from grass-
land fires tends to be smaller than PM from fires of
forests or shrublands (Holder et al. 2016; Reid et al.
2005). More field measurements of size and composi-
tion of PM emissions from many types of fires and
combustion conditions are needed.

Among the organic fraction, tar balls are another
distinct particle type that as yet can be conclusively
identified only through electron microscopy (Pósfai
et al. 2004, 2003). Tar balls are characterized as highly

viscous spherical particles (100–300 nm diameter) or
aggregates thereof (Girotto et al. 2018; Hand et al. 2005;
Pósfai et al. 2004), stable at high temperatures (retain-
ing 70% of tar ball mass at 600 C; Adachi et al. 2019),
and composed of amorphous carbon, oxygen, often
sulfur, and trace levels of potassium (Adachi et al.
2019). How tar balls are formed is still uncertain
(Hand et al. 2005; Sedlacek et al. 2018; Toth et al.
2018), but they appear to increase in number fraction
with plume age (Adachi et al. 2019; Sedlacek et al.
2018). Tar ball optical properties and how they relate
to other types of organic carbon have yet to be resolved.

Much recent research on smoke PM optical proper-
ties has focused on absorption due to the considerable
uncertainty in the climate impacts of smoke from wild-
land fires (Jacobson 2014). Optical properties also affect
rates of photolysis (Baylon et al. 2018; Mok et al. 2016)
and photosynthesis (Hemes, Verfaillie, and Baldocchi
2020), and they are a critical factor in remote sensing of
PM (Li et al. 2019b) and source identification
(Schmeisser et al. 2017). Both the BC fraction and the
organic fraction contribute to the absorption. BC
absorbs across a broad wavelength range, with a weak
variation characterized by an angstrom absorption
exponent (AAE) of 1 (Bond and Bergstrom 2006).
The angstrom absorption exponent is calculated by:

AAE ¼ � ln absðλ1Þ= ln absðλ2Þ
λ1=λ2

(4)

Where abs is the absorption and λ is the wavelength.
Some portion of the organic fraction has strong absorp-
tion in the UV wavelengths, with AAEs typically >2.
This fraction is referred to as brown carbon (BrC)
(Andreae and Gelencsér 2006) and is composed of
organic compounds such as polycyclic aromatics,
nitroaromatics, and humic-like substances (Laskin,
Laskin, and Nizkorodov 2015). But rather than being
two distinct PM types (BC and BrC), PM may exhibit
a continuum of compositions, volatilities, and optical
properties from BC to BrC (Adler et al. 2019; Saleh,
Cheng, and Atwi 2018).

Emissions from fires in the wildland-urban interface
(WUI)

In the wildland-urban interface (WUI), structures,
vehicles, and the substances contained within them
also burn and contribute to emissions. These “fuels”
have very different chemical compositions from natural
fuels (soils, grasses, shrubs, and trees) and likely very
different emissions. A number of studies have mea-
sured emissions from structure and vehicle fires (e.g.,
Fabian et al. 2014, 2010; Fent et al. 2018; Lecocq et al.
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2014). These have shown a wide array of harmful
emissions, including irritants (HCl, HF, NO2, HS,
SO2), asphyxiants (CO, HCN), sensitizers
(Isocyanates), carcinogens (formaldehyde, benzene,
PAHs, dioxins), and toxic metals (Cd, Cr, Pb). To our
knowledge, no EI or model exists that includes emis-
sions from structure or vehicle fires as part of the
emissions from wildland fires. Several studies have
reported EFs from building materials and furnishings,
but few have measured emissions from full-scale fires
(Blomqvist, Rosell, and Simonson 2004; Gann et al.
2010; Lönnermark and Blomqvist 2006; Wichmann,
Lorenz, and Bahadir 1995). Most studies have mea-
sured emissions from small pieces of these materials
combusted in a cone calorimeter or tube furnace. Of
the studies with EFs, none provides a complete assess-
ment of all such emissions that may impact human
health or the environment, for example, inorganic
gases (Blomqvist, Rosell, and Simonson 2004; Gann
et al. 2010; Kozlowski, Wesolek, and Wladyka-
Przybylak 1999; Lönnermark and Blomqvist 2006;
Lönnermark et al. 1996; Persson and Simonson 1998;
Stec and Hull 2011), PM (Blomqvist, Rosell, and
Simonson 2004; Elomaa and Saharinen 1991; Fabian
et al. 2010; Lemieux and Ryan 1993; Lönnermark and
Blomqvist 2006; Reisen, Bhujel, and Leonard 2014;
Valavanidis et al. 2008), VOCs (Blomqvist, Rosell, and
Simonson 2004; Durlak et al. 1998; Font et al. 2003;
Lemieux and Ryan 1993; Lönnermark and Blomqvist
2006; Lönnermark et al. 1996; Moltó, Font, and Conesa
2006; Reisen, Bhujel, and Leonard 2014), PAHs
(Blomqvist et al. 2014; Blomqvist, Persson, and
Simonson 2007; Blomqvist, Rosell, and Simonson
2004; Durlak et al. 1998; Elomaa and Saharinen 1991;
Font et al. 2003; Lemieux and Ryan 1993; Lönnermark
and Blomqvist 2006; Moltó, Font, and Conesa 2006;
Reisen, Bhujel, and Leonard 2014; Valavanidis et al.
2008), dioxins (Blomqvist, Rosell, and Simonson 2004;
Lönnermark and Blomqvist 2006), and toxic metals
(Lemieux and Ryan 1993; Lönnermark and Blomqvist
2006; Valavanidis et al. 2008). Thus, extrapolation
across studies is necessary to obtain a complete picture
of emissions, which is needed, for example, to under-
stand health impacts or to model fire chemistry for
exceptional event demonstrations.

Table 3 compares the average EFs from the combus-
tion of non-biomass WUI fuels (structures, vehicles,
furnishings, and structural materials) and biomass
fuels, derived from the SERA database. The EFs from
the primary combustion products – CO2, CO, and
NOx – are similar for WUI and natural fuels.
However, most WUI VOC EFs were far greater than
those from natural fuels, with WUI/natural ratios

ranging from 4 (propene) to over 2,000 (Diebenzo(a,
h)anthracene). These EFs are highly variable, with rela-
tive standard deviations of 200–500%. In contrast, the
EFs for aldehydes (formaldehyde, acetaldehyde, and
acrolein) had much lower WUI/natural ratios (0.12–-
0.9). The large WUI/natural ratios for the most toxic
compounds suggest that fires in the WUI may present
a substantial hazard to firefighters and nearby commu-
nities, despite the far lower “fuel” consumption in the
WUI. However, estimates of emissions including struc-
tures and vehicles are still needed to accurately deter-
mine the impacts of smoke from fires in the WUI. This
variability and the uncertainty in emissions from an
individual fire propagate into uncertainties in forecast
air quality impacts.

Transport

Once emitted, gases and particles interact with, and
modify, the atmosphere in terms of physical processes
such as airflow, heating of surrounding atmosphere,
and radiative properties. Emissions associated with
flaming combustion typically get injected higher into
the atmosphere than emissions associated with smol-
dering combustion. On a micro scale these processes
occur individually, but on a macro scale they occur
simultaneously as a fire progresses across the landscape.
Computational fluid dynamic (CFD) systems such as
the Wildland-urban interface Fire Dynamics Simulator
(WFDS) (Mell et al. 2007, 2009; Mueller, Mell, and
Simeoni 2014) and FIRETEC (Linn et al. 2002, 2005)
explicitly simulate these physical processes, with a focus
on simulating the detailed combustion and propagation
of the fire.

During combustion, energy is released in the form of
radiation and latent and sensible heat. Radiant heat is
transferred through the atmosphere and is largely
responsible for the preheating of fuels. Sensible heat,
in the form of conduction and convention, heats the
surrounding atmosphere. Latent heat from the conden-
sation of water vapor in the plume releases additional
energy. The combination of these processes is respon-
sible for lofting fire emissions vertically into the
atmosphere.

As the emissions are injected, the plume entrains
cooler air and mixes with the surrounding environ-
ment. In one of few studies that provide insight into
the entrainment structures in a wildfire convective
plume, Lareau and Clements (2017) used lidar to mea-
sure how this entrainment dilutes and expands the
plume as it rises. Fires are often composed of multiple
plume updrafts (Achtemeier et al. 2011), which have
smaller ascending velocities and are more affected by
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entrainment (Liu et al. 2010) than a single plume. The
flaming front will also pull air in at its boundaries to
fuel the combustion process. These phenomena repre-
sent the coupling of the fire with the atmosphere, which
happens when the heat supplied by the fire is sufficient
to overcome the kinetic energy of the ambient flow
(Clements and Seto 2015) and results in modifications
to the wind and temperature fields. Coupled fire-
atmosphere modeling systems, such as the Weather
Research and Forecasting (WRF) WRF-SFire (2014;
Mandel, Beezley, and Kochanski 2011) and the
Coupled Atmosphere-Wildland Fire-Environment
(CAWFE) (Clark, Coen, and Latham 2004; Coen et al.
2013), compute fire spread using the Rothermel algo-
rithm (Andrews 2018; Rothermel 1972), which is less
computationally intense than the CFD approaches of
WFDS and FIRETEC.

The plume injection height is controlled by the
thermodynamic stability of the atmosphere and surface
heat flux released from the fire (Freitas et al. 2007). The
initial maximum height that the smoke plume reaches
is referred to as the plume rise. Many methods have
been developed to estimate this parameter, ranging
from the traditional empirical approach by Briggs
(1975), originally developed for power plant stack emis-
sions, to 1-D models that include cloud microphysics
and other boundary layer conditions (Freitas et al.
2007). Some methods rely upon radiant heat measured
from space by remote-sensing instruments (Sofiev,
Ermakova, and Vankevich 2012). Both ground-based
and remote sensor-based studies have been conducted
to evaluate various plume injection height schemes.
Cunningham and Goodrick (2013) and Lareau and
Clements (2017) found that their single plume mea-
surement cases compared well to those of Briggs
(1975). Raffuse et al. (2012), using data from the Multi-
angle Imaging SpectroRadiometer (MISR) onboard the
Terra satellite, found that the Briggs scheme was sys-
tematically low for smaller fires and high for large fires.
Val Martin et al. (2012) evaluated parameterizations
developed by Freitas et al. (2007) with MISR data and
found that this approach tended to underestimate
plume rise and did not perform well at identifying
when plumes were injected into the free troposphere.
Paugam et al. (2016) provide a comprehensive review
of plume rise performance in chemical transport mod-
els along with the atmospheric and fire parameters
governing plume rise.

