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REVIEW; MEDICAL BIOTECHNOLOGY

Deregulation of the circadian clock constitutes a significant factor in tumorigenesis: a clockwork

cancer. Part II. In vivo studies

Kristin Uth and Roger Sleigh*

CMCBR, Abertay University, Dundee, Scotland, UK

(Received 20 March 2014; accepted 9 April 2014)

The uneventful progression through the cell cycle is closely associated with the rhythm set by the circadian clock
machinery, with the S-phase of the cell cycle typically occurring at night. Presence of unrepaired DNA damage may reset
the phase of the circadian clock, providing opportunities for damage assessment, repair and/or the induction of pro-
apoptotic pathways. The core proteins of the circadian clock regulate directly or indirectly a significant number of genes
coding for proteins involved in checkpoint transition, cell proliferation and programmed cell death. Disruption of the
circadian rhythm may increase the risk for some multifactorial diseases and conditions, including glucose intolerance,
cardiovascular disease and various common cancers. In patients with cancer, chronic circadian misalignment may
stimulate the growth of tumours and may modify the outcomes of anticancer therapy. Knowledge about the role of
physiological rhythms in human disease may contribute to the field of individualized medicine, specifically, in risk
assessment and prognostication of the outcomes in patients with multifactorial disease.

Keywords: circadian clock; regulation; cell cycle; DNA repair; carcinogenesis

Abbreviations

NER: Nucleotide excision repair

Per: Period

CNS: Central nervous system

Cry: Cryptochrome

Introduction

Several drosophila, mouse and rat models with altered or

disrupted periodicity regulator genes have already been

created.[1�5] The resulting phenotypes may significantly

vary with regard to capacity to maintain rhythmicity in

absence of entraining cues (from ‘rhythmic albeit phase-

shifted’ to ‘completely arrhythmic’) and length of cycle

(22�28 hours).[6] Some of the mouse models with dis-

rupted core periodicity genes may exhibit accelerated aging

phenotypes of varying severity and cancer proneness.

Clock mouse mutants

Mutations in the Clock gene in mice alters the duration of

the diurnal cycle in animals housed in constant darkness,

although the rhythm is not completely lost.[7] Homozy-

gous Clock mutants may exhibit deregulation of feeding

rhythmicity and reduced energy expenditure. They are

prone to overeating and rapidly develop obesity, hyper-

glycemia, hypoinsulinemia and hyperlipidemia.[8] Clock-

deficient mice have shorter-than-normal lifespan and

somewhat increased incidence of age-related cataract and

dermatitis.[9] The reproductive fitness was moderately

decreased both in Clock-deficient mice and in carriers of

the D19 mutation in the Clock gene (causing ‘skipping’ of

exon 19).[10,11] Clock-deficient mice may exhibit

increased activity levels, increased sensitization to alcohol

and cocaine and increased drug reward compared to wild-

type mice,[12] leading to the supposition that the Clock

protein was involved in the regulation of the dopaminer-

gic system in mammals. The incidence of cancer in

Clock-deficient mice has not been found to be increased

when compared to non-mutant animals.[13]

Bmal1 mouse mutants

The loss of the Bmal1 gene in mice results in immediate

loss of circadian rhythmicity when the animals are housed

in constant darkness.[6] Bmal1 mutant mice also exhibit

impaired glucose tolerance and decreased insulin secre-

tion that tended to become worse with advancing age.[14]

Bmal1-deficient mice are sterile and have severely short-

ened lifespan (27 weeks on the average, compared to

70�150 weeks in normal mice), have lower body weight

compared to wild-type mice and also exhibit various traits

associated with premature aging such as early develop-

ment of cataracts, arthropathy, ectopic calcification and
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loss of muscle and subcutaneous fat.[15�17] Data about

cancer-proneness in homozygous Bmal1 mutant mice is

unreliable, as the phenotype of accelerated aging causes

early death. Some of the homozygote mice exhibited

hyperplasia of the salivary glands and several per cent of

them developed lymphoma after gamma-irradiation,

although their lifespan was short either way. Heterozy-

gous Bmal1-knockout mice exhibit increased cancer-

proneness, spontaneous as well as after genotoxic

challenge (ionizing radiation).[17]

Per and Cry mouse mutants

In mouse models, genes coding for both Cry proteins must

be disrupted to produce a phenotype of deregulation of

circadian rhythms, as normal functioning of the product

of the one gene may partially substitute for the other.

