1,649
Views
3
CrossRef citations to date
0
Altmetric
Articles

Mathematical modelling of a domestic heating system with stratified storage tankFootnote

, &
Pages 231-248 | Received 30 Oct 2006, Accepted 17 Aug 2007, Published online: 08 Apr 2008
 

Abstract

A hybrid distributed parameter model of a heating system for domestic hot water is presented in this paper. This heating system comprises a condensing boiler (burner), a counter current heat exchanger, and a so-called stratified storage tank which is the state of the art domestic hot water storage unit. The paper presents the model for the different operational modes of the plant which are described by a finite state automaton representing the discrete-event dynamics and driving the underlying continuous-time dynamics of the storage tank, the heat exchanger, and the burner. These interconnected components are modelled by a system of six coupled, quasi-linear partial differential equations (PDEs) comprising diffusion-, convection-, and source terms. In order to perform numerical simulations, the set of PDEs is spatially discretized using the method of lines. Thereby, the influence of various discretization schemes on the temporal evolution of the traveling temperature profiles in the single components is investigated. A high resolution slope limiter scheme for the stratified storage tank and a higher order up–/downwind scheme for the heat exchanger and the burner are found to be an appropriate choice for the spatial discretization of the model equations in order to adequately cover the plant dynamics. Simulation results fortify the effectiveness of the chosen discretization schemes and show the excellent performance of the suggested model representing the measurement data.

Notes

Revised and expanded version of a paper presented at the 5th Vienna International Conference on Mathematical Modelling (5th Mathmod), Vienna, Austria, 2006.

1. The MATLAB - ode23tb solver is used for the time-integration of the discretized PDEs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.