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ABSTRACT 
Objectives: Hemodynamic gain index (HGI), a novel hemodynamic index obtained from cardiopulmon
ary exercise testing (CPX), is associated with adverse cardiovascular outcomes. However, its specific 
relationship with ventricular arrhythmias (VAs) is unknown. We aimed to assess the association of HGI 
with risk of VAs in a prospective study. Design: Hemodynamic gain index was estimated using heart 
rate and systolic blood pressure (SBP) responses ascertained in 1945 men aged 42–61 years during 
CPX from rest to maximum exercise, using the formula: [(Heart ratemax x SBPmax) – (Heart raterest x 
SBPrest)]/(Heart raterest x SBPrest). Cardiorespiratory fitness (CRF) was measured using respiratory gas 
exchange analysis. Hazard ratios (HRs) (95% confidence intervals, CIs) were estimated for VAs. Results: 
Over a median follow-up duration of 28.2 years, 75 cases of VA were recorded. In analysis adjusted for 
established risk factors, a unit (bpm/mmHg) higher HGI was associated with a decreased risk of VA 
(HR 0.72, 95% CI: 0.55–0.95). The results remained consistent on adjustment for lifestyle factors and 
comorbidities (HR 0.72, 95% CI: 0.55–0.93). Comparing the top versus bottom tertiles of HGI, the corre
sponding adjusted HRs (95% CIs) were 0.51 (0.27–0.96) and 0.52 (0.28–0.94), respectively. The associa
tions were attenuated on addition of CRF to the model. HGI improved risk discrimination beyond 
established risk factors but not CRF. Conclusions: Higher HGI is associated with a reduced risk of VAs in 
middle-aged and older Caucasian men, but dependent on CRF levels. Furthermore, HGI improves the 
prediction of the long-term risk for VAs beyond established risk factors but not CRF.
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Introduction

Cardiovascular diseases (CVDs) remain a leading cause of 
global morbidity and mortality, with ventricular arrhythmias 
(VAs) emerging as a significant contributor to this burden 
[1]. Ventricular arrhythmias represent a complex group of 
cardiac disorders that encompass premature ventricular con
tractions, ventricular tachycardia (VT), and ventricular fib
rillation (VF) [1]. These ventricular arrhythmic events can 
lead to sudden cardiac death, a catastrophic event with pro
found societal and individual implications [1]. Established 
risk factors for VAs include structural heart disease, previ
ous myocardial infarction, hypertension, smoking, obesity, 
and diabetes [2]. Despite advances in identifying these risk 
factors, the occurrence of VAs remains unpredictable in a 
substantial proportion of cases. Consequently, there exists 
an unmet need to discover additional risk factors that could 
enhance the precision of risk stratification and facilitate tar
geted interventions to mitigate the incidence of VAs.

Cardiopulmonary exercise testing (CPX) has emerged as 
a valuable tool in assessing cardiovascular function and 
involves the systematic evaluation of an individual’s physio
logical response to incremental exercise stress [3]. 
Parameters such as heart rate and blood pressure responses, 
in conjunction with cardiorespiratory fitness (CRF) as meas
ured using peak oxygen uptake (VO2peak), provide critical 
insights into cardiovascular health and prognosis [4–6]. A 
growing body of evidence has demonstrated an inverse rela
tionship between CRF and adverse cardiovascular outcomes, 
including VAs [7–10]. Individuals with higher CRF levels 
tend to exhibit better cardiovascular health, reduced inci
dence of cardiovascular events, and improved overall 
survival.

The Hemodynamic Gain Index (HGI) has emerged as an 
innovative index derived from the combined assessment of 
exercise heart rate and systolic blood pressure (SBP) 
responses during CPX [11]. It represents a novel approach 
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that captures the dynamic interaction between cardiovascu
lar responses to exercise stress, reflecting the efficiency of 
the cardiovascular system in adapting to increased demands. 
Recent research has underscored the predictive capabilities 
of HGI for adverse cardiovascular outcomes such as cardio
vascular mortality, sudden cardiac death, heart failure and 
all-cause mortality [11–16], offering a promising avenue for 
refining risk assessment strategies. While HGI has shown 
promise in predicting these major adverse cardiovascular 
outcomes, its relationship with the specific endpoint of VAs 
has not been explored. This prospective cohort study aims 
to fill this knowledge gap by investigating the potential link 
between HGI and the risk of VAs. We also assessed HGI’s 
ability to predict and reclassify the long-term risk of VAs 
beyond established cardiovascular risk factors.