[3,18] Only mice with combined Cry1/Cry2 homozygous

knockouts instantly lose the diurnal rhythm when housed

in complete darkness, whereas mice lacking the expres-

sion of only one of the two proteins exhibit longer or

shorter cycle when housed in complete darkness.[3] Mice

with targeted disruption of the Per3 gene exhibit only sub-

tle disturbances of the circadian clock.[19]

The circadian clock is adjustable by food cues. Mice

deficient in Per2 are unable to predict and anticipate the

approximate time when food is normally available.[19,20]

Mice with mutant Npas2 or deficient for Cry1 and Cry2

are impaired in food-associated entrainment of the circa-

dian clock.[20]

Cry1 homozygous knockout mice, double Cry1/Cry2

knockout mice and Per2 mutant homozygous mutant

mice exhibit increased rates of spontaneous tumours and

tumours developing after genotoxic challenge (ionizing

radiation).[17,21,22,23] The circadian pattern of expres-

sion of some genes coding for proteins involved in the

control of the progression in the cell cycle (c-Myc, Cyclin

D1, Cyclin A, Mdm-2) is grossly deregulated in mice

with mutant Per2.[22,23]

Cry1/Cry2 deficient double mutant mice that also

carry inactivated Tp53 gene copies exhibit longer cancer-

free survival and somewhat extended lifespan than p53-

deficient mice without Cry mutations, although both

groups virtually never reach the lifespan of normal mice.

[24] This is believed to be associated with increased pro-

pensity toward apoptosis by the p53-independent mecha-

nism, conferred by deficiency of Cry proteins.[24]

Human phenotypes associated with carriership of

mutations or polymorphisms in clock machinery genes

Accelerated aging is a prominent feature in the animal

models of deficiency or modification of core clock genes.

It is therefore possible that the oscillating circadian clock

may be an adjusting factor for the general molecular clock

of aging. Aging is currently viewed as a preprogrammed

mechanism, rather than a simple product of wear and tear

of tissues and organs.[25] The rate of attrition of telomere

ends is currently viewed as a timing mechanism of the

unidirectional (hourglass) type.[26] For single cells, telo-

mere attrition rate is a marker for the cell’s proximity to

replicative senescence. On a higher level, however, telo-

mere length and rate of attrition of telomere ends provide

a basis for the assessment of the rate of aging of tissues,

organs and organisms. Shortening of telomere ends as a

designated mechanism for induction of aging has been

intensively studied, as it provides quantitative data that

may be measured and compared between experiments.

[27,28] Research has already shown that the circadian pat-

tern of expression of clock genes becomes markedly

impaired in senescent cells.[29,30] This, however, was

shown to be remedied (albeit temporarily) by telomere

lengthening. It has been proposed that the functioning of

the oscillator clocks is dependent on the ‘time’ shown by

the unidirectional clock of aging, with the peripheral

clocks in aged tissues becoming less responsive to the sig-

nals sent by the master clock.[29]

In humans, the presence of variant alleles of genes

coding for proteins functioning in the circadian clock may

cause sleep phase shift syndromes. These are usually quite

benign and only very rarely interfere significantly with the

normal life of the affected individual. The Ser662Gly

mutation (rs121908635) in the PER2 gene is known to

cause advanced sleep phase syndrome 1, manifested by

the need to go to bed very early in the evening (6�8 pm)

and spontaneous awakening very early in the morning

(3�4 am).[31] The ‘natural short sleeper’ human pheno-

type is associated with heterozygous carriership of the

mutation Pro385Arg in the DEC2 gene.[32,33] Carrier

individuals require fewer hours of sleep per 24 h (on the

average, 6 hours) to be completely rested than what is

considered normal in the general population (7�9 h per

24 h). Presence of the DEC2 Pro385Arg mutation does

not seem to be associated with any adverse effects.