An important corollary to plume injection height is
the concept of how gases and aerosols are initially
injected in the vertical, which is critical to atmospheric
modeling of smoke plumes. The assumption is that
emissions are distributed equally from either the

ground to plume top or from an assumed plume bot-
tom to the plume top. Mallia et al. (2018) found that
model results were improved when fire emissions were
distributed vertically below the plume top in a Gaussian
manner. Systems such as the BlueSky Smoke Modeling
Framework (Larkin et al. 2009) attempt to address this
vertical allocation question by distributing smoldering
emissions near the surface and flaming emissions aloft.
Lidar data from both satellites and ground-based mea-
surements can help track the vertical distribution of
emissions (Banta et al. 1992; Clements et al. 2018;
Lareau and Clements 2017). For example, Lareau and
Clements (2017), in their measure of the turbulent
structure of a plume using ground-based lidar, found
a Gaussian distribution of backscatter (and thus smoke)
in their single-plume study. Remotely sensed lidar data
from the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) instrument gives vertical cross-
sections of the atmosphere, and, if the swath occurs
over a fire emission point, the data can inform the
vertical injection distribution. The data also illustrate
the stratification of smoke plumes – how layers may
travel at different heights in the atmosphere, remain
aloft, or mix at the surface. From downwind swath
data, back-trajectory analyses using the methods of
Soja et al. (2012) give information about the initial
vertical distribution of emissions as well as contribu-
tions from multiple fires, if present.

Studies using MISR data found that emissions from
most fires (>80%) are injected into the boundary layer,
and the remaining smaller percentage of fires inject
above the boundary layer (Paugam et al. 2016; Sofiev,
Ermakova, and Vankevich 2012; Sofiev et al. 2009; Val
Martin, Kahn, and Tosca 2018). Emissions emitted near
the surface are subject to local and regional flow
regimes (e.g., up-valley and down-valley drainage
flows in complex terrain). Emissions injected above
the atmospheric boundary layer, although fewer, have
longer atmospheric lifetimes and are more available for
long-range transport.

A special case where emissions are transported very
high into the atmosphere is when large buoyant plumes
develop cumulus clouds, releasing latent heat and
further enhancing vertical transport. These pyrocumu-
lus (pyroCu) clouds can, in rare cases, develop into
thunderstorms, known as pyrocumulonimbus
(pyroCb). PyroCb activity and buoyant plumes can
inject gases and aerosols into the upper troposphere
or lower stratosphere, where they can persist for
weeks and months; these emissions can then be trans-
ported on a hemispheric scale (Fromm and Servranckx
2003; Fromm et al. 2006; Peterson et al. 2017; Sofiev,
Ermakova, and Vankevich 2012). The exact
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mechanisms of pyroCb formation are still an active
area of debate (Peterson et al. 2017) and research
(Lareau and Clements 2016). Although pyroCb are
a special subset of smoke plumes, the scope and scale
of their emissions and the height of injection have been
likened to that of a volcano, and a single event can
reduce surface temperatures on a hemispheric scale.
Fromm et al. (2010) suggest that some stratospheric
aerosol layers previously assumed to be from volcanic
eruptions were, in fact, due to pyroCb events.

Once emissions reach a point of neutral buoyancy,
transport occurs similar to other atmospheric constitu-
ents. Diurnal processes, such as surface heating and
cooling, along with regional winds, fronts, and topogra-
phy, control smoke concentrations near the surface and
within the mixed layer. Daytime heating of the surface
creates an unstable boundary layer that can dilute smoke
concentrations or entrain smoke aloft. At higher wind
speeds, the atmosphere becomes more stable, which
reduces vertical mixing. Smoke emitted in these condi-
tions can be stratified, tending to transport within the
layer it was emitted. As night approaches, the ground
cools faster than the atmosphere, creating a near-surface
stable layer. Smoke emitted at night near the ground will
often stay near the ground. Smoke emitted earlier in
the day will remain above in the middle portion of the
nocturnal atmospheric boundary layer. In complex ter-
rain such as mountain valleys, daytime heating will
create up-valley winds, and then at night, surface cooling
will cause the winds to shift and flow down valley
(Whiteman 2000). Population centers are often located
within valleys, and these nighttime down-valley flows
can transport smoke into town, resulting in high con-
centrations, especially if fuels up valley continue to emit
through the night (Miller et al. 2019). In the humid
southeastern U.S., smoldering fire emissions along with
the higher atmospheric water content (both emitted
from the fire and the surrounding atmosphere) can
form a thick fog with near-zero visibility conditions
(Achtemeier 2006; Bartolome et al. 2019). This smoke
can travel along fine-scale topographical depressions
(Achtemeier 2005) and has been attributed to cata-
strophic vehicle collisions (Bartolome et al. 2019).

Smoke and the physical atmosphere are highly
coupled. Smoke modifies the radiative properties of
the atmosphere by blocking the sun from reaching the
surface and absorbing heat and re-emitting that heat to
the surrounding atmosphere. This increases atmo-
spheric stability within the mixed layer, makes tem-
peratures cooler near the surface, and reduces both
the height of the mixed layer and mixing of smoke
through the layer; it may reduce wind speeds as well.
In theory, these processes will increase surface

concentrations, although there is currently no experi-
mental evidence of this. Absorption of solar radiation
by the smoke will also delay the breakup of the night-
time stable layer, maintaining the subsidence inversion
much later into the day.

Vant-Hull et al. (2005), Markowicz, Lisok, and Xian
(2017), and McKendry et al. (2019) discussed these feed-
back mechanisms for North American cases. These phe-
nomena have large implications for concentrations,
transportation safety, and visibility. For example, during
2017 in the Willamette Valley in Oregon, stagnant air
maintained high PM concentrations from nearby fires as
lower wind speeds reduced smoke mixing and transport.
Other unique examples are smoke-induced density cur-
rents that form from differential solar heating between
smoke-filled and smoke-free portions of the atmo-
spheric boundary layer. These density currents are rela-
tively common near large wildfires. Lareau and
Clements (2015) conducted the first measurements of
these density currents, which can spread smoke counter
to the ambient wind and over large distances (∼30 km),
thereby contributing to rapid wind shifts, reductions in
visibility, and delayed inversion breakup.

To properly account for these phenomena, the trans-
port model needs to account for radiative effects on the
meteorology due to the presence of smoke. Some exam-
ples of systems that do this are GEOS-Chem (Bey et al.
2001), WRF-Chem (Grell et al. 2005), and WRF-
Community Multi-scale Air Quality (WRF-CMAQ)
(Wong et al. 2012). Two operational implementations
of these systems are the High Resolution Rapid Refresh
(HRRR) forecasting system and recent work modifying
the Northwest Regional Modeling Consortium WRF
forecast system (Vaughan et al. 2004) to ingest GEOS-
5 AOD to modify surface temperatures.

Special cases of transport that have large impacts on
fire behavior and downwind air quality are Santa Ana
winds (Kolden and Abatzoglou 2018; Langford, Pierce,
and Schultz 2015; Mensing, Michaelsen, and Byrne
1999; Westerling et al. 2004), Diablo winds (Mass and
Ovens 2019), and Sundowner winds (Blier 1998). Santa
Ana winds are strong northeasterly winds with low
relative humidity that occur in Southern California.
Diablo winds (Smith, Hatchett, and Kaplan 2018) are
north winds occurring in northern California, typically
overnight, characterized by high wind speeds and low
relative humidity but not necessarily higher tempera-
tures. These winds promoted the rapid spread of the
2017 northern California Wine Country fires (Mass
and Ovens 2019). Santa Ana and Diablo conditions
set up when high pressure over the intermountain
west produces an offshore pressure gradient (Mass
and Ovens 2019).
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Sundowner winds are another case of strong down-
slope flows that enhance fire behavior. They occur in
the Santa Ynez mountains near Santa Barbara, CA,
typically in the late spring, with onsets in the late after-
noon to early evening, giving them their name (Blier
1998; Hatchett et al. 2018). They are characterized by
high wind gusts and low relative humidity, and one
notable result of these conditions is that they promote
fire growth that is different from typical or expected
fire activity. Wildfire activity is assumed to be greatest
mid-afternoon when temperatures peak, solar radiation
is maximized, and atmospheric instability is greatest.
This translates to the rule of thumb that the greatest fire
emissions occur mid-afternoon. Sundowner wind
transport processes show this is not always the case:
Sundowner winds promote increased fire activity and
emissions in the evening hours. Although Sundowners
might seem regionally specific, they have been respon-
sible for some of the biggest wildfire losses in terms of
lives and property in recent history, with widespread
smoke impacts affecting millions of people (e.g., Mass
and Ovens 2019). Mass and Ovens also point out that
high-resolution meteorological forecasting can help
identify high fire risk conditions in these situations.
The GOES-16 satellite data, which includes fire detec-
tion data every 5 minutes for the continental U.S., can
show fire progression for large wildfires; for the 2017
and 2018 northern California wildfires, they demon-
strated that typical diurnal fire patterns do not hold.
These data can be applied to create more accurate fire
diurnal profiles.

Chemical processing of smoke

Once released, the gases and particulate matter in
smoke evolve through a multitude of complex chemical
processes. A key challenge for understanding this pro-
cessing is the large variability in emissions. No two fires
are the same, and thus the chemical evolution is also
different.