Materials and methods

We conducted this study in accordance with STROBE 
(STrengthening the Reporting of OBservational studies in 
Epidemiology) guidelines for reporting observational studies 
in epidemiology (Supplementary Material 1). The Kuopio 
Ischemic Heart Disease (KIHD) study, a general population- 
based prospective cohort study designed to evaluate poten
tial risk factors for CVD outcomes and other related chronic 
diseases, was employed for this analysis. The study included 
a representative sample of 2682 men aged 42–61 yr who 
were recruited from the city of Kuopio and its surrounding 
rural communities in eastern Finland [12, 13, 17]. A total of 
1945 men with non-missing information on HGI, potential 
confounding variables, and VAs were included in the pre
sent analysis (Supplemental Material 2). All VAs that 
occurred from study enrollment to 12/31/2018 were 
included. Baseline assessments, questionnaire administration 
and physical examinations took place between March 1984 
and December 1989. Ethical approval for the study protocol 
was sought from the institutional review board of the 
University of Eastern Finland (reference #:143/97) on 
December 1, 1983, all participants provided written 
informed consent and all study procedures were conducted 
according to the Declaration of Helsinki.

For the assessment of HGI and other CPX measures, a 
maximal symptom-limited cycle exercise test was conducted 
between 8:00 and 10:00 am using an electronic braked cycle 
ergometer as described in previous reports [10, 18–20]. 
Cardiorespiratory fitness was measured using VO2peak, 
which was directly assessed using a computerized metabolic 
measurement system (Medical Graphics, USA). The standar
dized testing protocol included a 3-min warm-up at 50 
watts (W; 1 W¼ 6.12 kgm/min), which was followed by 
20 W/min increases in workload with direct analyses of 
expired respiratory gases. Respiratory gas exchange was 
measured by the breath-by-breath method, which involved 
breath sample collection via a face-mask. The respiratory 
gas analyzer expressed VO2peak as an average value recorded 
over 8 s. Peak oxygen uptake was defined as the highest or 
peak attained value for oxygen consumption, expressed as 
mL/kg/min [10, 17]. Electrocardiographic indices, blood 

pressure, and heart rate were measured both at rest and 
during the exercise testing phase [12, 13]. The HGI was 
derived from the following formula: ([Heart ratemax x 
SBPmax] – [Heart raterest x SBPrest])/(Heart raterest x SBPrest) 
[11]. The diagnostic classification of VAs was coded accord
ing to ICD-9 codes (427.41) or ICD-10 codes (I47.2, I49.0) 
codes. The definition of non-sustained or sustained VT and/ 
or VF was based on electrocardiography, which was ascer
tained from hospital documents [21]. Documents were 
cross-checked in detail by two physicians. The Independent 
Events Committee, masked to clinical data, performed clas
sification of outcomes.