One noncoding polymorphism in the 30-UTR of the

human CLOCK gene (a T-to-C transition, rs1801260) is

associated with adult attention-deficit and hyperactivity

disorder (ADHD).[34]

Several inherited polymorphisms in core clock genes

may be associated with increased risk for development of

various tumours. The 311T>C single-nucleotide polymor-

phism in the human CLOCK1 gene have been associated

with significantly increased susceptibility to colorectal carci-

noma.[35] The 5-repeat variant allele of the 4/5 repeat poly-

morphism in the human PER3 gene is associated with

almost twofold increased risk for breast cancer in premeno-

pausal women.[36] The Ala394Thr polymorphism

(rs2305160) in the coding sequence (specifically, in the PAS

domain) of the human NPAS2 gene has also been found to

increase the risk for non-Hodgkin’s lymphoma.[37]
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Current research data show that the disruption of the

circadian cycle may increase the risk for common diseases

and conditions (diabetes, cancer, cardiovascular disease)

and/or accelerate their progression. Of course, as in all

diseases with multifactorial genesis, the presence of an

additional risk factor does not mean that the individual

will definitely develop the disease or condition, only that

in its presence the risk is increased compared to the gen-

eral population.[38] Considering that the factors disrupt-

ing the circadian rhythm are very common, especially in

industrialized countries (light at night, insufficient lighting

during the day, evening and night shift work and/or rotat-

ing shifts, major meal for the day consumed in the evening

hours, frequent transmeridional flights, etc.), it could be

expected that the health impact would continue to increase

in the future. Lifestyle and jobs including disruption of

the day-night rhythm (specifically, night shift work) may

be associated with increased incidence of colorectal carci-

noma, breast, lung and prostate cancer in man.[39�43]

The majority of the studies on the impact of disruption of

circadian rhythms on human health were conducted in

female controls (predominantly nurses), therefore, one

cannot exclude gender-specific differences (at least for

some cancers). There is also the fact that nurses, as health

workers, were motivated for continuing participation in

these studies. The attitude of the participating individuals

towards any medical study (and, especially, studies

related to cancer medicine) may seriously affect the study,

in terms of attrition rate, reliability of the personal data

provided by the study objects, and the potential health

benefits (opportunities to care for one’s health in a more

efficient manner � e.g. having more regular checkups).

[44] Medical personnel are, on the whole, more likely to

stick to the study from the beginning to the end, fill the

questionnaires accurately (because of pre-existing knowl-

edge about the problem under study) and have their medi-

cal checkups regularly, allowing for early diagnosis and

more precise risk assessment. In a 2007 press release the

International Agency for research on Cancer (IARC) pro-

nounced that ‘. . .Shiftwork that involves circadian disrup-

tion is probably carcinogenic to humans. . .’ [http://www.
iarc.fr/en/media-centre/pr/2007/pr180.html]. The risk has

been found to be especially high for those on rotating

night shifts, not allowing for adaption of the circadian

clock to the timing of the subjective day and the subjec-

tive night. The increased risk for lung cancer in night shift

workers was, however, modifiable by environmental fac-

tors (specifically, smoking)[42], and was not reported in

all studied populations.[45]

The association between disruption of the diurnal

rhythm and breast cancer has been particularly well stud-

ied. It has been speculated that disrupted circadian

rhythms (lack of natural (sun-spectrum) lighting or simply

insufficient lighting during the day and/or artificial light-

ing at night) may be at least partially responsible for the

increasing rates of breast cancer in industrialized coun-

tries. There have been reports about lower overall inci-

dence of cancer in people with total visual blindness

(could not perceive light at all) compared to the general

population.[46] The association was specifically strong

for mammary gland cancer (over twofold risk reduction in

individuals with total visual blindness than in the general

population),[47,48] but the risk for prostate cancer was

also found to be lower among totally blind men.[49] Since

hormone release usually follows a circadian rhythm, and

the majority of breast and prostate cancers are hormone-

dependent, these results are not unexpected.

Disruption of circadian rhythms may modify the

course of neoplastic disease. In recent studies, light at

night promoted tumour growth in mouse models with

breast cancer.[50,51] In human patients with breast carci-

noma, daily bedtime misalignment (i.e. misalignment

between preferred bedtime and actual bedtime) was

shown to be associated with more rapid cancer progres-

sion.[52] It has even proposed that the risk for melanoma

may be increased in individuals habitually exposed to

excess light in the evening and night.[53]

Mutations in circadian clock genes have been observed

in tumour tissue � specifically, in colorectal cancer, breast

cancer, prostate cancer and thyroid carcinoma.[54�56]

