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REVIEW ARTICLE                                           
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ABSTRACT 
Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in 
men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using 
results from large cohort studies we explore sources of biological and technical variance, and 
establish a reference range for adult men. It is constitutively secreted with little within-individual 
variation and reflects testicular capacity to produce testosterone. The main INSL3 assays avail-
able indicate good concordance with low technical variance; there is no effect of ethnicity. 
INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testos-
terone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated 
with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. 
Consequently, low INSL3 (�0.4 ng/ml; ca. <2 SD from the population mean) might serve as an 
additional biochemical marker in the assessment of functional hypogonadism (late-onset hypo-
gonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with 
low LCI (INSL3� 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) 
for INSL3 in the eugonadal population of 0.4 − 2.3 ng/ml, with low INSL3 prospectively identify-
ing individuals at risk of increased future morbidity.
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Introduction

Insufficient production of testosterone (T) by the testes 
and its clinical consequences is referred to as hypo-
gonadism [1–3]. Hypogonadism has been categorized 
as primary, if the reason for the low T production is tes-
ticular in origin, or secondary, where the cause is due 
to a hypothalamic or pituitary insufficiency. Clinically, 
these have been defined by the concentrations of 

circulating T and luteinising hormone (LH) (e.g. primary: 
T< 10.5 nmol/L, LH � 9.4 U/l; secondary: T< 10.5 nmol/ 
L, LH < 9.4 U/l [4]). Additionally, there is a third cat-
egory, referred to as compensated (primary) hypo-
gonadism, where T levels are maintained within the 
normal range due to an increased pituitary production 
of LH (T> 10.5 nmol/L, LH > 9.4 U/l [4]). Low T alone, 
however, is insufficient to justify endocrine intervention. 
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Many men with low T do not have symptoms of andro-
gen deficiency and conversely, many men with appar-
ently normal T do show symptoms suggestive of 
hypogonadism. Attempts to improve diagnostic accur-
acy of hypogonadism, especially in middle-aged and 
older men, include proposals that low total T (and low 
free T – see below) should be syndromically associated 
with at least three androgen-dependent sexual symp-
toms [3]. To improve the biochemical diagnostic preci-
sion, several additional parameters have been 
considered. Primary amongst these is the inclusion of 
circulating SHBG (steroid-hormone binding globulin), 
which varies with age and other physiological and 
pathological conditions [5, 6], in the construction of cal-
culated free testosterone (cFT) [7], postulated to repre-
sent the portion of circulating T which is bioavailable 
for interaction with androgen receptors. Indeed, cFT 
does indicate a better correlation with morbidity inci-
dence in aging men than T alone [8–10].

A key factor in this discussion is that low T may 
have multiple causes, either primary or secondary, influ-
encing different levels within the HPG axis. Moreover, it 
is now known that morbidity itself, particularly condi-
tions leading to systemic inflammation, such as obesity, 
may also affect T production [11]. Furthermore, circulat-
ing T is subject to considerable biological (diurnal and 
other) variation within an individual, together leading 
to substantial natural variance in this biochemical par-
ameter and hindering its usefulness as a diagnostic 
indicator of testicular (Leydig cell) function. With this 
background, we have been investigating the possible 
application of a new testicular peptide hormone, insu-
lin-like peptide 3 (INSL3), as a biochemical parameter in 
the assessment of androgen deficiency in older men.

In the adult, INSL3 is a circulating hormone 
secreted into the bloodstream exclusively from the 
steroidogenic Leydig cells of the testes [12]. Studies in 
humans and other species support the view that it is 
mostly present in the blood as a small, approximately 
6000 Dalton, A-B heterodimeric peptide, like insulin, 
following intracellular processing of a longer precursor 
polypeptide and removal of a connecting C-peptide 
domain [12, 13]. Both in vivo (human) and in vitro 
(rodent Leydig cell culture) experiments indicate that 
INSL3 is secreted in a constitutive manner, without 
significant modulation by LH or hCG in the short term 
[14–16]. In long term studies of men with relatively 
low Leydig cell functional capacity, LH or hCG, admin-
istered for weeks or longer, may stimulate the differ-
entiation or proliferation of the Leydig cells, and 
hence their overall capacity for INSL3 production [17]. 
INSL3 is a biomarker of the functionally mature, fully 
differentiated Leydig cell, and hence only appears in 