Hazard ratios (HRs) with 95% CI for VA were estimated 
with multivariable Cox proportional hazards models after 
confirming no major departure from the assumptions of the 
proportionality of hazards using Schoenfeld residuals [22]. 
Given no evidence of a non-linear relationship with various 
adverse cardiovascular outcomes [12, 13], HGI was mod
elled as a continuous [per unit (bpm/mmHg) increase] vari
able, with subsidiary modelling using tertiles. Given the low 
event rate and to avoid over-adjustment, HRs were adjusted 
for in four models: (Model 1) age (years); (Model 2) model 
1 plus total cholesterol, high-density lipoprotein cholesterol 
(HDL-C), body mass index (BMI), history of hypertension 
and alcohol consumption; (Model 3) age, smoking status, 
prevalent type 2 diabetes (T2D), prevalent coronary heart 
disease (CHD) and physical activity; and (Model 4) age, 
smoking status, prevalent T2D, hypertension and CHD, and 
CRF. The covariates were selected based on their previously 
established roles as risk factors for VAs, evidence from pre
vious research [12, 13], previously published associations 
with VAs in the KIHD study [10], or their potential as con
founders based on known associations with VAs and 
observed associations with HGI using the available [23]. 
Given the high mortality rate in the KIHD cohort, we con
ducted additional analyses to estimate the baseline cumula
tive subhazard of VA considering mortality as a competing 
outcome to VAs. We used the competing-risks extension of 
the Cox proportional hazards models, as proposed by Fine 
and Gray [24]. To evaluate whether adding information on 
HGI to established risk factors for VAs is associated with 
improvement in risk prediction, we calculated measures of 
discrimination (Harrell’s C-index [25] and −2 log likeli
hood[26, 27] and reclassification [28, 29]. To investigate the 
change in C-index on the addition of HGI, two VA risk 
prediction models were fitted: one model based on trad
itional risk factors (i.e. age, smoking status, prevalent T2D, 
hypertension and CHD, and physical activity) and the 
second model with these risk factors plus HGI. We also 
tested for differences in the −2 log likelihood of prediction 
models with and without inclusion of HGI; it is a more sen
sitive measure when evaluating the added predictive value 
of a new measurement [26, 27]. Reclassification was assessed 
using the category-free version of net-reclassification- 
improvement (NRI) [28, 29] and the integrated-discrimin
ation-improvement (IDI) [28] by comparing the model con
taining traditional risk factors to the predicted risk from the 
model containing traditional risk factors plus HGI. We 
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repeated the process for a model comprising age, smoking 
status, prevalent T2D, hypertension and CHD, plus CRF. A 
p value of � 0.05 was deemed statistically significant. All 
statistical analyses were performed using Stata version MP 
18 (Stata Corp).

Results

Baseline characteristics

The overall mean ± standard deviation (SD) age at baseline 
for the 1945 men was 53 ± 5 years, while the mean ± SD HGI 
and CRF was 2.53 ± 1.05 bpm/mmHg and 30.5 ± 7.9 mL/kg/ 
min, respectively. Hemodynamic measures such as resting 
heart rate, peak SBP, heart rate recovery, and diastolic blood 
pressure recovery were similar between those who developed 
or did not develop VAs at the end of follow-up duration. 
Those who developed VAs were older; more likely to have 
lower levels of HGI, CRF and peak heart rate; higher levels 
of resting SBP and SBP recovery; and have pre-existing 
hypertension (Table 1).

Associations of HGI with VA

Over a median (IQR) follow-up duration of 28.2 (18.7, 31.3) 
years, 75 cases of VA occurred. In analysis adjusted for age, 
each 1 unit increase in HGI was associated with a lower risk 
of VA (HR 0.68, 95% CI: 0.53–0.87) (Figure 1-Model 1), 
which was minimally attenuated to (HR 0.72, 95% CI: 0.55– 
0.95) on further adjustment for total cholesterol, HDL-C, 
BMI, history of hypertension and alcohol consumption 
(Figure 1-Model 2). The results remained consistent in a 
third model that adjusted for age, smoking status, prevalent 
T2D and CHD, and physical activity (Figure 1-Model 3). 
When physical activity was replaced with CRF in the third 
model, the HR (95% CI) was attenuated to 0.82 (0.61–1.11) 
(Figure 1-Model 4). Alternatively, comparing the top versus 
bottom tertiles of HGI, the corresponding adjusted HRs 

(95% CIs) for VA were 0.46 (0.26–0.81), 0.51 (0.27–0.96), 
0.52 (0.28–0.94) and 0.69 (0.35–1.34), respectively (Figure 
1). A total of 1191 deaths occurred during follow-up and 58 
individuals died before experiencing VA. In analyses includ
ing mortality as a competing risk event, the subhazard of 
VA was (SHR 0.71, 95% CI: 0.41–1.23) per unit increase 
in HGI.

