631
Views
0
CrossRef citations to date
0
Altmetric
Articles

Modelling within-team relative phase couplings using position derivatives in Australian rules football

ORCID Icon, ORCID Icon & ORCID Icon
Pages 372-383 | Received 15 Mar 2016, Accepted 27 May 2017, Published online: 06 Jun 2017
 

ABSTRACT

Several approaches to the modelling of interpersonal movement coordination in sports, inspired by dynamical systems, have leveraged relative proximity to fixed ground points, such as the court midline to represent the phasic characteristics of movement in competition. While these approaches are useful in highly constrained sports such as tennis and squash, Australian football (AF) is played on a much larger playing area (approximately 150 m × 100 m) and is characterized by a ‘rolling scrum’ of interpersonal contests. Consequently, a different approach to modelling pairwise movement coordination is required. We propose a method that encodes interpersonal movement coordination using relative phase properties derived from angular velocity and acceleration. We demonstrate that these properties encode the level of temporal alignment of changes in running speed and direction between player pairs. This approach is illustrated using exemplar data from AF and explores net pairwise movement coordination within and between teams, and as a function of match duration.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.