Changes in aerosol mass and composition during
smoke aging

Once released, organic aerosol can lose mass, through
evaporation or volatilization, or gain mass, through
formation of secondary organic aerosol (SOA). SOA
formation occurs due to oxidation of VOCs.
Oxidation adds organic functional groups, which low-
ers the vapor pressure of the compounds, or it can
cleave C-C bonds, which can increase the vapor pres-
sure of the existing aerosol compounds (Kroll et al.
2009). SOA production from biomass burning aerosols

can also occur in the aqueous phase, when aerosols
deliquesce or are associated with fog, although a clear
mechanistic understanding is presently lacking
(Gilardoni et al. 2016). As the aerosol moves with
a smoke plume, we can monitor the enhancement
ratio (ER) as ΔX/ΔCO to identify physical or chemical
production or loss of components (e.g., ΔX). CO is
typically used in the denominator of this ratio, because
CO concentrations are strongly enhanced in the smoke
plume compared to background concentrations, and
CO undergoes only slow loss by reaction with OH
(the CO lifetime with respect to loss is ~2 weeks).
Thus, CO can act as a relatively inert indicator for
dilution. For plumes with no production or loss of
component X, dilution affects both compounds simi-
larly, and the enhancement ratio remains constant.

However, aerosol/CO ratios are highly variable.
Some observations suggest aerosol production and
others suggest aerosol loss (e.g., Briggs et al. 2016).
Hodshire et al. (2019a) summarized an extensive data-
set of field and lab observations on SOA enhancements.
The field observations suggest, on average, that aerosol
loss appears to be largely balanced by SOA production.
In contrast, the laboratory data suggest that SOA pro-
duction dominates (increasing the aerosol/CO ratio
over time). May et al. (2014) discussed the lab/field
discrepancies and attributed some of these differences
to dilution, which can increase the organic aerosol
evaporation.

Chemical changes in the smoke aerosol can also give
information on its processing and evolution. A key tool
for this is high resolution aerosol mass spectrometry
(HR-AMS), which can resolve molecular fragments
from the biomass burning aerosol (Zhang et al. 2018).
The molecular fragments at a mass to charge (m/z)
ratio of 60 are thought to be associated with leuvoglu-
cosan, a tracer of biomass smoke, along with other
similar compounds. The peak at an m/z of 44 is due
to the “C-O-O” molecular fragment. The ratio of the
peak areas at m/z values of 60 and 44 to the cumulative
peak areas in the mass spectra are termed F60 and F44,
respectively. Aiken, DeCarlo, and Jimenez (2007)
showed that F44 is correlated with the O/C ratio of
the aerosol. Observations indicate that, with aging of
biomass burning aerosol, F60 tends to decrease while
F44 increases, and these go along with changes in the
O/C ratio (Garofalo et al. 2019; Zhou et al. 2017). Fresh
smoke aerosols have O/C ratios of ~0.35, whereas aged,
highly oxidized smoke aerosols have O/C ratios greater
than 1 (Zhou et al. 2017). Liu et al. (2016) also found
rapid changes in the O/C ratios for prescribed burns,
with values increasing from around 0.4 to 0.6 in less
than an hour. So, even if the mass of smoke PM shows
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relatively little change during aging, the composition
moves toward a more oxidized aerosol. This more
oxidized aerosol may have greater health impacts
(Tuet et al. 2017; Wong et al. 2019). The simultaneous
loss and production of biomass PM can coexist due to
the combined processes of primary aerosol evaporation
and SOA production (Hodshire et al. 2019b).

A number of studies have identified organic carbon
from biomass burning as a dominant component of
summertime PM2.5 in rural areas of the western U.S.,
and this can explain the large interannual variability in
PM2.5 concentrations (Holden et al. 2011; Jaffe et al.
2008; Schichtel et al. 2017; Spracklen et al. 2007). In the
southeastern and midwestern U.S., fires make
a significant, albeit smaller, contribution to particulate
organic carbon. Here, the seasonality is slightly differ-
ent, with spring the highest period and prescribed fires
the dominant fire type (Nowell et al. 2018; Schichtel
et al. 2017; Zeng et al. 2008).

Ozone production in smoke plumes and urban
areas

Ozone (O3) is a secondary pollutant that is formed
from the oxidation of VOCs in the presence of nitrogen
oxides and UV light. Since fires emit NOx and VOCs,
in variable amounts, O3 may be formed in a smoke
plume, but this will depend on emissions, temperature,
UV light, and many complex interactions within the
plume. The many factors involved give rise to large
variations in the O3 production found in smoke
plumes. Under warmer conditions, O3 can form in
a matter of hours (Akagi et al. 2013; Baylon et al.
2015; Hobbs 2003), whereas in cooler environments,
O3 production takes longer and may not be apparent
for several days (e.g., Alvarado et al. 2010). Rapid O3

production is likely driven by several sources of oxi-
dants, including OH from HONO (nitrous acid) photo-
lysis. HONO can be either emitted directly (Burling
et al. 2010; Veres et al. 2010) or produced from hetero-
geneous reactions (Alvarado and Prinn 2009; Ye et al.
2017). One important control on O3 production is the
amount of NOx emitted and subsequently removed by
chemistry (Mauzerall et al. 1998). NOx in boreal smoke
plumes is rapidly sequestered as peroxyacetyl nitrate
(PAN) (Alvarado et al. 2010; Jacob et al. 1992).
A similar result was found for smoke plumes at the
Mt. Bachelor Observatory in central Oregon, at 2.8 km
above sea level (Baylon et al. 2015; Briggs et al. 2016).
In a review of more than 100 studies, Jaffe and Wigder
(2012) found that O3 is usually enhanced downwind
from fire plumes, and the production increases with
plume age. Tropical and sub-tropical fires generally

make greater amounts of O3 and make it faster than
do temperate/boreal fires. This arises because tropical
and sub-tropical fires emit more NOx per unit of fuel,
and the higher temperatures discourage PAN forma-
tion. Nonetheless, PAN is only a temporary reservoir;
subsequent thermal decomposition will regenerate the
original NOx back and distribute O3 production further
downwind.

When a smoke plume mixes into an urban area, it
will mix in all the components of the plume, but it will
also change the local photochemical environment.
Thus, urban O3 from smoke could be due to upwind
O3 production or through new O3 production in the
urban environment, since optimum O3 production
occurs at a VOC/NOx molar ratio of around 8 (Qian
et al. 2019). Most urban areas are near this or have
lower ratios (e.g., if NOx rich). Fire emissions typically
have high VOC/NOx molar ratios (e.g., ~10-30) (Akagi
et al. 2011; Andreae 2019), so when smoke mixes into
an urban area, it can move the region closer to this
optimum O3 production regime. There are large varia-
tions in this behavior by region, fire emissions, meteor-
ology, and other factors. Buysse et al. (2019) showed
that enhanced O3 in urban areas (due to wildland fires)
is most pronounced at PM2.5 concentrations below
about 60 ug/m3. At higher PM2.5 concentrations, O3

levels appear to be suppressed, due either to reduced
photolysis rates (Alvarado et al. 2015) or to heteroge-
neous chemistry on smoke particles (e.g., Konovalov
et al. 2012). High PM2.5 could also indicate insufficient
reaction time. Photolysis can be complex, because there
can be multiple scattering influences, and photolysis
rates will depend on the location within the plume
(Alvarado et al. 2015). At high smoke levels, photolysis
will be diminished, but at moderate smoke levels and
with high scattering amounts, photolysis may not be
significantly reduced inside a smoke plume (Baylon
et al. 2018).

Multiple approaches have been used to estimate O3

production in smoke plumes. Many studies have com-
pared concentrations in and outside a plume. Lindaas
et al. (2017) documented enhancements in O3 of
around 15 ppb in Colorado associated with transported
smoke plumes. Liu et al. (2016) found that O3 can be
produced downwind of southeastern U.S. agricultural
fires. Significant impacts on surface O3 via interconti-
nental transport wildfire emissions can also occur, for
example, from Siberian smoke reaching the western
U.S. (Jaffe et al. 2004; Teakles et al. 2017) or Alaskan
smoke reaching the north Atlantic (Real et al. 2007).
Canadian wildfires have been found to enhance O3 in
the southeastern U.S. (McKeen et al. 2002), Maryland
(Dreessen, Sullivan, and Delgado 2016), and New
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England (DeBell et al. 2004). Using a statistical
approach, Gong et al. (2017) found that smoke raises
the O3 MDA8 by 3–6 ppb on average, with a maximum
enhancement of up to 40 ppb for 6 cities in the western
U.S. Using a similar approach, Gao and Jaffe (2020)
found an average enhancement in the MDA8 of 7–10
ppb for 5 cities in the Pacific Northwest, with
a maximum enhancement of 50 ppb during the large
2017 smoke events. The western U.S. fires in 2017 and
2018 led to the highest MDA8 values seen in the last
few decades in Enumclaw, WA, Portland, OR, and
Sacramento, CA. During an especially smoky summer
in Boise, ID, smoke increased the O3 MDA8 by an
average of ~15 ppb (McClure and Jaffe 2018). The
smoke also increased the number of days over the
8-hour 70 ppb air quality threshold.

While O3 production is driven by UV photolysis in
the daytime, chemical processing can still occur at
night, although much less is known about this. From
other (non-smoke) studies, we know that NO2 and O3

will react to form the NO3 radical, which can oxidize
many organic species and further react to form N2O5

(nitrogen pentoxide). Ahern et al. (2018) found that
nighttime processing in smoke generates both N2O5

and ClNO2 (nitryl chloride), both of which regenerate
NO2 through photolysis; ClNO2 can also generate reac-
tive Cl radicals, which are important oxidants in some
circumstances. Finewax, de Gouw, and Ziemann (2018)
and Decker et al. (2019) demonstrated several night-
time reactions, mostly through the NO3 radical, which
can significantly modify the overall reactivity of aero-
sols, VOCs, and O3. At present, the full suite of night-
time chemistry is not understood and therefore not well
represented in models.

