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REVIEW

Calpain as a therapeutic target in cancer
Ivan Shapovalov, Danielle Harper and Peter A. Greer

Department of Pathology and Molecular Medicine, Queen’s University, Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute, 
10 Stuart Street, Botterell Hall, Room A309, K7L 3N6, Kingston, Ontario, Canada

ABSTRACT
Introduction: Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of 
calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular 
processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. 
Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be 
promising therapeutic targets.
Areas covered: This review covers clinical and basic research studies implicating calpain-1 and calpain- 
2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and 
provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated 
proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and 
spotlight the challenges facing inhibitor development.
Expert opinion: Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical 
and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcino
genesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage 
products, paired with inconsistencies in model systems, underscores the need for more complete 
understanding of physiological substrates and how calpain cleavage alters their functions in cellular 
processes. The development of isoform specific calpain inhibitors remains an important goal with 
therapeutic potential in cancer and other diseases.
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1. Introduction

First identified in the 1960s, calpain-1 and calpain-2 are the 
founding members of a family of calcium (Ca2+)-dependent 
cysteine proteases that are being explored as possible ther
apeutic targets in diseases, including Alzheimer’s and sev
eral types of cancer [1,2]. A growing body of literature, 
spanning several cancer subtypes, supports roles for cal
pains in tumorigenesis and disease progression. With 
a diverse range of known calpain substrates involved in 
different cellular and physiological functions, the precise 
roles of calpains in different cancers appear complex and, 
in some cases, paradoxical. This review aims to discuss the 
rationale for calpain inhibition as a therapeutic strategy in 
cancer. We begin by summarizing the structure and regula
tion of calpain. We then examine translational studies 
focused on calpain dysregulation, biologically relevant cal
pain substrates, and the cellular processes they are involved 
in. We also discuss ongoing efforts to develop pharmacolo
gic calpain inhibitors and the limitations that must be 
addressed to realize the full potential of these as therapeu
tic agents. We regret that we are not able to describe or 
acknowledge every publication that has contributed to our 
current understanding of the calpain system in cancer biol
ogy. For other recent reviews on the subject, we refer the 
reader to the following publications [3-7].

1.1. Structure and activation of conventional calpains

Human calpains are a family of 15 Ca2+-activated cysteine pro
teases which seemingly cleave disordered or accessible peptide 
sequences, rather than targeting specific amino acid motifs, and 
thus have a myriad of peptide substrates [8] . The precise biologic 
roles of calpains are elusive, with evidence pointing towards more 
than 130 substrate proteins [9] involved in a wide range of cellular 
functions; many of which are discussed in this review.

The conventional calpain isoforms, calpain-1 and −2 (pre
viously known as µ-calpain and m-calpain) were the first to be 
discovered and are the most well studied due to their abundant 
ubiquitous expression. Both isoforms are intracellular heterodi
mers consisting of a common regulatory subunit, encoded by 
the CAPNS1 gene (also known as CAPN4), and an isoform-specific 
catalytic subunit encoded by the CAPN1 or CAPN2 genes, for 
calpain-1 and calpain-2, respectively [10,11]. Calpain-1 and −2 
are also considered classical calpains due to their defining 
domain structures. The catalytic subunit consists of an 
N-terminal anchor helix, a potential regulator of calpain activa
tion [12]; two protease core domains that constitute the active 
site (PC1 and PC2); the calpain-type beta-sandwich (CBSW) 
domain (previously known as a C2-like domain); and a Ca2+ 

binding C-terminal penta EF-hand PEF(L) domain, a mediator of 
dimerization and a distinguishing feature of the classical calpain 
isoforms. The regulatory subunit CAPNS1 consists of an 
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unstructured glycine rich (GR) domain; and a PEF(S) domain, 
which is homologous to the PEF(L) domain. A crystal structure 
of calpain-2 and domain maps for the catalytic (CAPN1/2) and 
regulatory (CAPNS1) subunits are shown in Figure 1.

Calpain-1 and −2 activities are tightly regulated, with only 
transient activation of proteolysis upon binding of Ca2+ ions 
[14]. The required concentration of Ca2+ for in vitro activation 

is in the low micromolar range for calpain-1, and high micro
molar to low millimolar range for calpain-2 [14]. Since the 
intracellular Ca2+ concentration (100 nM) [15] is insufficient 
for calpain activation, these enzymes must be activated by 
Ca2+ influx from the extracellular space, where Ca2+ concen
tration is 1.1–1.4 mM [16]. Alternatively, calpains-1 and −2 may 
be activated by Ca2+ release from intracellular stores, such as 
the endoplasmic reticulum (ER) [16]. Due to the cells’ propen
sity to rapidly ‘clean up’ free cytoplasmic Ca2+, calpains-1 and 
−2 are believed to be transiently activated by localized bursts 
of adequate concentrations of Ca2+, followed quickly by deac
tivation after Ca2+ levels dissipate. Excessive calpain activation 
is believed to occur under disease or tissue damage conditions 
as a result of dysregulated Ca2+ homeostasis [8].