the male concomitantly with the onset of puberty and 
adolescence, with blood levels gradually increasing 
through puberty, as the Leydig cells mature, to attain 
a maximum in young men at around 18-24 years of 
age [18, 19]. Additionally, in pregnancy INSL3 is made 
by a separate population of fetal Leydig cells where it 
promotes the first phase of testicular descent [20]. 
There may also be a small postnatal rise in circulating 
INSL3 during what is called the “mini-puberty” at age 
2-4 months [21], following which INSL3 is undetectable 
in children until the advent of pubertal development 
at around 9 to 11 years of age [18].

In adult men, because of the constitutive nature of 
its secretion, INSL3 in the blood can be seen as an 
accurate measure of the so-called “functional capacity” 
of the population of Leydig cells in the two testes, i.e. 
the product of total Leydig cell number and their aver-
age differentiation status, thereby reflecting also their 
capacity to produce steroids, such as T [22]. However, T 
differs from INSL3 as a parameter of Leydig cell func-
tion since the former is acutely and continuously regu-
lated by the gonadotropin LH from the pituitary and 
exhibits high intra-individual biological variability. In 
contrast, INSL3 shows only very low within-individual 
variance over a 24-h period, or even over periods of 
months or several years [12, 19, 23, 24]. However, there 
does appear to be relatively high between-individual 
variance in blood INSL3, with most population studies 
suggesting at least a 10-fold variation between the 
highest and lowest values in community-living adult 
men [24–26]. We have very little understanding of the 
sources of such variation, although, unadjusted, INSL3 
does indicate small though significant correlations with 
obesity, bone health, cardiovascular disease, diabetes, 
and related age-dependent morbidity [10]. The extent 
to which INSL3 may be causally related to these condi-
tions, or merely reflects levels of androgen production, 
is also not clear. Nor do we know the extent to which 
Leydig cell functional capacity is itself modulated by 
these morbidities.

We have recently shown that low circulating INSL3 
not only correlates closely with hypogonadism but is 
able prospectively to predict morbidity in aging men 
several years later [10]. The present study has two 
objectives: firstly, to use previously published data, 
their re-analysis, and some new findings to assess 
potential sources of technical and biological variance 
in INSL3 measurement. This is essential when consid-
ering the utility of INSL3 as a biomarker of Leydig cell 
functional capacity, and hence of Leydig cell insuffi-
ciency (LCI), thereby providing an alternate and add-
itional biochemical measure of primary hypogonadism. 
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A second objective is the definition of a reference 
range for INSL3 in adult men, and a threshold below 
which LCI or primary hypogonadism pertains.

Methods and materials

Human subjects and studies

Table 1 lists published studies carried out on commu-
nity-dwelling adult men, including studies where these 
are represented as control groups of greater than 25 
individuals. The present analysis focuses on population 
studies where INSL3 has been measured using time- 
resolved fluorescent immunoassay (TRFIA); these 
include the Florey Adelaide Male Aging Study (FAMAS) 
and the European Male Aging Study (EMAS), for both 
of which the principal methods and data are already 
published [24, 25]. Additional data derive from a cohort 
of 18-year-old military conscripts from Sweden [26] and 
unpublished data from an additional analysis of the 
HUSERMET (Human Serum Metabolome) cohort com-
prising middle aged and elderly men from the Greater 
Manchester area of the UK [27]. This includes 116 men 
of Afro-Caribbean and 133 men of South Asian descent, 
as well as 281 Caucasian men. Full descriptive statistics 
of these men are provided in Eendebak et al. [27]; there 
were no significant differences in mean anthropometric 
variables between ethnicities.