An important question is whether the most common
regulatory measurement of O3, made using UV FEM
monitors, exhibits interferences during major smoke
events. This was suggested by laboratory studies on
possible interferences in the UV method (Payton
2007). However, Gao and Jaffe (2017) compared the
UV method with the FEM approach for O3 (nitric
oxide chemiluminescence) and found that these gave
nearly identical results in smoke plumes with up to
134 µg/m3 of PM2.5 and O3 concentrations up to
83 ppb.

Smoke modeling

Accurate modeling of primary emissions and secondary
pollutants is desirable to understand the chemical pro-
cessing and the impacts on human health (Brown et al.
2014). Smoke forecasting systems have been built to
predict air quality impacts. These include both

statistically based systems that use observations, and
historical air quality relationships and dynamic models
that simulate the underlying physics and chemistry of
the fire, plume, and atmosphere. Forecasts usually pro-
ject forward 1 to 3 days into the future, similar to short-
term weather forecasts, with a few systems extending
further out. Inputs to such systems are generally satel-
lite fire detections and predictions from weather fore-
cast models.

Statistically based forecast models that predict daily
average PM concentrations are run daily by the British
Columbia Center for Disease Control for western
Canada (Yao and Henderson 2014) and the USFS
Interagency Wildland Fire Air Quality Response
Program (IWFAQRP) for the western U.S. (Marsha
and Larkin 2019). These models rely on empirically
derived relationships between ground monitoring data
(typically PM2.5) and other measures of nearby fires
(satellite fire detections) and smoke (satellite-derived
smoke plume extents and AOD). Statistical models
generally show good performance for locations with
an existing history of observations on which to train
the statistical relationship. For example, Lightstone,
Moshary, and Gross (2017) showed that a trained
neural network outperformed a 3-D chemical transport
model (CTM) for the state of New York and responded
more rapidly, especially during transient events such as
wildfires.

Dynamical modeling systems require simulating
a chain of logic that implicitly or explicitly identifies
where the fires are, what the available fuels are, how
much of these fuels will burn, how high up in the
atmosphere the plume will rise, and then where the
plume will be transported (Goodrick et al. 2013;
Strand et al. 2018). In certain cases, such as emissions
estimates calculated directly from fire radiative power,
several of these steps are combined into a single para-
metric relationship. Some systems focus solely on the
smoke plume, using a particle or puff modeling system
such as HYSPLIT (Stein et al. 2015). Some also include
the chemical transformation of the plume as it reacts
with other pollutants in the atmosphere, typically by
the use of the CMAQ (Byun and Schere 2006) or the
WRF-Chem (Grell et al. 2005) or WRF-CMAQ (Wong
et al. 2012) models. WRF-Chem and WRF-CMAQ can
be run in a coupled mode that includes feedbacks
between the meteorology and atmospheric chemistry,
including explicitly treating smoke’s effect on the radia-
tive process that can influence the overall atmospheric
structure (Grell et al. 2011). Other models, such as the
WRF-SFire (Mandel et al. 2014), resolve the coupling
between the meteorology and the fire and the develop-
ment of the close-in buoyant smoke plume, but these
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models are usually run at fine scales (meters to tens of
meters) in limited domains that preclude modeling of
the full smoke plume for air quality purposes. However,
fully coupled atmosphere-fire-chemistry models such as
WRF-SFire-CHEM (WRFSC; Kochanski et al. 2015)
hold promise as future operational forecasting models
as computing power and model development continues
(Prichard et al. 2019a).

Over the U.S. and Canada, daily smoke forecasts are
generated by a number of agencies and universities,
with each system having different setups, strengths,
and designed uses. Official air quality forecasts are
generated by Environment Canada using the
FIREWORK system (Chen et al. 2019; Pavlovic et al.
2016), which uses a photochemical model that includes
emissions from fires and industrial sources to forecast
across a North American grid at 10-km resolution. In
the U.S., NOAA’s National Air Quality Forecast
Capability (https://www.weather.gov/sti/stimodeling_
airquality) generates operational smoke forecasts using
CMAQ on a 12-km resolution, which covers all of
North America (Lee et al. 2017; Stajner et al. 2012).
NOAA also produces an experimental High Resolution
Rapid Refresh-Smoke model (HRRRS; Grell et al.
2011), which uses WRF-Chem at a 3-km resolution
over the continental U.S.; HRRRS is updated hourly,
but treats smoke as a passive tracer. Washington State
University runs the regional AIRPACT-5 CMAQ fore-
casts at resolutions down to 1.33 km over the Pacific
Northwest, and Georgia Tech runs a CMAQ forecast
system down to a 4-km resolution for the southeastern
U.S. The USFS IWFAQRP runs over 30 smoke models
aimed at public health, transportation safety, and fire-
fighter safety, using the BlueSky Smoke Modeling
Framework (Larkin et al. 2009) and HYSPLIT or
CMAQ, at resolutions down to 1 km; these runs can
also incorporate specific incident decision scenarios.
The result is that locations across the U.S. fall within
at least three and potentially over eight different smoke
forecast model domains. Additional tools, such as
NOAA’s Air Research Laboratory HYSPLIT website
(https://www.ready.noaa.gov/HYSPLIT.php), the USFS
IWFAQRP’s BlueSky Playground web tool (https://
tools.airfire.org), and the Canadian BlueSky
Playground web tool (http://firesmoke.ca) allow for
customization of emissions and parameters before
computation of a customized trajectory and dispersion
model result, typically using the HYSPLIT model.

The large number of smoke forecasting systems
exemplify both the difficulties in developing the input
information needed and the myriad ways to process
emissions, plume rise, dispersion, transport, and chem-
istry. Higher resolutions typically result in better results

for wind forecasts in areas of complex topography (e.g.,
Mass et al. 2002), but more defined meteorology
beyond a 3-km resolution is available only for specific
regional domains. Full chemistry CTMs may provide
better PM results by including all sources (e.g., fires,
anthropogenic emissions, and natural sources) and by
including the formation of SOA and ozone. But CTMs
require substantially more computing power per mod-
eled grid cell than smoke-only models. Inclusion of
coupled mechanisms between the atmosphere and
smoke plume, or between the atmosphere and fire
plume, exacerbates the need for more computing
power. Model differences also occur due to large uncer-
tainties in fire emissions. The choice of fire information
sources is one of the largest differentiators in the overall
computation of emissions (Larkin et al. 2020; Larkin,
Raffuse, and Strand 2014), which in turn sets the overall
level of smoke within the model.

There have been relatively few analyses examining
smoke forecasting system performance for predicting
ground-level PM2.5 concentrations. A few analyses have
looked at overall performance, with mixed results, and
at specific processes that may contribute to large uncer-
tainty (Larkin et al. 2012). Herron-Thorpe et al. (2014)
reported on performance of the AIRPACT modeling
system for PM2.5 and found that it gave both over-
estimates, near fires, and underestimates further away.
These discrepancies were likely due to inadequate SOA
production in the chemistry model; errors in fire detec-
tions, assigned fire sizes and fuel loadings; and the large
uncertainty associated with the vertical distribution of
emissions. In a hindcast case study examining the
Wallow fire in Arizona and rangeland fires in South
Dakota, Baker et al. (2016) found a model overestima-
tion bias up to approximately 20 μg/m3 for PM2.5, but
performance was limited by the fire inputs and the
chemistry representation used. Zhou et al. (2018)
found that higher estimates of buoyancy heat flux pro-
duced plume rise values similar to measured plume top
data from aircraft sampling plumes from crop-residue
burning in the northwestern U.S. Yang et al. (2011),
Garcia-Menendez, Hu, and Odman (2013), and Miller
et al. (2019) found that errors in the weather forecast
data are critically important in affecting overall smoke
model performance. Small errors in geolocation of fires
and/or the vertical distribution of emissions can sig-
nificantly affect model performance (Garcia-Menendez,
Hu, and Odman 2014). Larkin et al. (2012) found that
diurnal timing (e.g., hourly allocation of emissions) was
also an important factor in determining smoke fore-
casting system performance. While all these processes
are fundamentally important to smoke system perfor-
mance, if transport processes (as simulated by the
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meteorological dataset) do not carry the smoke in the
correct direction, then smoke modeling systems may
not provide useful information, even if all other com-
ponents are estimated perfectly.

An additional challenge for modeling future air
quality is knowing how a fire will behave in the near
term. Most smoke forecast systems use a simple persis-
tence assumption for fire occurrence and growth,
assuming that fire emissions in the next few days will
be similar to the current day. Development of a reliable
fire growth model for predicting actual area burned is
still an active area of study within the fire community.

The current plume rise calculations used in smoke
forecasting models have also been identified as major
sources of uncertainty (Stein et al. 2009; Larkin et al.
2012; Raffuse et al. 2012; Val Martin et al. 2012; Zhou
et al., 2018; Liu et al. 2019). Using more resolved
modeling techniques, such as found in coupled fire-
atmosphere models, can more accurately model the
plume structure and dynamics and may lead to signifi-
cant improvements in smoke forecasting. This area,
and the need for a robust observational dataset of the
myriad of fire and atmospheric variables related to the
complex plume dynamics at work, have been identified
as a major need (Liu et al. 2019; Prichard et al. 2019b).
Despite these obstacles and limits on quantitative fore-
casts, smoke prediction models generally do well in
modeling overall plume extent and shape compared
with satellite-derived plume extents (e.g., Chen et al.
2008; Rolph et al. 2009; Strand et al. 2012), and they are
important tools for community preparedness.