HGI and VA risk prediction

A VA risk prediction model containing traditional risk fac
tors (age, smoking status, prevalent T2D, hypertension and 
CHD, and physical activity) yielded a C-index of 0.6443 
(95% CI: 0.5826 to 0.7061). After addition of information 
on HGI, the C-index was 0.6701 (95% CI: 0.6081 to 0.7322), 
representing a modest increase of 0.0258 (95% CI: −0.0095 
to 0.0611; p¼.15). The −2 log likelihood was significantly 
improved on addition of HGI to the risk model (p for 
comparison¼.012). The continuous NRI and IDI were 
49.17% (95% CI: −6.92 to 105.27; p¼.086) and 0.0044 
(0.0009 to 0.0079; p¼.014), respectively.

A VA risk prediction model containing traditional risk 
factors (age, smoking status, prevalent T2D, hypertension 
and CHD) plus CRF yielded a C-index of 0.6766 (95% CI: 
0.6159 to 0.7374). After addition of information on HGI, 
the C-index was 0.6859 (95% CI: 0.6258 to 0.7460), repre
senting a non-significant increase of 0.0092 (95% CI: 
−0.0097 to 0.0282; p¼.34). The −2 log likelihood was not 
significantly improved on addition of HGI to the risk model 
(p for comparison¼.20). The continuous NRI and IDI were 
−28.67% (95% CI: −85.35 to 28.01; p¼.32) and 0.0007 
(-0.0011 to 0.0026; p¼.44), respectively.

Discussion

In this prospective evaluation of the association between 
HGI and risk of VAs in a cohort of middle-aged and older 

Table 1. Baseline characteristics of study participants overall and by ventricular arrhythmias.

Characteristics
Overall (n¼ 1945) 

Mean ± SD or median (IQR)

With VA (n¼ 75) 
Mean ± SD or 
median (IQR)

Without VA (n¼ 1870) 
Mean ± SD or 
median (IQR) p value

Hemodynamic gain index, bpm/mmHg 2.53 ± 1.05 2.24 ± 0.98 2.54 ± 1.06 0.017
CRF, mL/kg/min 30.5 ± 7.9 28.5 ± 7.2 30.6 ± 8.0 0.026
Resting heart rate on bicycle, bpm 62 ± 11 62 ± 11 62 ± 11 0.99
Peak heart rate on bicycle, bpm 155 ± 25 150 ± 28 156 ± 25 0.044
Resting SBP on bicycle, mmHg 150 ± 22 156 ± 25 150 ± 22 0.011
Peak SBP on bicycle, mmHg 203 ± 28 203 ± 32 203 ± 27 0.90
Heart rate recovery in 2 min, bpm 183 ± 28 187 ± 31 183 ± 27 0.21
SBP 2 min recovery, mmHg 91 ± 16 97 ± 13 91 ± 16 0.002
DBP 2 min recovery, mmHg 38 ± 13 36 ± 15 38 ± 13 0.29
Age, yr 53 ± 5 54 ± 4 53 ± 5 0.035
Body mass index, kg/m2 26.9 ± 3.4 27.2 ± 3.0 26.9 ± 3.5 0.45
Alcohol consumption, g/week 32.4 (6.4, 93.5) 33.2 (9.1, 78.6) 32.4 (6.4, 94.0) 0.95
Physical activity, KJ/day 1179 (628, 1988) 1360 (617, 2171) 1177 (630, 1962) 0.57
Current smoking 622 (32.0%) 22 (29.3) 600 (32.1%) 0.62
History of type 2 diabetes 69 (3.6%) 4 (5.3%) 65 (3.5%) 0.39
History of hypertension 580 (29.8%) 30 (40.0%) 550 (29.4%) 0.049
History of coronary heart disease 452 (23.2%) 23 (30.7%) 429 (22.9%) 0.12
Total cholesterol, mmol/l 5.92 ± 1.08 6.09 ± 1.22 5.91 ± 1.08 0.16
High-density lipoprotein cholesterol, mmol/l 88.2 ± 17.0 1.22 ± 0.30 1.28 ± 0.30 0.090