Measurement of INSL3

As outlined in Table 1, most population studies for 
which circulating INSL3 has been measured have 
employed one of three different assay systems. Phoenix 

Pharmaceuticals (Burlingame, CA) has produced essen-
tially the same assay, but in two different formats: as a 
competitive radio-immunoassay (RIA) using 125I-labelled 
human INSL3 as tracer and as an enzyme-linked 
immunometric assay (EIA). Both use the same single 
primary anti-human INSL3 polyclonal antibody raised 
in rabbits. Details of these immunoassays are pro-
vided by the manufacturer. Secondly, there is a time- 
resolved fluorescence immunoassay (TRFIA) devel-
oped in the Anand-Ivell & Ivell laboratory which also 
uses a single primary antibody competitive format 
with Europium-labelled human INSL3 as tracer [14, 
24, 25]. Whilst an earlier version of this assay used an 
anti-human INSL3 polyclonal antibody raised in rats 
(version 1) the current version uses a different anti- 
human INSL3 polyclonal antibody raised in rabbits 
(version 2). Full details of these assays are provided 
in the respective publications (see Table 1). Finally, a 
new assay based on LC-MS/MS separation of the A-B 
heterodimeric human INSL3 hormone was developed 
by Albrethsen et al. [28]. A comparative analysis of 
individual samples showed that this gave virtually 
identical results to the TRFIA described above [28].

Whilst most studies have assayed INSL3 directly in 
serum, a few have instead used blood plasma; an ini-
tial report [12] had indicated no significant difference 
between the two matrices. To explore this further, 
blood samples were made available from six European 
centres of the EMAS cohort (Leuven, Lodz, Malm€o, 
Manchester, Santiago de Compostela, and Tartu). Of 
these, the majority were plasma samples from individ-
uals in the six community-dwelling populations, while 
paired plasma and serum samples (collected at the 

Table 1. INSL3 Concentrations in diverse control populations of community-dwelling adult men measured using different assays.
code matrix number of subjects age (mean ± SD/range) ethnicity country assay type/source INSL3 (mean ± SD/range) reference

1 serum 40 29.4 ± 3.4 Caucasian Italy RIA (Phoenix) 0.56 ± 0.16 [17]
2 serum 135 19 (18-25)a Caucasian Denmark TRFIA version 1 0.99 (0.55-1.73)b [14]
3 serum 1183 55.0 ± 11.6 Caucasian Australia TRFIA version 1 35-44 yrs: 1.29 ± 0.47 

75-80 yrs: 0.79 ± 0.39
[25]

4 serum 30 54.4 ± 7.0 Caucasian Italy EIA (Phoenix) 1.5 ± 0.7 [30]
5 serum 32 24.4 ± 3.0 Caucasian France EIA (Phoenix) 0.75 (0.39-1.13)c [31]
6 serum 71 30.0 ± 9.0 Caucasian Italy RIA (Phoenix) 0.66 ± 0.28 [32]
7 serum 500 29.1 (23.0-38.0)b Chinese China RIA (Phoenix) 0.94þ 0.30 [33]
8 plasma 35 32.3 ± 0.6d Chinese Taiwan RIA (Phoenix) 0.64 ± 0.06d [34]
9 serum 111 

98
19-50 
70-90

Caucasian 
Caucasian

New Zealand EIA (Phoenix) young: 1.8 ± 1.1 
old: 1.0 ± 1.0

[35]

10 plasma 37 32.7 ± 0.6d Chinese Taiwan RIA (Phoenix) 0.64 ± 0.43d [36]
11 serum 60 33.7 ± 9.7 Caucasian Italy RIA (Phoenix) 0.46 ± 0.18 [37]
12 serum 675 17.8 − 60.9a Caucasian Denmark LC-MS/MS 19-40 yrs: 1.3 (0.9-2.7)b

51-60 yrs: 1.2 (0.9-2.5)b
[19]