Data fusion techniques combine satellite data, sur-
face observational data, and modeling outputs to pro-
duce an improved estimation of pollutant exposure and
human health impacts. These techniques capitalize on
the strengths of each tool and seek to reduce the limita-
tions associated with the individual datasets. For exam-
ple, observational data give the best available estimate
of PM2.5 at a few locations but are sparse across large
portions of a domain. Satellite AOD are regionally
coherent but do not indicate what is at the ground,
and they have issues at night or when clouds obscure
the measurement. CTMs provide 4-D output but are
based on model assumptions and inputs, which may or
may not represent reality. Data fusion methods range
from linear regression relationships between AOD and
surface PM2.5 (e.g., Engel-Cox, Hoff, and Haymet 2004;
Wang and Christopher 2003) to statistical algorithms
that incorporate meteorological data (e.g., Gupta and
Christopher 2009), land use information (e.g., Hu et al.
2014), and CTM outputs (e.g., Liu et al. 2004; van
Donkelaar et al. 2010). Several datasets of surface
PM2.5 concentrations from fusion methods are publicly

available (Diao et al. 2019). Recently, data fusion tech-
niques have been specifically applied to improve esti-
mates of wildfire smoke impacts (Gan et al. 2017;
Lassman et al. 2017; Reid et al. 2015; Yuchi et al.
2016; Zou et al. 2019). These approaches used
a combination of surface PM2.5 observations, satellite
AOD, meteorological and land use data, and CTM
outputs. Yuchi et al. (2016) used forecast model output
from the Canadian FireWork and BlueSky systems,
while the other wildfire data fusion studies used retro-
spective CTM simulations.

Chemical modeling: Chemical transport models,
Lagrangian plume models, and statistical modeling

The discussion above focused on modeling the emis-
sions and transport of smoke. In this section, we focus
on various strategies used to model and understand the
chemical interactions during smoke transport.

Multiple approaches have been used to model che-
mical interactions in smoke plumes: gridded CTMs
(described above), Lagrangian plume (or box) models,
and statistical methods. Each has some advantages but
also presents a unique set of challenges. CTMs charac-
terize the chemical environment in three dimensions
over time. Modeling O3 and SOA production in a CTM
first depends on accurately knowing the flux, timing,
and location of the primary emissions (e.g., PM, NOx,
HONO, CO, VOCs). Modeling the resulting concentra-
tions requires spatial and temporal knowledge of the
injection heights, 3-D wind fields, and other meteoro-
logical parameters (e.g., temperature and RH; Cai et al.
2016; Garcia-Menendez, Hu, and Odman 2013, 2014;
Herron-Thorpe et al. 2014; Kochanski et al. 2015;
Koplitz et al. 2018; Pfister, Wiedinmyer, and Emmons
2008). For secondary PM and O3, the model must also
include a detailed chemical mechanism and UV radia-
tion fields.

A key component in CTMs is the grid resolution.
Smaller grid size means greater spatial resolution, but
this also increases the computational demands due to
the increased number of grid cells horizontally. For
a primary pollutant, even if the spatial distribution is
not well described, the integrated flux downstream can
still reflect the emission flux, assuming no loss or pro-
duction; thus, we expect that model calculations of
column-integrated quantities will be better than point
comparisons. But this does not hold for secondary
species, especially O3 and possibly SOA. Grid size is
especially important for wildfire O3 production, since
this is known to be non-linear with NOx and VOCs
(Wu et al. 2009). Here, secondary production is non-
linearly related to the concentrations.
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Accurate modeling of O3 using CTMs is particularly
challenging. Wildland fires are known to have large
emissions of acetaldehyde, a PAN precursor, and this
results in rapid sequestration of NOx. The degree to
which a model captures this process will depend criti-
cally on its spatial resolution and, of course, the accu-
racy of its emissions. Models that over-predict the NOx
emissions and/or under-predict acetaldehyde will prob-
ably over-predict O3 close to the fires, and this is
a common pattern seen in CTM predictions of O3

production from fires (e.g., Baker et al. 2016; Jaffe
et al. 2013; Zhang et al. 2014).

Other important nitrogen species are HONO and
NH3. Direct fire emissions of HONO (e.g., Burling
et al. 2010; Veres et al. 2010) will be a source of OH
radicals, through daytime photolysis, and this provides
an early-morning oxidant to stimulate VOC loss and
O3 production. Recent observations from the WE-CAN
experiment show that, on average, western fires’ emis-
sions of NH3 were larger than NOx (Lindaas et al.
2019). Further, some fires have large emissions of
HONO, which can contribute to rapid O3 production
(Palm et al. 2019). Both observations challenge our
current understanding of the EFs and O3 production
for western wildfires.

An additional challenge for CTMs is the large num-
ber of VOCs and oxygenated VOCs that are emitted by
wildland fires; the vast majority of these compounds are
not included in standard chemical mechanisms. For
example, it has been calculated that furans (5-carbon
aromatic compounds) are important sources of SOA
and can be responsible for 10% of the O3 production in
smoke plumes (Coggon et al. 2019), but furans are not
included in most chemical mechanisms. Given the
enormous number of VOCs identified in biomass
burning plumes – more than 500 so far (Hatch et al.
2017) – it is necessary to simplify the reaction scheme,
but at present the implications of these simplifications
are not understood. Despite the many challenges in
modeling O3 from wildland fires, one important advan-
tage of CTMs is that all sources (e.g., multiple fires,
industrial emissions) can be modeled simultaneously
for all receptor locations, and the contribution from
each source can, in theory, be teased out of the results.

To overcome the challenges of grid resolution and
accurately simulating transport, a number of studies
have successfully used box models (e.g., Wolfe et al.
2016). In this approach, a hypothetical box (or airmass)
is identified whereby detailed chemistry is simulated in
the box as it moves downwind with the prevailing wind
in a Lagrangian framework. Usually the concentrations
in the box can be initialized with observations and
dilution rates. There are several variations in this

approach, but these generally do better at simulating
O3 production compared to CTMs (e.g., Alvarado et al.
2015; Coggon et al. 2019; Mason et al. 2006; Müller
et al. 2016). One advantage of box models is that
a more complex chemical scheme can be incorporated,
since only one grid cell need be simulated. An addi-
tional advantage is that by simulating the emissions
from a single fire plume, more accurate representation
of the emissions can be incorporated, and transport is
essentially removed as an uncertainty (the box follows
the prevailing plume direction). In the future, box
models for individual plumes could be embedded in
CTMs as a means to carry out higher-resolution chem-
istry simulations, which can then pass this information
on to the larger scale CTM (Karamchandani et al.
2014).

Statistical models take a completely different
approach. These attempt to model or “predict” the O3

concentrations (hourly or 8-hour average) using
machine learning tools. A variety of meteorological
indicators are used to predict O3 concentrations (e.g.,
daily maximum temperature, vector winds, 24-hour
backward trajectories, relative humidity, 500 mb geo-
potential height). This approach uses either multiple
linear regression (e.g., Jaffe et al. 2013; Lu et al. 2016)
or Generalized Additive Models (GAMs; e.g., Camalier,
Cox, and Dolwick 2007; Gao and Jaffe 2020; Gong et al.
2017; Jaffe et al. 2018). A typical method splits the
available data into a non-smoke training dataset, an
evaluation or cross-validation dataset, and a smoke
dataset. The difference between the prediction from
the non-smoke training set and the actual observation
then gives an indication of the contribution to O3 due
to the fire emissions. In practice, these models can give
predictions for the O3 MDA8 for non-smoke days with
R2 values of between 0.5 and 0.8; they suggest that, for
urban environments, the average contribution on
smoke days to the MDA8 is 3–10 ppb (depending on
the city), with a maximum contribution in some
extreme cases of up to 50 ppb. These models have the
advantage of being simpler to apply then the CTM
approach and give statistically robust predictions that
have been used to support EPA exceptional event des-
ignations (see discussion on regulatory impacts in
Section 8). On the other hand, a statistical model does
not clearly indicate cause and effect.

Health effects of smoke

Smoke from fires is a health concern in the commu-
nities near and downwind from the source (Larsen
et al. 2018). For the continental U.S., a health burden
assessment estimated that, for 2008–2012, 3900–6300
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respiratory hospitalizations and 1700–2800 cardiovas-
cular hospitalizations could be attributed annually to
short-term smoke exposures (Fann et al. 2018). Since
2012, the U.S. has experienced smoke levels that
exceeded any previously recorded seasons, thus likely
increasing the health burden.

Smoke is composed of many harmful components,
but PM2.5 is usually considered the most important
concern for public health, and most epidemiological
and toxicological studies have focused on this pollutant.
The scientific literature on the health impact of smoke
is still limited compared to studies of exposure to gen-
eral ambient and indoor air pollution. Studies of urban
pollutants provide valuable insights into the biological
mechanisms that play a role in developing adverse
health outcomes. However, during wildfire events, con-
centrations are substantially higher and mixtures con-
tain different air pollutants. During wildfires, exposures
are typically an order of magnitude greater than in
typical ambient settings, while during prescribed burn-
ing events, exposures are closer to typical ambient
exposures. Further, there is evidence that smoke PM
is more toxic than typical urban PM (Wegesser,
Pinkerton, and Last 2009). Both short-term and long-
term exposures have been associated with health risks.

The scientific literature related to wildfire health
effects is rapidly growing. Much of the current evidence
has been synthesized in recent reviews (Adetona et al.
2016; Black et al. 2017a; Liu et al. 2015a; Reid et al.
2016a; Youssouf et al. 2014) and quantitative meta-
analyses (Borchers Arriagada et al. 2019; Fann et al.
2018). Substantially less research has been done on the
health impacts arising from prescribed burning. This is
an important gap in knowledge, because increased
burning is a key land management strategy for reducing
the risk of wildfires and maintaining ecosystem bene-
fits. By its nature of being planned, prescribed burning
may provide an opportunity to reduce the health risks
of smoke, but without fully understanding the health
impacts, these risks cannot be quantified.

Many studies have shown the relationship betweenwild-
fire smoke exposure and adverse respiratory effects. The
most consistent evidence is documented in the analysis of
administrative data, through increased respiratory-related
emergency department visits, physician visits, and hospita-
lizations (Chen, Verrall, and Tong 2006; Delfino et al. 2009;
Henderson et al. 2011; Ignotti et al. 2010; Johnston et al.
2014; Lee et al. 2009; Martin et al. 2013; Moore et al. 2006;
Morgan et al. 2010; Mott et al. 2002; Rappold et al. 2011;
Tham et al. 2009; Thelen et al. 2013; Yao, Eyamie, and
Henderson 2016). These studies are population-based
with a good representation of the affected population and
have been replicated in multiple locations.