The expression of DEC1 is down-regulated or absent in

>50% of oesophageal cancers in man.[57] Disruption of

the normal circadian cycle may be implemented on epige-

netic level in tumour cells. One study of tumour tissues

from breast cancer patients found hypermethylation on the

promoters of PER1, PER2, CRY1 or BMAL1 genes in

about 70% of the cases, compared to <50% methylation in

non-cancerous tissues.[54] In the same study, homoge-

neous (non-rhythmic) expression of PER2 or BMAL1 was

significantly associated with lymph node metastasis and

poorer prognosis for the patient. PER1 and PER2 genes are

currently considered to be true tumour suppressor genes, as

decreased expression of either (or both) has been reported

in several types of human cancers (pancreatic cancer, renal

cancer, head and neck cancers)[58�60] and reduced PER1

and PER2 expression was recently shown to be an indepen-

dent predictor of poorer prognosis in patients with gastric

cancer.[61] In 2009, it was proposed that the growth rate

of breast cancer corresponded to the rhythm set by the cir-

cadian clock.[62] Down-regulation of Per2 resulted in

increases in the levels of Cyclin D and Cyclin E and

accelerated tumour growth in vivo [63] whereas induced

overexpression of either Per1 or Per2 has been shown to

inhibit the growth of cancer cells and increase their apopto-

tic rate.[64] In patients with chronic lymphocytic leukae-

mia (CLL), the expression of BMAL1, PER1 and PER2

was found to be significantly down-regulated in compari-

son to healthy controls whereas the expression of the

proto-oncogene c-MYC and Cyclin D1 was significantly

up-regulated.[65]
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The expression profile of the core clock proteins may

affect the outcomes in patients with cancer. Among

patients with CLL, different CRY1 expression levels and

CRY1/PER2 expression ratio were associated with differ-

ent clinical course (and, respectively, very different out-

comes), with epigenetically silenced CRY1 gene usually

associated with indolent disease, needing treatment only

in its very late phases, if ever.[66,67] Thus, the levels of

expression of circadian clock genes may be used as auxil-

iary markers in the prognostic panel in CLL.[67�69] The

overall survival of patients with colorectal cancer with

high BMAL1 levels in the primary tumour was signifi-

cantly longer (1.5 times) than that of patients with

tumours with low BMAL1 levels; and the progression-free

survival was more than two times higher in patients with

high BMAL1 expression than that in patients with low

expression.[70] High levels of expression of the negative

regulator of the core feedback loop CRY1 were associated

with poorer overall survival in patients with colorectal

cancer.[71]

The levels of expression of the genes of the circadian

core clock and the accessory proteins may predict sensitiv-

ity to anticancer therapies and/or provide information about

the opportunities for therapeutic intervention. BMAL1 over-

expression was shown to inhibit the growth of human colo-

rectal cancer cell lines, increasing their sensitivity to

genotoxic agents (oxaliplatin).[70] It has been shown that

Tim-depleted cancer cells may become sensitive to doxoru-

bicin (a topoisomerase II inhibitor), making Tim1 a poten-

tial anticancer target in therapies based on ATM/ATR

damage response pathway inhibition.[72�74]

Currently, there is a massive research effort concen-

trated at studying the effects of timing of anticancer thera-

pies around the circadian rhythm on the chances of

achieving the maximal possible therapeutic effect (cancer

chronotherapy).[75] Most currently used anticancer

agents work by infliction of DNA damage (genotoxicity).

Their effect is strongest in rapidly dividing cells, as

tumour cells are, but may affect the functioning of non-

tumour cells with naturally rapid turnover as well. In prin-

ciple, anticancer therapies are considered appropriate if

they fulfil two requirements: (1) they produce a good

objective response (tumour regression, slowing down the

growth of the tumour) and (2) their use is coupled with

minimal adverse effects for the patient. It is now agreed

that anticancer therapy needs a considerable amount of

customization to achieve the optimal balance of these two

factors for the particular patient.[76] Basically, in cancer

chronotherapy, the application of the genotoxic agent/s is

timed to the 24-h circadian variations (and, sometimes, to

intradian (8�12 h) variations) in the mitotic index of can-

cer cells. Timing of genotoxic therapy to the specific time

of the day when it is supposed to produce the greatest

amount of damage to specific type of tumour cells may be

expected to be associated with greater treatment response.