13 serum 302 
43

18.2 ± 0.4 
39.0 ± 6.1

Caucasian 
Caucasian

Sweden 
Australia

TRFIA version 2 2.15 ± 0.86 
1.78 ± 0.82

[26]

14 serum 886 31.3 ± 3.8 Chinese China EIA (Phoenix) 1.67 (0.11-4.77)a [38]
15 serum 2283 63.0 ± 10.5 Caucasian mixed European TRFIA version 2 0.99 ± 0.50 [24]
arange.
b95% CI.
c5/95th percentiles.
dgeometric mean.
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same time) from 8 individuals and duplicate serum 
samples from 13 individuals were also available. All 
samples of serum or plasma were stored frozen at 
−80 �C until analysis. Independent control experiments 
had previously shown no effect of freezing over 
extended periods on INSL3 concentration and up to at 
least 3 complete freeze-thaw cycles [12].

Assessment of hypogonadism

Besides the hormones of the HPG axis, as a surrogate 
for the consequences of functional hypogonadism in 
the EMAS cohort, we applied the Overall Sexual 
Function (OSF) parameter from the EMAS Sexual 
Function Questionnaire [29]. This represents multiple 
attributes of erectile dysfunction and loss of libido on 
a scale from 1 to 33. Men with high T (>97.5% CI) or 
high cFT (>97.5% CI) registered a mean of 17 ± 6 or 
20 ± 5 on this scale, respectively; similarly, those aged 
40-49 years registered a mean of 20 ± 5. Both represent 
eugonadal states. In contrast, those with very low T 
(<2.5% CI) or cFT (<2.5% CI), and thus likely hypo-
gonadal, indicated means of 12 ± 7 or 11 ± 7, respect-
ively. Here an OSF of �16 (25th percentile) was used 
as discriminant for poor sexual function.

Statistical analysis

All data derive from the Swedish, FAMAS and EMAS 
cohorts as described previously [24–26] or were ana-
lysed for INSL3 as in Anand-Ivell et al. [24]. Where indi-
cated, for comparative purposes some data are 
represented as means and 95% confidence intervals 
(CI) for an “average man of 65 years”, derived by inter-
polation from INSL3 vs age regressions. All new 
regressions, interpolations, and descriptive statistics 
made use of Graphpad Prism (version 10.1), or for 
non-parametric Receiver Operated Curve (ROC) ana-
lysis SPSS (version 29.0.20) was used, as indicated in 
the text and figure legends.

Results and discussion

In any discussion of a new diagnostic it is important 
to understand the sources of technical and biological 
variance encountered and how these might influence 
results.

Available INSL3 assays

The majority of studies worldwide have used one of 
three different assays to measure INSL3 in community- 

dwelling adult men. These assays are listed in Table 1
together with their principal attributes, literature refer-
ences, and approximate reference ranges based on 
simple population means, standard deviations, 95% 
confidence intervals or range. The studies indicating 
smaller numbers of subjects (codes 4-6,8,10,11 from 
Table 1) represent control groups of men used for 
comparison, with no evident attributes likely to affect 
INSL3 levels. Those data using either the TRFIA or LC- 
MS/MS assays show good concordance with one 
another. In contrast, those using the Phoenix assays 
appear to be more variable. Some (codes 1, 6, 8, 10 
and 11; Table 1; means 0.46 − 0.66 ng/ml) are markedly 
lower in the estimated mean INSL3 concentration, 
whereas others (codes 4, 5, 7 and 14; Table 1; means 
0.75 − 1.80 ng/ml) indicate values relative to age (see 
below), which are close to those measured by the 
TRFIA and LC-MS/MS assays (Table 1).