Particularly strong evidence links smoke exposure to
exacerbations of asthma and chronic obstructive pul-
monary diseases. There is also growing evidence of
other respiratory outcomes, including acute bronchitis,
pneumonia, and upper respiratory infections several
days following exposure (Reid et al. 2016b; Tinling
et al. 2016). Gan et al. (2020) examined asthma-related
outcomes in the out-of-hospital setting and reported
increased usage of medication and visits to emergency
department, ambulatory care, and outpatient clinics.
Studies of health impacts in out-of-hospital settings are
rare, but they provide important evidence on the extent
of the health burden in the population, and they signify
that the extent of health outcomes currently documented
likely underrepresents the total health burden.

Cardiovascular health

Outcomes related to the circulatory and cardiovascular
system are of significant concern during smoke episodes
because of their known causal link with PM2.5 exposure. In
the presence of environmental irritants such as wildfire
smoke, existing circulatory diseases can more easily trigger
ischemic events such as heart attacks and stroke, worsening
heart failure, or abnormal heart rhythms. These conditions
are serious health events that lead to emergency department
visits, hospital admissions, and even death. Early systematic
reviews called the evidence of cardiovascular effects mixed
or inconsistent, but this evidence has been rapidly increas-
ing in recent years. For example, all 10 studies reviewed for
evidence in all-cause cardiovascular outcomes in Reid et al.
(2016a) found no statistically significant changes in risk;
however, when the associations were examined by specific
cardiovascular outcomes, approximately half of these stu-
dies reported an increased risk of congestive heart failure,
ischemic heart disease, hypertension, and/or acute myocar-
dial infraction, and two-thirds reported an increased risk of
cardiac arrest and apnea. Additional evidence for all-cause
and cause-specific cardiovascular outcomes was reported
byWettstein et al. (2018),DeFlorio-Barker et al. (2019), and
Yao et al. (2019). This growing body of evidence could be
attributed to the use of more comprehensive exposure
metrics (e.g., air quality chemical transport models, satellite
data, dispersion models, data fusion) and the increasing
ability to examine cause-specific outcomes from adminis-
trative databases (e.g., myocardial infraction, congestive
heart failure).

Risk of mortality from smoke exposure

Studies on short-term smoke exposures have consis-
tently found a positive association for all-cause mortal-
ity and, to lesser extent, a positive association with
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cardiovascular and respiratory causes (Liu et al. 2015a;
Reid et al. 2016a; Youssouf et al. 2014). The strongest
evidence is found in time-series and multi-city studies
whose results have been replicated in locations around
the world, including Australia (Johnston et al. 2011;
Morgan et al. 2010), Europe (Analitis, Georgiadis, and
Katsouyanni 2012; Faustini et al. 2015; Kollanus et al.
2016; Linares et al. 2018, 2015), Canada (Yao et al.
2019), and the U.S. (Doubleday et al. 2020).

Evidence for association with mortality due to
respiratory and cardiovascular causes is less consistent
than for all-cause mortality. Among the studies that
examined all-cause, respiratory, and cardiovascular
effects on mortality (Analitis, Georgiadis, and
Katsouyanni 2012; Faustini et al. 2015; Johnston et al.
2011; Kollanus et al. 2016; Linares et al. 2018; Morgan
et al. 2010), only one study (Analitis, Georgiadis, and
Katsouyanni 2012 found positive associations with both
causes). Among the other five studies, none found
associations with respiratory causes of mortality, and
three reported significant associations with cardiovas-
cular causes (Faustini et al. 2015; Johnston et al. 2011;
Kollanus et al. 2016). Kollanus et al. (2016) found
evidence for the effects of long-range transport of
smoke plumes on daily mortality in the city of
Helsinki over a 10-year period. In another long-term
study of daily mortality rates, Doubleday et al. (2020)
reported significant changes in risk for all-cause mor-
tality and respiratory mortality over a 12-year period in
the state of Washington.

Other health outcomes and exposures

The acute effects of long-term exposure to smoke, as
well as the chronic effects of both short- and long-term
exposures, have not been characterized, even though
considerable evidence exists on ambient and indoor
air pollution. Chronic effects such as birth outcomes,
neurological effects, diabetes, and the progression of
various diseases are best studied in cohort designs,
where individuals are enrolled and followed through
time. However, such studies have not yet been estab-
lished to monitor long-term smoke impacts on health.

Psychological effects of wildfires have been docu-
mented (Caamano-Isorna et al. 2011; Papanikolaou
et al. 2011), but few studies have focused on psycholo-
gical effects of smoke exposure. In a review by Reid
et al. (2016a), only two smoke-specific studies were
evaluated and both yielded largely null findings
(Duclos, Sanderson, and Lipsett 1990; Moore et al.
2006). More recently, Dodd et al. (2018) examined
effects of smoke on the mental, emotional, and physical
well-being of a community in the Northwest

Territories, where a prolonged episode of smoke led
to evacuations and disruptions of daily lives. Fear,
stress, and uncertainty contributed to acute and long-
term negative impacts on mental health. As smoke in
communities increases, it becomes more important to
understand the emotional and social toll on individuals
and communities to be able to build successful
responses.

The effects of maternal exposure to PM2.5 during
pregnancy have also been reported, but they have not
been studied extensively in ambient or wildfire smoke
exposure settings. The strongest evidence of adverse
birth outcomes is linked to studies of indoor exposure
to biomass burning (e.g., cooking, heating); however,
those exposures are typically both longer and more
acute than wildfire smoke in populations. Only
a handful of epidemiologic studies on prenatal expo-
sure to PM2.5 have been conducted. Holstius et al.
(2012) found a small reduction in average birth weight
among infants exposed to PM2.5 in utero, and Abdo
et al. (2019) reported a positive association between
PM2.5 exposure and both the incidence of pre-term
birth and lower birth weight. The 2008 northern
California wildfires led to an unintended experiment
in which a cohort of infant primates in the California
National Primate Research Center were exposed to
a prolonged episode of smoke, while another cohort
lived indoors in the same research facility with filtered
air. Three years after the exposures, the exposed pri-
mates had lower lung volumes compared to age-
matched primates who were not exposed. Follow-up
studies in this cohort have provided valuable evidence
that prolonged smoke exposure can result in chronic
effects (Black et al. 2017b).

Communities and individuals of lower socio-
economic status have been reported as more vulnerable
to higher personal exposure and increased risk of
adverse health outcomes from both urban air pollution
and smoke (Rappold et al. 2012; Reid et al. 2016b).
Increased exposures have been attributed to lack of
financial means to reduce exposure (e.g., installing all-
house air conditioning, purchasing a HEPA filter unit),
differential occupational exposure based on type of
employment, and differential indoor exposure due to
housing characteristics. The largest wildfires tend to
occur in rural areas, where air conditioning and airtight
housing is not prevalent, so the exposure differential
with respect to socio-economic position may be even
larger than in urban settings. However, assessment of
personal exposure is time-consuming and expensive;
thus, limited data exist on levels of exposure indoors
and the ability to improve indoor air quality during
wildfires through interventions for different socio-
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economic groups. Socio-economic factors also lead to
increased susceptibility to adverse health effects during
wildfire exposure because of reduced access to health
care, cumulative stress, and insufficient control of
underlying health conditions (e.g., asthma, diabetes,
heart failure).

Exposure in occupational settings (e.g., firefighters,
outdoor workers) is often greater than in the general
population because of proximity to the fires, prolonged
periods of exposure, and increased exertion rates,
which increase the total deposition of air pollutants in
lungs. High levels and exceedances of permissible occu-
pational exposure limits have been reported during
work shifts with respect to particulate matter, gases,
diesel, and hazardous air pollutants (HAPs: acrolein,
benzene, formaldehyde, and polycyclic aromatic hydro-
carbons) (Broyles 2013; Naeher et al. 2007; Reinhardt
and Broyles 2019; Romagnoli et al. 2014). Several stu-
dies of occupation exposure reported acute phase
effects, such as declines in lung function, increased
urinary metabolites of HAPs, and indicators of sys-
tematic inflammation in blood (Adetona et al. 2017,
2019). Semmens et al. (2016) surveyed wildland fire-
fighters and examined the association between the
duration of their careers and self-reported health out-
comes; many reported physician-diagnosed heart
arrhythmia. However, neither acute nor chronic health
effects in occupational exposure have been character-
ized systematically enough to understand the total bur-
den of such occupational exposure to smoke.

In addition to PM2.5 (Naeher et al. 2007; U.S. EPA,
2009), smoke contains HAPs (Reinhardt and Ottmar
2004), isocyanic acid (Roberts et al. 2011), VOCs, O3,
and other pollutants that have been associated with
health risks. Carbon monoxide inhibits the body’s abil-
ity to transfer oxygen to the heart, brain, and other
organs, and HAPs are known carcinogens. However,
these pollutants are rarely measured at the population
level; consequently, their contribution to the overall
health burden is not quantified in epidemiology or
risk assessment. Structural fires can result in particu-
larly toxic smoke and ash due to the burning of house-
hold items such as plastics, metals, and other synthetic
materials, which can also generate water quality con-
cerns if toxics in ash enter drinking water supplies. The
potential for long-term exposures resulting from struc-
tural fires varies greatly by site, and the hazards are not
well quantified.

Although several hypotheses have been established
regarding the mechanisms by which PM2.5 exposure
leads to adverse health outcomes, smoke exposure
may present unique concerns due the level of exposures
and co-pollutants. Current and future research efforts

related to spatially and temporally resolved exposure
maps, indoor levels of exposure, and a better under-
standing of internal dose in occupational settings will
continue to add relevant information to establish
health-protective recommendations and practices and
to identify populations at risk. The largest gap in scien-
tific evidence is related to long-term effects, such as
birth outcomes, progression of chronic disease, inci-
dence of chronic disease related to wildland fire
smoke exposure, and the effects of chronic and
repeated exposures in population and occupation
settings.