BMI, body mass index; CRF, cardiorespiratory fitness; DBP, diastolic blood pressure; IQR, interquartile range; SD, standard deviation; SBP, systolic blood pressure; 
VA, ventricular arrhythmia.
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Finnish men aged 42–61 years, HGI was strongly and 
inversely associated with the future risk of VAs, which was 
independent of several established and emerging risk factors, 
but was partly dependent on CRF levels. Given the high 
mortality rate in our study cohort which might have hin
dered VA development (n¼ 17 VA events available for ana
lysis), the association between HGI and VAs was less robust 
when mortality was adjusted for as a competing risk event. 
This was also not a surprising finding as HGI is independ
ently associated with mortality in the cohort. Furthermore, 
risk prediction analyses suggested that HGI may improve 
the discrimination but not reclassification of long-term VAs 
in the general population beyond common established risk 
factors. However, HGI did not improve risk discrimination 
or reclassification beyond established risk factors plus CRF 
levels.

This is the first evaluation of the nature and magnitude 
of the prospective association between HGI derived from 
CPX and VA risk, as well as the potential utility of HGI in 
VA risk prediction. However, an emerging number of stud
ies have evaluated associations between this novel index and 
other adverse cardiovascular outcomes [11–15]. In the pio
neering clinical and statistical validation studies by 
Vainshelboim and colleagues, it was shown that higher HGI 

was associated with a lower risk of all-cause mortality in 
men and women, which was independent of potential con
founders and remained robust in several sensitivity analyses 
[11, 14]. In another related study, Chaikijurajai and col
leagues showed that lower HGI was independently associ
ated with an increased risk of all-cause mortality, and this 
association persisted in subgroups of men, women, and 
patients with and without heart failure, CHD, and beta
blocker use [15]. Vainshelboim and Myers have recently 
shown higher HGI to be associated with a lower risk of 
heart failure incidence [16].

The robust association between the HGI and the risk of 
VAs can be attributed to the intricate interplay of cardiovas
cular responses that HGI encapsulates. HGI, derived from 
the dynamic interaction between exercise-induced heart rate 
and SBP responses, offers insights into the compliance of 
the vasculature and efficiency of the cardiovascular system’s 
adaptation to increased demands [11]. This efficiency 
reflects not only the integrity of autonomic regulation but 
also the compensatory mechanisms that maintain hemo
dynamic stability during exercise stress. Dysfunction in car
diac autonomic nervous system control, as manifested by 
aberrant heart rate and blood pressure responses, may sig
nify an underlying substrate of sympathetic overactivity or 

Figure 1. Association of hemodynamic gain index with ventricular arrhythmias. 
HGI, hemodynamic gain index; ref, reference; 
Model 1: Adjusted for age; 
Model 2: Model 1 plus total cholesterol, high-density lipoprotein cholesterol, body mass index, history of hypertension and alcohol consumption; 
Model 3: Age, smoking status, prevalent type 2 diabetes, hypertension and coronary heart disease and physical activity; 
Model 4: Age, smoking status, prevalent type 2 diabetes, hypertension and coronary heart disease and cardiorespiratory fitness
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impaired vagal tone. Such dysregulation can lead to elec
trical instability within the ventricles, rendering them sus
ceptible to arrhythmogenic triggers. Moreover, the 
combined assessment of heart rate and blood pressure 
responses captured by HGI reflects the complex interplay 
between preload, afterload, and contractility. Disruptions in 
these factors can influence ventricular repolarization and 
refractoriness, creating a conducive environment for reen
trant circuits that underlie certain types of VAs.