All assays have been validated to show no cross- 
reaction with any other insulin-like peptides or other 
measured substances, and none indicate a concentra-
tion for INSL3 greater than approximately 0.2 ng/ml in 
healthy female blood samples. One anorchic man was 
measured in the context of the FAMAS study and indi-
cated no detectable INSL3 [25]. Unlike in men, in 
women there are no major sources of INSL3 contribu-
ting to blood levels. The ovarian theca interna cells, 
which are the female equivalent of Leydig cells, only 
produce a small amount of INSL3 sufficient for local 
paracrine actions [39] and only in pre-menopausal 
women give rise to very low circulating concentrations 
fluctuating around the limit of assay detection [40]. 
This is important to note, since some less well vali-
dated INSL3 assays erroneously suggest that female 
blood may have similar concentrations to male blood 
(e.g. [41]).

Plasma or serum

Most studies have consistently used conventional 
blood serum rather than plasma, although earlier con-
trol samples suggested no significant difference in the 
assayed INSL3 concentration based on a small number 
of samples [12]. We have re-evaluated this using a 
larger number of samples from the EMAS cohort 
(Suppl. Figure 1). Firstly, duplicate serum samples 
drawn from the same individuals collected at the 
same time, though measured at different times, show 
excellent concordance (Suppl. Figure 1A), demonstrat-
ing the low level of technical variance inherent in the 
TRFIA assay. For the 8 samples from the same individ-
uals processed separately for plasma or serum (Suppl. 
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Figure 1B), there is greater variance, and although the 
mean values for the paired plasma and serum samples 
are not significantly different (p¼ 0.72; paired t test), it 
does suggest that plasma INSL3 on average represents 
approximately 90% of the concentration in serum. 
Finally, when population means are calculated for the 
different EMAS centres (total 2170 samples), adjusting 
for age by interpolation of age vs INSL3 regressions 
for a man of 65 years (Suppl. Figure 1C), then it is evident 
that use of plasma underestimates INSL3 concentration 
by approximately 10% (slope [serum INSL3]¼ 1.13 x 
[plasma INSL3]). The reason for this is unclear though 
may have to do with a differential partitioning of the 
peptide hormone between the aqueous and non-aque-
ous phases. When post-menopausal female serum, which 
has no detectable INSL3, is spiked with pure INSL3 pep-
tide, recovery rates are approximately 100%, implying 
that serum is not over-estimating INSL3 measurement 
[12] (and unpublished).

Effect of subject age

Although a recent study using an MS-based INSL3 
assay concluded that any effect of age on INSL3 con-
centration in men was negligible between 30 and 
60 years [19], we have consistently found a significant 
age-dependent decline in INSL3 concentration from 18 
to 90 years of age [24, 25]. For this reason, and for 
comparison in population studies, we prefer to nor-
malize the INSL3 mean to a representative individual 
of a standard age, such as 65 years [10, 24]. Conse-
quently, putative reference ranges (means and 95% CI) 
for INSL3 were also reported on a per decade basis 
(Figure 1), though see later. Figure 1 also illustrates 
the excellent concordance between the two large 
population cohort studies, FAMAS and EMAS, although 
measured 15 years apart using two different versions 
of the TRFIA assay. The results are also in good agree-
ment for the equivalent age ranges of the Danish 
study measured using LC-MS/MS (Figure 1; horizontal 
red dashed lines).

Ethnicity

To date, most studies using the INSL3 assays listed in 
Table 1 have involved almost exclusively white 
Caucasians, with just 3 involving ethnic Chinese sub-
jects. Although the assays used for these studies sug-
gested a high level of technical disparity (see above), 
it is difficult at this time to determine whether there 
may be any population differences in circulating INSL3 
concentration due to ethnicity. Partly to address this 

issue, we have retrospectively analysed two popula-
tions of South Asian and Afro-Caribbean extraction 
from the Greater Manchester area of the UK in com-
parison with the Manchester EMAS cohort, of 
Caucasian origin [27]. The age-adjusted results indicate 
no significant difference in means and 95% confidence 
intervals between the three ethnic groups (Suppl. 
Figure 2).

It was previously noted in the context of the EMAS 
cohort that there may be considerable variation in 
population means based on geography, despite essen-
tially similar ethnicity [24]. In that study, the difference 
between geographic centres could be attributed in 
large part to differences in health and lifestyle, with 
BMI or waist circumference and smoking being key 
contributory factors [24].