Smoke-ready communities

Annual health costs of wildland fire episodes from 2008
to 2012 were estimated at 11 USD billion to 130
USD billion (Fann et al. 2018), far exceeding fire sup-
pression costs. Intervention strategies can reduce expo-
sure to smoke, and local communities can play an
important role in informing residents. The EPA, in
partnership with other agencies, has led the develop-
ment of community guidance on smoke with
a publication “Wildfire Smoke: A Guide for Public
Health Officials” (U.S. EPA, 2019b). This article pro-
vides state, tribal, and local public health officials with
information needed to prepare for smoke events and,
when wildfire smoke is present, to communicate health
risks and take measures to protect the public. It pro-
vides specific procedures (e.g., operation of air cleaners,
proper use of masks or respirators) and recommenda-
tions (e.g., avoiding strenuous activity). These proactive
measures can substantially reduce hospital admissions,
mortality, and community impacts from wildfire PM
(Fisk and Chan 2017).

Regulatory context for air quality management

Smoke causes many days above the daily NAAQS
thresholds for PM2.5 (>35 µg/m3) and O3

(MDA8 > 70 ppb). In an analysis of how smoke affects
regulatory standards for PM2.5, McClure and Jaffe
(2018) showed that although most regions of the coun-
try have declining PM2.5, the annual 98th percentile of
daily averages is increasing in many parts of the wes-
tern U.S., where wildland fires are increasing. However,
using the exceptional events rule (U.S. EPA, 2016)
smoke-influenced air quality data can be excluded
from regulatory consideration (e.g., designation of
areas as not attaining the NAAQS). This process can
be complex and resource-intensive, requiring states to
submit extensive supporting documentation. In the
case of PM2.5, wildland fires frequently cause large
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exceedances of the PM2.5 daily standard, making the
documentation less complex. But for O3, smoke events
can increase the MDA8 values by modest amounts (e.g.,
5–30 ppb; Gao and Jaffe 2020; Gong et al. 2017), and
the chemistry is not well understood; thus, document-
ing the influence of fire on O3 is more challenging (e.g.,
see discussions in Gong et al. 2017,; Jaffe et al. 2018).

The U.S. EPA in the 1999 Regional Haze Rule (RHR;
40CFR 51.308) calls for state and federal agencies to
work together to improve visibility in 156 Class I areas,
which include national parks and wilderness areas. The
goal is to eliminate human-made visibility impairment
by 2064 in these areas. Wildland fire can contribute to
visibility impairment. Under the RHR, wildfires are
considered natural events. Regarding prescribed fires,
the EPA recognizes the need for healthy and resilient
forests, rangelands, and other federal lands, which can
include the use of prescribed fires. Thus, the EPA
requires states to consider basic smoke management
practices applicable to prescribed fires as they consult
with federal land managers about how best to improve
visibility in Class I areas (U.S. EPA, 2019c).

Smoke management programs are regulatory tools
for protecting public health and safety and natural
resources in both long-term (e.g., with the Regional
Haze Rule) and short-term (e.g., daily NAAQS) hori-
zons (Long, Tarnay, and North 2017). These are typi-
cally used to manage prescribed and/or agricultural
burns, but smoke management programs vary widely
by state.

Given this regulatory context, it is important to
identify specific chemical tracers that can help identify
the contribution of smoke to local air quality (e.g.,
PM2.5 and O3). Past studies have used aerosol potas-
sium (K), levoglucosan (C6H10O5), gas phase hydrogen
cyanide (HCN), and/or acetonitrile (CH3CN, ACN).
Levoglucosan is known to be emitted by wildfires but
is readily oxidized (Hennigan et al. 2010) and emitted
in widely varying amounts (Bhattarai et al. 2019).
Potassium is emitted by wildfires, but it is also emitted
by many other sources (Pachon et al. 2013).
Acetonitrile has been used in many previous studies
as a tracer of biomass burning and is relatively stable
during transport. ACN has a low background mixing
ratio (0.1–0.3 ppbv) and an atmospheric lifetime on the
order of months, and other emissions sources are much
less significant (de Gouw et al. 2003; Singh et al. 2012),
making it the most suitable tracer. While past studies
have measured ACN in the field using proton-transfer
mass spectrometry (e.g., Warneke et al. 2011), a recent
study has used the much simpler approach of thermal
desorption gas chromatography-mass spectrometry
(GC-MS) to identify ACN and OVOCs in urban areas

influenced by biomass burning (Chandra et al. 2020).
In this approach, continuous samples from a field site
can be collected relatively easily, with GC-MS analysis
occurring back in the laboratory. Both ACN and some
of the OVOCs are highly specific indicators for biomass
burning sources that could be used to support excep-
tional event designations.

National fire patterns and trends

Forests on public and private lands provide benefits to
the natural environment, as well as economic benefits
and ecosystem services (e.g., water, recreational oppor-
tunities, and carbon storage). The ability of U.S. forests
to continue to provide clean air is potentially threa-
tened by climate change and associated increases in
extreme weather events and wildfire. Spatial and tem-
poral patterns of wildland fire vary across the U.S.
(Table 4), so inferences about fire emissions, the effects
of climate change, and other issues are appropriate only
at the regional to sub-regional scale.

Wildland fire is a component of a broader stress
complex of extreme weather events, insect outbreaks,
pathogens, and invasive species (McKenzie et al. 2014),
which can pose long-term risks to forests (Trumbore,
Brando, and Hartmann 2015; Vose et al. 2018). An
example of interactions occurred recently in the Sierra
Nevada of California, where 102 million trees died
during a five-year drought ending in 2017 (U.S.
Forest Service 2016), with much of the mortality attrib-
uted to beetle outbreaks in drought-weakened trees.
This rapid change in stand structure and composition
has increased the likelihood of large, intense fires in the
short term and altered hydrology in the long term
(Adams et al. 2012; Hicke, Meddens, and Kolden
2016; Pfeifer, Hicke, and Meddens 2011).

Several decades of fire suppression in fire-prone
forest ecosystems in the U.S. (especially in the West)
have created landscapes of dense forests with high
flammability and heavy surface and canopy fuel loads,
especially at lower elevations (Keane et al. 2009). Over
the past two decades, a warm, dry climate has increased
the area burned across the U.S. (Abatzoglou and
Kolden 2013). Wildland fire burned at least
1.5 million ha nationwide in 17 of the years from
2001 to 2019, including over 4 million ha each year in
2015 and 2017 (Figure 3) (National Interagency Fire
Center (NIFC) 2019). Large, intense wildfires in some
locations (Barbero et al. 2015) have been difficult to
suppress, increasing risk to property and lives as well as
increasing smoke production (Liu et al. 2015b; Stavros
et al. 2014). The cost of fire suppression has also
increased over time – ranging from 240 USD million
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in 1985 to 3.1 USD billion in 2018 (National
Interagency Fire Center (NIFC) 2019) – partially driven
by the high cost of protecting property at the wildland-
urban interface (WUI) (Figure 3).

The duration of the wildfire season has increased by
80 days in some parts of the western U.S. as a result of
increased temperature (McKenzie and Littell 2017;
Westerling 2016), earlier snowmelt (Gergel et al. 2017;
Luce, Lopez-Burgos, and Holden 2014), and altered
precipitation patterns (Holden et al. 2018). By the
mid-21st century, the annual area burned in the
U.S. could increase 2–3 times from the present,
depending on the geographic area, ecosystem, and
local climate (Halofsky, Peterson, and Harvey 2020;
Litschert, Brown, and Theobald 2012; Ojima et al.
2014). As the spatial extent of wildfires increases,
burned areas may provide fuel breaks that influence
the pattern, extent, and severity of future fires (Parks
et al. 2015).

In the southeastern U.S., landscapes are dominated
by private lands and relatively high human populations,
so changes in social behavior (e.g., human-caused igni-
tions), policy (e.g., fire suppression), and climate can
affect the frequency and extent of wildland fire (Balch
et al. 2017). Data from Florida indicate that in drought
years, less prescribed burning is conducted (Nowell

et al. 2018). Modeling studies suggest that the south-
eastern U.S. will experience increased fire risk and
a longer fire season in the future (Liu, Goodrick, and
Stanturf 2013).

Although projections vary by state and ecoregion, by
2060, the annual area burned by lightning-ignited wild-
fire is expected to increase by at least 30% in the
Southeast (Prestemon et al. 2016). More frequent and
larger wildfires, combined with increasing development
at the WUI, portend increasing risks to property and
human welfare. For example, a prolonged dry period in
the southern Appalachian region in 2016 resulted in
widespread wildfires that caused 15 deaths and
damaged or destroyed nearly 2,500 structures in
Gatlinburg, TN. In a warmer climate, increased fire
frequency will further degrade pollution levels and
damage local economies in the Southeast.

Topography, fuel accumulation, stress complexes,
a patchwork of previous fires, and past efforts to sup-
press and prevent fires provide a biogeographic and
social context for future wildland fire regimes (Abt
et al. 2015; Butry et al. 2010). Currently, 95–98% of
all U.S. fires are controlled in the initial attack phase
(i.e., before they expand beyond 40 ha of forest or 120
acres of grassland or shrubland), but the remaining
2–5% of fires that cannot be controlled early are

Table 4. Summary of wildland fire for different regions in the U.S.

Region* Typical fire season Wildfire characteristics
Role of wildland-urban

interface (WUI) Management actions

Alaska May–Jun Mostly lightning-caused; high
interannual variability in fire depending
on dry weather; largest fires
>100,000 ha.

WUI is usually not
important.

Although most wildfires are
suppressed, it is difficult to limit fire
spread in remote landscapes;
prescribed burning is rarely used.

Western contiguous
states, minus
California and
Southwest (Arizona
and New Mexico)

Jun–Sep Mostly lightning-caused in mountains;
high fuel loadings in many dry forests
can facilitate intense fires; largest fires
may be 1,000 km2.

WUI expanding in many
areas, resulting in human
ignitions and challenges
for fire suppression.

Most wildfires are suppressed when
small; emphasis on WUI protection;
prescribed burning is used in dry
conifer forests.

California Oct–Nov**
Jun–Sep

Many lightning-caused in Sierra Nevada,
mostly human-caused elsewhere; high
fuel loadings in many dry forests can
facilitate intense fires; largest fires
>100,000 ha.