Though the current findings suggest that CRF remains a 
stronger risk and prognostic indicator for adverse cardiovas
cular outcomes than HGI as shown in previous studies [12, 
13], these findings may still offer a novel and refined 
approach to cardiovascular risk assessment in clinical prac
tice. Incorporating HGI into risk stratification algorithms 
has the potential to identify individuals at increased risk of 
VAs who might otherwise be overlooked by conventional 
risk factors alone. This personalized risk assessment could 
enable healthcare professionals to allocate preventive inter
ventions more effectively, thereby mitigating the occurrence 
of life-threatening arrhythmic events. Furthermore, the inte
gration of HGI into routine CPX protocols may enhance 
the accuracy of risk prediction, offering clinicians a stream
lined tool to comprehensively evaluate both cardiovascular 
fitness and arrhythmogenic potential. While it’s true that 
cardiac imaging modalities like echocardiography (echo) 
and magnetic resonance imaging (MRI) are valuable tools 
for risk stratification in VAs, the potential role of a non- 
specific marker like HGI should not be overlooked for the 
following reasons: HGI offers a simple and practical 
approach to assessing hemodynamic function by integrating 
heart rate and blood pressure responses into a single metric. 
Its ease of estimation and low cost make it accessible in 
both clinical and research settings. HGI provides comple
mentary information to cardiac imaging; while echo and 
MRI offer anatomical and structural insights. HGI offers 
functional hemodynamic data, enhancing the comprehensive 
evaluation of cardiovascular health and VA risk. Numerous 
studies have demonstrated the prognostic value of HGI in 
predicting adverse cardiovascular outcomes [11–16] and 
now VA. The emerging evidence supports its potential role 
as an additional risk stratification tool alongside cardiac 
imaging markers. Given the low event rate and being the 
first study to report these findings, further large-scale stud
ies are warranted to replicate these findings and investigate 
the potential clinical value of HGI in risk assessment.

This study offers notable strengths and acknowledges cer
tain limitations. The prospective cohort study design and 
long follow-up duration enhances the study’s credibility by 
capturing real-time data and facilitating the establishment of 
temporal relationships. The relatively large sample size and 
adjustment for established risk factors contribute to the 
robustness of the findings. Additionally, the utilization of 
CPX for HGI assessment enhances the study’s relevance. 
The limitations included the low VA event rate and the use 
of single baseline values of HGI, which could potentially 
introduce regression dilution bias. We were unable to 
account for relevant variables such as use of medications 

(e.g. beta-blockers, which affect heart rate) and structural 
heart disease, because of unavailability of data; furthermore, 
because of the low event rate, comprehensive adjustments 
for confounders could not be done because of the likelihood 
of over-fitting models. We acknowledge that our sample 
only included males, which restricts the generalizability of 
our findings to females. Future studies should aim for more 
diverse participant demographics to ensure broader applic
ability. The data were collected in the 1980s, which may 
limit the generalizability of our findings to contemporary 
populations, especially concerning advancements in therapy. 
While this is a valid concern, the longitudinal nature of the 
study allows for valuable insights into the long-term effects 
of various factors on VAs. We acknowledge the controversy 
surrounding the use of Harrel’s C-index, NRI and IDI and 
recognize their limitations. For instance, Harrel’s C-index is 
based on ranks rather than on continuous data and it can 
be insensitive in detecting differences [30]; the categorical 
NRI only accounts for the direction of risk reclassification, 
and not the magnitude [31]. We employed the category-free 
NRI, which has the advantage of not requiring pre-specified 
categories and does not lose information due to categoriza
tion [30]. We also used the −2 log likelihood test, which is 
a sensitive risk discrimination method and well recom
mended [26, 27]. Ascertainment of VAs was based on ICD- 
codes. We acknowledge that ICD-codes can have limitations 
due to potential misclassification or underreporting of 
events. However, using ICD-codes for outcome definition is 
a common practice in epidemiological studies [32]. While 
this approach may not capture all VAs accurately, it pro
vides a standardized method for identifying events across 
large datasets. Additionally, validation studies have demon
strated the utility of ICD-codes for identifying clinical out
comes, although some degree of misclassification may still 
exist [33]. Therefore, while acknowledging its limitations, 
the use of ICD-codes remains a practical and widely 
accepted method for defining VAs in research settings. 
Finally, although the study establishes a strong association 
between HGI and VA risk, causation cannot be proved and 
the mechanistic underpinnings are speculative and necessi
tate further exploration.

Conclusions

Higher HGI is associated with a reduced risk of VAs in 
middle-aged and older Caucasian men, but dependent on 
CRF levels. Furthermore, HGI improves the prediction of 
the long-term risk for VAs beyond established risk factors 
but not CRF.
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