INSL3 in hypogonadal men

Hypogonadism is a clinical condition where Leydig cells 
are unable to produce sufficient T to maintain andro-
gen-dependent physiology. In childhood this is manifest 
as CHH (congenital hypogonadotropic hypogonadism) 
or constitutional delay of growth and puberty (CDGP) 
whereby mostly a failure of the HPG axis prevents 
puberty from progressing normally. In adult-onset hypo-
gonadism, varying degree of loss of androgen-depend-
ent sexual, anabolic and psychological functions and 

Figure 1. Means and 95%CI for different age groups derived 
from the Swedish [26], FAMAS [25] and EMAS [24] cohorts, as 
indicated. Each age-range is non-overlapping, i.e. 35-45 y rep-
resents subjects aged from 35.0 to 44.9 years, etc. The horizon-
tal black dotted line represents the 0.4 ng/ml threshold below 
which indicates hypogonadism. The horizontal red dashed 
lines indicate the means assessed by the LC-MS/MS method 
for a Danish cohort [19]. INSL3 concentration is represented as 
a Log2 scale.
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some secondary sexual characteristics are the hall-
marks. Classical hypogonadism can be differentiated 
into primary testicular (e.g. Klinefelter syndrome) 
or secondary hypothalamic-pituitary (e.g. pituitary 
tumours) hypogonadism depending on the nature 
and site of the pathology. INSL3 as well as T are low 
in these subjects [31, 42, 43]. In Klinefelter syndrome, 
INSL3 is also reduced during adolescence and young 
adulthood [44].

Hypogonadism may also develop in a minority of 
adult men as they become older (>65 – 70 years); this 
has been referred to as LOH (late-onset hypogonad-
ism) or functional hypogonadism when low (usually 
borderline low rather than in the frankly pathological 
hypogonadal range) T is associated with (non-specific) 
symptoms compatible with androgen deficiency but 
no recognisable pathology, as opposed to classical 
hypogonadism [1–3]. To improve understanding of the 
aging-related changes in HPG axis function, men with 
circulating morning T concentration below 10.5 nmol/l 
in EMAS were categorized as having primary or sec-
ondary biochemical hypogonadism where LH concen-
tration is either above or below normal (>9.4 U/l), 
respectively [4]. Compensated hypogonadism refers to 
the situation where T is in the normal range but LH is 
elevated (T> 10.5 nmol/l; LH > 9.4 U/l). In all three cat-
egories of biochemical hypogonadism, there is a sig-
nificant Leydig cell dysfunction indicated by low 
circulating INSL3 concentration (Figure 2A) compared 
to the eugonadal state [10]. However, a clinical diag-
nosis of LOH is problematic due to the weak relation-
ship between T concentration and the presence or 
absence of symptoms. To increase the precision and 
specificity for the diagnosis of functional hypogonad-
ism, it has been proposed that not only low total T, 
but also low cFT, should co-exist with multiple (three) 
sexual symptoms, since these appear to be most 
dependent on T [1–3]. However, part of the difficulty 
in using T to define functional hypogonadism is due 
to its biological variability within an individual, the 
wide range of variance between individuals, as well as 
the uncertainty surrounding the threshold level indica-
tive of a deficiency state, with a large borderline grey 
zone. Could the less variable INSL3 concentration offer 
a supporting parameter to define hypogonadism espe-
cially in elderly men with low T?