At the same time, as the mitotic index of cancer and nor-

mal cells of the same tissue may peak at different times of

the day, it could be expected that the associated toxicities

for the normal tissues would be lower (least toxic times of

chemotherapy). For example, a study among patients with

ovarian cancer showed that the circadian peak in DNA

synthesis for tumour cells was found between noon and 4

pm, which was �12 hours off the peak of DNA synthesis

in non-tumour cells (usually occurring at night).[77] Simi-

larly, in patients with non-Hodgkin lymphoma, the peak

of DNA synthesis in affected lymph nodes occurred at

night, whereas the highest levels of DNA synthesis in

healthy cells in the bone marrow were observed in the

early hours of the afternoon.[78] So far, the trials of can-

cer chronotherapy have shown that timing of genotoxic

therapies within the circadian cycle produces significantly

lower rates of severe adverse effects than ‘conventionally

timed’ therapy.[79�81] Indeed, undergoing cancer chro-

notherapy may mean significantly more treatment-related

time spent in hospital, as the optimal time for drug admin-

istration may be late at night or very early in the morning,

but since the outcomes may be objectively better than in

conventionally timed therapy, there is every chance that

chronotherapy for cancer may find broader applications in

the near future. Obtaining data about lifestyle traits and

habits possibly disrupting the circadian rhythm as well as

testing for the presence of variants of the core clock genes

may make a valuable addition to the panels of assessment

of individual repair capacity, alongside polymorphisms in

genes coding for proteins of DNA repair and maintenance

of genome integrity and unscheduled DNA synthesis,

especially in patients with cancer.[28,76,82�84]

The circadian clock may play a role in the pathogene-

sis of multifactorial diseases and conditions other than

cancer. For example, deregulated expression of Bmal1

and Cry1 was detected in animal models of traumatic

brain injury.[85] The sleep-wake cycle is grossly dis-

turbed in patients with dementia of Alzheimer’s type.

[86,87] It has been hypothesized that the regulation of the

peripheral circadian clocks (e.g. in the cardiovascular sys-

tem) may become more and more difficult with age.[29]

This impaired peripheral circadian rhythm may produce

deregulated expression of tissue-specific clock-controlled

genes, resulting in cardiovascular disease (e.g. plasmino-

gen activator inhibitor-1, vascular endothelial growth fac-

tor and others).[29,88,89]

It is well known that the occurrence of stroke usually

peaks in the morning (roughly between 6 and 12 am).[90]

The same is valid for myocardial infarction and sudden

cardiac death, where the risk for incidents is highest in the

several hours after morning awakening.[91] Neuronal sus-

ceptibility to ischemic events seems to follow a circadian

pattern.[92] In Per1-deficient-mice with cerebral ischae-

mia, higher rates of neuronal injury have been observed

than in non-mutant ischaemic controls.[93] CNS cells
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exhibit variations in the activation of apoptosis markers

(expression of caspases-3, -8 and -9) in response to cere-

bral ischemia induced at different times of day.[93,94]

Ischemia is typically associated with increased levels of

oxidative stress. It is possible that the disruption of the cir-

cadian rhythm associated with oxidative DNA damage

may impair the functioning of the system for the assess-

ment of the scale and scope of the damage, with the result

that damaged cells in clock-disrupted models are more

likely to be routed to the apoptotic pathway than in con-

trols (where the same amount of DNA damage might

have been assessed as ‘repairable’). Carriership of variant

alleles associated with increased levels of unrepaired

DNA damage and the associated propensity toward apo-

ptosis in the vascular wall may contribute to the ‘morning

peak’, and to the disruption of the circadian cycle com-

monly seen in stroke patients in the period immediately

following the incident.[95,96]

Circadian misalignment has been shown to increase

insulin resistance and augment expression of inflamma-

tory markers in diabetes type 2.[97] The decline in beta-

cell function seen in the progression of diabetes type 2

may be accelerated by the disruption of circadian rhythms

and accelerate development of diabetes type 2.[98,99]

Conclusions

Circadian clock dysfunction plays a role in the pathogene-

sis of many common multifactorial diseases and condi-

tions, including glucose intolerance, cardiovascular

disease and cancer. The core clock proteins may directly

or indirectly modulate the expression of proteins function-

ing in the progression of the cell cycle. Disruption of the

rhythm set by the internal clock may increase the risk for

development of disease, aggravate the course of pre-exist-

ing conditions and modulate the outcomes of anticancer

therapy. Knowledge about the mechanisms governing the

maintenance of circadian rhythms and recovery of this

rhythm after disruption may provide opportunities for

informed lifestyle modification, more efficient therapeutic

intervention and may assist in more individualized selec-

tion of anticancer therapies and schedules as well the

prognostication of outcomes in patients with multifacto-

rial diseases.
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