WUI is pervasive in most
areas, resulting in human
ignitions and challenges
for fire suppression.

Most wildfires are suppressed when
small except for those caused by Diablo
and Santa Ana winds; emphasis on WUI
protection; prescribed burning is used
in dry conifer forests in the Sierra
Nevada.

Southwest (Arizona
and New Mexico)

May–Jun Combination of lightning- and human-
caused; fires often driven by interannual
variation in fuel production (e.g.,
grasses); largest fires >100,000 ha.

WUI is important mostly
for smaller communities
near mountains.

Most wildfires are suppressed when
small; prescribed burning is used in dry
conifer forests.

Great Plains Apr–Jul Mostly human-caused, some lightning-
caused; largest fires are rarely
>10,000 ha.

WUI is sometimes
important.

All wildfires are suppressed; prescribed
fire and livestock grazing are used in
some areas to reduce grass fuels.

Midwest and
Northeast

Apr–Jun Mostly human-caused; dependent on
dry spring weather; fires are small.

WUI is very important
due to high population
density.

All wildfires are suppressed; prescribed
fire is sometimes used on small areas of
hardwood and pine forests.

Southeast Feb.–Sep Mostly human-caused, some lightning-
caused; largest fires are rarely
>10,000 ha.

WUI is increasingly
important as population
expands.

All wildfires are suppressed; prescribed
fire is extensively and routinely used in
pine forests.

*Hawai’i and U.S.-affiliated areas are not included here because they comprise a very small portion of fire and smoke occurrence.
**Fire occurrence varies from north to south. Diablo winds (northern California) and Santa Ana winds (southern California) typically occur in the fall, but other
fires occur in summer.
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increasingly demonstrating extreme fire behavior (U.S.
Department of Agriculture and Department of the
Interior 2015). Higher temperatures, lower summer
precipitation, and increased frequency and intensity of
drought are expected to create longer periods during
which surface fuels are sufficiently dry to burn. This
will drive rapid (months to years) and persistent
changes in forest structure and function across large
landscapes. Other changes, resulting from gradual cli-
mate change and less severe disturbances, will alter
forest productivity and vigor and the distribution and
abundance of species at longer time scales (decades to
centuries) (Vose et al. 2018).

Public land managers are acutely aware that increas-
ing human population and climate change will alter fire
regimes and ecosystem conditions. Expansion of the
WUI has already altered fire suppression tactics and
costs, as well as when and where fuel treatments are
applied. Fuel treatments, including forest thinning,
mechanical removal of surface fuels, and prescribed
burning, have been used for decades to reduce hazar-
dous fuels in dry forest landscapes (Peterson et al.
2005), including in the WUI (Johnson, Kennedy, and
Harrison 2019). However, concerns about the health
effects of smoke on residents in the WUI and exurban
locations often limit the extent of fuel treatments.
Miller, Field, and Mach (2020) describe some of the
barriers to prescribed burning in California, which
include liability concerns, resource limitations and reg-
ulations. The widespread use of prescribed burning in
southern forests is highly effective in reducing fuels
across large landscapes, but effectiveness in western
landscapes is limited due to inadequate budgets for
treating vast landscapes with elevated fuel loading.

The effects of periodic prescribed burning on long-
term emissions and air quality are poorly quantified.
A synthesis of studies in the western U.S. determined
that carbon emitted per ha from prescribed burning
over many decades is similar to or slightly higher
than what would have been emitted by wildland fires
over the same time period (Restaino and Peterson
2013). If we assume that total emissions are propor-
tional to carbon flux into the atmosphere from fire, we
can cautiously infer that total emissions per ha for
prescribed burning are similar to those of wildland
fire. However, the periodic pulses of emissions pro-
duced by prescribed burning have lower concentrations
of particulates and other pollutants for a shorter dura-
tion than in a large wildland fire. Prescribed burning
can also be timed to minimize population exposure to
PM2.5 using forecast models.

Over the past decade, assessments of climate change
effects on fire have been developed for many locations

in the western and southern U.S. (e.g., Halofsky et al.
2018a; Prestemon et al. 2016). These assessments and
adaptation responses to the effects of climate change
are now being incorporated into resource management
plans, environmental assessments, and monitoring pro-
grams of public agencies (Halofsky et al. 2016;
Halofsky, Peterson, and Prendeville 2018b; Timberlake
and Schultz 2019). Many ongoing practices that address
existing forest management needs – stand density man-
agement, surface fuel reduction, and control of invasive
species – are considered “climate smart” because they
reduce risk by creating resilience to increased tempera-
ture, drought, and disturbances (Peterson, Halofsky,
and Johnson 2011a, Peterson et al. 2011b; D’Amato
et al. 2013). Resource managers are evaluating how
these practices can be modified and implemented to
address future climate risks (Halofsky et al. 2016). For
example, forest managers are considering reductions in
stand density to increase forest resilience to fire, insects,
and drought (Sohn, Saha, and Bauhus 2016). Allowing
more wildland fires to burn without suppression (but
with observation) in remote mountainous locations
would reduce fuels, but they may enhance emissions
in the short term compared to aggressive suppression
activities.

Summary and recommendations

Wildland fires are a natural occurrence, but the area
burned has increased dramatically in the last few dec-
ades due to past forest management practices, climate
change, and other human factors. As a result, millions
of people in the U.S. have been exposed to extremely
high concentrations of air pollution in the recent dec-
ade. As our population has expanded into the wildland-
urban interface (WUI), the costs for fire suppression
and consequences of wildland fires have risen dramati-
cally. Based on our review, we conclude with the fol-
lowing recommendations:

(1) Multiple factors have led to the significant
increase in the area burned by wildland fires
in recent decades. Research is needed to better
understand the effects of various biophysical
characteristics on past and future trends in
wildland fire, including human land use and
ignitions, insect outbreaks, invasive species,
and climate change (including increasing tem-
peratures, drought, and other factors). The
respective roles of these factors will vary
regionally, so data will be needed at a variety
of spatial scales. Long-term monitoring and
frequent reevaluation will be needed to refine
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quantitative relationships as the climate con-
tinues to warm.

(2) As the risk of wildfires increases, the use of
prescribed burning to protect human and eco-
system health also increases. Developing strate-
gies to minimize adverse impacts on air quality
requires improved understanding of emissions
from wildfires and prescribed fires. More
research is needed to link emissions to fuels,
fire behavior, and other factors. In particular,
research is needed on differences between wild-
fires and prescribed fire emissions, including
on various burn strategies that could be used
to minimize impacts on air quality.

(3) Satellite data provide critical information about
fire detections, smoke transport, and impacts.
However, ease of access to the data and an
understanding of how best to use the satellite
information needs improvement, particularly
data from the rapidly evolving suite of newer
and more sensitive satellite systems. Additional
research is needed to examine best approaches
for using fire intensity (e.g., fire radiative
power) to calculate emissions, and to link fire
radiant energy to the fire type and quantity of
vegetation on the landscape. Improved tools to
derive the vertical distribution of smoke from
satellite observations would substantially
improve our understanding of impacts at the
surface.

(4) Smoke forecast and modeling systems are
important tools to understand impacts from
wildland fires and provide advance warnings
to affected communities. Smoke prediction sys-
tems rely on various meteorological forecasts;
however, although meteorological forecasts are
typically analyzed as an ensemble to produce
probabilistic forecasts, this has not occurred to
date with smoke forecasts. Future smoke fore-
casting research should focus on generating
ensemble/probability smoke forecasts, thus
accounting for multiple potential outcomes
due to uncertainty in model inputs and algo-
rithms as well as the natural variability and
heterogeneity of the fuels and ecosystems.

(5) Once released, the gas and particle emissions
undergo substantial chemical processing in the
atmosphere. In some cases, this processing may
lead to compounds with greater health implica-
tions (e.g., more oxidized aerosols). But the large
number of compounds, many of which are not
found in typical urban air, makes it difficult to
understand the chemistry. Research is needed to

improve understanding of the chemical processes
that form secondary pollutants (e.g., secondary
organic aerosol, O3, and their precursors), espe-
cially as smoke plumes mix into population cen-
ters. Embedded “plume in-grid cell models” may
be needed to address non-linear chemical pro-
cesses such as O3 or SOA production. A related
need is for easily measured smoke tracers that can
provide a quantitative measure of smoke in urban
areas.

(6) PM2.5, O3, and other compounds in smoke have
clear and demonstrated human health impacts.
But the episodic nature of smoke exposure and
the variable mix of compounds make health stu-
dies even more challenging than traditional air
pollution studies. Future research is needed to
provide better data on exposure, including indoor
and occupational exposure, to improve our under-
standing of the resulting health effects, and to
establish exposure guidelines. The largest gap in
scientific evidence is related to long-term conse-
quences, such as birth outcomes, neurological and
cognitive effects, and progression and incidence of
chronic disease related to wildland fire smoke
exposure.

(7) Field campaigns need to be integrated across the
wide spectrum of disciplines involved in fuel com-
bustion, fire behavior/growth, fire emissions,
plume dynamics, and atmospheric chemistry.
Experiments should relate ground-based informa-
tion from fuels and how the fire spreads, to what
the satellites see from space, and everything in
between. Recent campaigns, such as WE-CAN,
FIREX-AQ, and FASMEE, provide a starting
point for such work, but additional studies that
both build upon and learn from these successes
are needed to sample across the wide range of fire
types and conditions that lead to smoke impacts.

(8) Fire-prone communities need to identify
approaches to protect lives and property,
build resilience, and develop response plans to
minimize health and socio-economic impacts.
On the health side, these could include, for
example, communication in advance with the
most at-risk citizens, creation of community
clean air spaces in public buildings, workshops
on creating clean air spaces at home and in
workplaces, and distribution of filtration equip-
ment to those most in need, such as those with
limited mobility or particular sensitivities. All
of these methodologies are now being tested
and/or implemented by communities in the
western U.S. This work needs to be continued,
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expanded, and funded, and communities would
benefit from working together to develop
a framework for sharing the best strategies.
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