A significantly reduced INSL3 indicates that all 
types of hypogonadism, even if compensated (normal 
total T), have discernible Leydig cell functional insuffi-
ciency (LCI) (Figure 2A). Secondly, low INSL3 appears 
to be significantly associated with a greater number of 
age-dependent morbidities, when these are assessed 

Figure 2. A. Interpolated 65-year-old means and 95% CI cal-
culated from age vs INSL3 regressions for subjects assessed 
as being eugonadal (T> 10.5 nmol/l; LH � 9.4 nmol/l), pri-
mary hypogonadal (T� 10.5 nmol/l; LH > 9.4 nmol/l), sec-
ondary hypogonadal (T� 10.5 nmol/l; LH � 9.4 nmol/l), or 
compensated hypogonadal (T> 10.5 nmol/l; LH > 9.4 nmol/l) 
according to the criteria of Tajar et al. [4]. Different lower- 
case lettering indicates significant difference at p< 0.05 
(from [10]). B. Individual INSL3 values from the second 
phase of the EMAS cohort from all centres plotted against 
age. INSL3 concentration is represented as a Log2 scale. The 
magenta slope indicates the significant regression approxi-
mating a decline in INSL3 of approximately 14% per decade. 
The black horizontal dashed line indicates the proposed 
0.4 ng/ml threshold below which hypogonadism is prevalent 
(from [24]).
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4-5 years later, than does T, suggesting that INSL3 
may be a better predictor of such illness [10] (Figure 
3). cFT is similar to INSL3 in this regard [10]. This is 
particularly true for overall sexual dysfunction where 
T is not at all predictive at a population level [10] 
(Figure 3).

A serum concentration of 0.4 ng/ml INSL3 repre-
sents the lower 95% CI (2 SD) for men aged 60- 
65 years, the average age of the EMAS cohort 
(Figures 1 and 2B) and is close to the mean for those 
identified as having primary biochemical hypogonad-
ism (0.53 ng/ml; Figure 2A). The mean circulating T 
and cFT concentrations of those individuals in the 
EMAS cohort (n¼ 117) with INSL3� 0.4 ng/ml were 
11.9 ± 6.4 nmol/l and 191 ± 132 pmol/l, respectively; 
i.e. close to the biochemical criteria used to help 
identify functional hypogonadism in the EMAS cohort 
(T< 10.4 nmol/l and cFT <220 pmol/l) [3]. Within the 
EMAS cohort, none of the community-dwelling men 
aged �50 years exhibited INSL3 levels lower than 
0.4 ng/ml, whereas 11.3% showed such low INSL3 in 
the age group �70 years, and only 5% in the cohort 
overall. We therefore suggest �0.4 ng/ml INSL3 as a 
threshold to define clinical LCI and hence a primary 
biochemical hypogonadism (Figure 4). Interestingly, if 
such individuals are discounted from the EMAS 
cohort, the remainder no longer exhibits a significant 
age-dependent decline in INSL3, allowing this 
residual cohort to have a single reference range (95% 
CI; serum) for men aged >35 years of (0.4-2.3 ng/ml), 

which is comparable to that proposed for the 
younger and smaller Danish cohort using the MS 
methodology (0.9-2.7 ng/ml; age 18-60 years) [19].

ROC analysis (Suppl. Figure 3) for INSL3, T and cFT 
using an OSF value of �16 (25th percentile) as discrim-
inator for reduced sexual function and surrogate for 
the physiological effects of hypogonadism, confirms 
that INSL3 is as good as cFT, and considerably better 
than T, in diagnosing reduced sexual function (see 
also Figure 4). However, the Area Under the Curve 
(AUC) results (Suppl. Figure 3), like those for the false 
positive and false negative rates (Table 2), emphasize 
that no hormone parameter individually is good at 
identifying the physiological consequences of hypo-
gonadism. If we inspect the borderline “grey zone” of 
T values 10.5< 15.0 nmol/l from the EMAS cohort, 
then while cFT �220 pmol/l could recruit a further 
10% of those EMAS subjects with an OSF �16, INSL3 
at 0.4 ng/ml or 0.5 ng/ml fails to recruit more than a 
further 5%, implying that INSL3 appears less suitable as 

Figure 3. Unadjusted Odds Ratios for the association of low 
phase 1 INSL3, T, or cFT concentrations with the incidence of 
various morbidities, as indicated, in the EMAS cohort in phase 
2, mean 4.3 years later (adapted from [10]). Abbreviations: BDI, 
Beck Depression Index; PASE, Physical Activity Scale for the 
Elderly; CVD, cardiovascular disease; BMD, bone mineral dens-
ity; SFQ-osf, sexual function questionnaire – overall sexual 
function.

Figure 4. Violin plots of the Overall Sexual Function (OSF) 
index [29], with means and quartiles (red dashed and dotted 
horizontal lines within the violins), for phase 2 of the EMAS 
cohort comparing different thresholds of INSL3, testosterone 
(T), or calculated free T (cFT) (as indicated on the x-axis). No 
shading indicates subjects below the threshold (hypogonadal), 
grey shading above the threshold (eugonadal). The black hori-
zontal dashed line shows the 25th OSF percentile for all sub-
jects. See text for further details.

Table 2. Comparisons of INSL3, testosterone (T), and calcu-
lated free T (cFT) as leydig cell biomarkers to discriminate 
men with functional hypogonadism (hypogonadism with sex-
ual symptoms) from the eugonadal population (using data 
from phase 2 of the EMAS cohort). The OSF threshold was set 
at the 25th percentile (OSF index �16).

discriminator % hypogonadal
OSF  

threshold
false  

positive
false  

negative

INSL3 (�0.4 ng/ml) 5.0% 25% (16) 41.0% 24.1%
INSL3 (�0.5 ng/ml) 10.8% 25% (16) 49.3% 22.8%
T (�10.5 nmol/l) 14.3% 25% (16) 62.4% 23.3%
cFT (<220 pmol/l) 14.7% 25% (16) 59.0% 21.5%
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an additive discriminating parameter for functional 
hypogonadism, though may serve as an alternative to T 
or cFT.

In extreme situations such as recovery from ana-
bolic steroid misuse, or application of a male steroidal 
contraceptive regimen, where even though the 
endogenous T concentration may become normalized 
after several weeks’ cessation of steroid application, 
INSL3 concentration remains significantly below pre- 
treatment levels even after many months [45, 46]. This 
indicates that although LH can acutely compensate to 
increase T levels, there is insufficient effect on Leydig 
cell functional capacity to restore these cells to their 
pre-treatment differentiation status and/or numbers. In 
young men this may be only a matter of time; in older 
men or those with incipient morbidity, such loss of 
Leydig cell functional capacity may be longer-lasting 
or even permanent and may therefore premise 
increased morbidity as these individuals age. This 
could be particularly concerning in those middle-aged 
and elderly men undertaking T-therapy. Future studies 
will need to consider potential long-term loss of 
Leydig cell functional capacity and LCI in this context.

A further situation of relevance is the application of 
lifestyle change and weight-loss programs to improve 
health outcomes; although circulating T may be 
restored to normal levels, the lack of change in INSL3 
resulting from such interventions suggests that LCI 
may persist [24, 47], with associated increased risk of 
later morbidity. Moreover, Leydig cells not only pro-
duce T, but also promote circulating INSL3 and vita-
min D hydroxylation, both independently important 
for bone and skeletal muscle metabolism [48, 49], 
besides supporting spermatogenesis and fertility, and 
other possible functions [50].

Concluding remarks

INSL3 offers a direct assessment of Leydig cell func-
tional capacity, independent of hypothalamic-pituitary 
feedback regulation. Hence low INSL3 or LCI can 
potentially contribute to the diagnosis of primary 
hypogonadism. Low circulating INSL3 correlates with 
age-dependent morbidity (Figure 3), including sexual 
symptoms (see also ROC analysis), and suggests that 
INSL3 could act as a further discriminator of functional 
hypogonadism. Even where T levels are considered 
normal as in compensated hypogonadism, INSL3 levels 
may still be significantly low, as also in secondary 
hypogonadism, and thus predictive of future age- 
related morbidity (Figure 3). Further research is 
needed, particularly in large clinical trials and cohort 

studies, to elaborate how INSL3 might best be used as 
a diagnostic or prognostic biomarker in the evaluation 
of hypogonadism and its treatment by androgen 
therapy.
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