Calpain-1 and −2 are also regulated by calpastatin 
(encoded by the CAST gene) which binds the PEF(L) and 
PEF(S) domains as well as near the active site to sterically 
hinder substrate access (Figure 2) [17]. The calpain- 
calpastatin system is regulated by phosphorylation modifica
tions of either calpain or calpastatin. Phospho-CAST has 
repressed activity, and as such, dephosphorylation is required 
for CAST to inhibit calpain [18,19]. Phosphorylation of calpain 
may result in activation or inhibition depending on the kinase. 
For example, ERK- and protein kinase C-mediated phosphor
ylation of calpain-2 increases its activity, while phosphoryla
tion by protein kinase A (PKA) decreases calpain-2 activity 
[20,21]. Our understanding of calpain-calpastatin cross-talk in 
normal health and diseases, including cancer, is incomplete. 
There is evidence in glioblastoma cell lines that radiation- 
induced CAST phosphorylation is associated with activation 
of calpain-1 and increased cell survival [22]; and while calpain- 
1 is inhibited by CAST regardless of the calpain-1 phosphor
ylation status, PKA phosphorylated calpain-1 is more sensitive 
to CAST inhibition [23]. In addition, the threshold for calpain-2 
activation by Ca2+ can be reduced by autolysis of the 

Article Highlights

● Calpains are intracellular calcium-activated cysteine proteases that 
regulate processes, including cell survival, migration, and invasion, 
through a wide range of substrates.

● Clinical data show that elevated expression of calpain-1 and calpain-2 
isoforms in cancer is associated with shorter survival.

● Genetic abrogation of calpain-1 and calpain-2 in cell and animal 
models correlates with anti-tumor effects.

● Pharmacological inhibitors of calpain exist, but they often lack spe
cificity. They are not approved for clinical use.

● Many studies indicate that calpain inhibition could protect against 
tissue and organ damage associated with excessive or chronic 
inflammation.

● Calpain inhibitor BLD-2660 is undergoing a clinical trial for treatment 
of COVID-19 to reduce tissue IL-6 and prevent lung fibrosis. Another 
phase-2 trial of this drug in idiopathic pulmonary fibrosis was 
recently withdrawn.

● Calpain inhibition has potential side effects. For instance, inhibition of 
calpain activity could impact processes such as wound repair. Hence, 
surgery, may need to be planned carefully around calpain therapy.

This box summarizes key points contained in the article.

Figure 1. Structure of calpain-2 and domain diagram for CAPN1/2 and 
CAPNS1. (A) A three-dimensional structure of calpain-2 with color-coded 
domains, created with a structure from PDB 1KFU [13]. Grey molecular surfaces 
are inter-domain linkers flanking the CBSW domain in CAPN2, and the red 
surface is the N-terminal anchor helix of CAPN2. The GR domain of CAPNS1 is 
unstructured and thus not shown. (B) A domain diagram of calpain-1/2 showing 
the red N-terminal anchor helix, PC1 – protease core 1, PC2 – protease core 2, 
CBSW – calpain-type beta-sandwich, and PEF(L) – penta EF-hand in the catalytic 
large subunits, CAPN1/2; and the GR – glycine-rich, and PEF(S) – penta EF-hand 
in the regulatory small subunit, CAPNS1. Amino acids of the catalytic triad are 
shown with CAPN1 residue numbering. The double-ended red arrow indicates 
interactions of PEF(L) and PEF(S) mediating dimerization of CAPN1/2 with 
CAPNS1.

Figure 2. Binding sites for Ca2+, CAST and small molecule inhibitors of 
calpain-2. White spheres represent Ca2+ ions. The different domains in CAPN2 
and CAPNS1 are colored as in Figure 1. Individual peptide A, B and C motifs of 
calpastatin (CAST) are shown in crimson, binding to the CAPN2 PEF(L) domain, 
across the active site, and the CAPNS1 PEF(S) domain, respectively. Molecular 
structures of inhibitors are shown at the binding positions for two proposed 
modes of small-molecule inhibition of calpain; active site directed (E64) and 
allosteric site through binding to the CAPNS1 PEF(S) domain (PD150606). 
Highlighted residues C105, H262 and N286 comprise the catalytic triad of 
calpain-2. This 3D representation is based on PDB structures 1KFX [13], 3DF0 
[24], 1TLO [25], and 1NX3 [26].
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N-terminus or interaction with phosphatidylinositol mono- or 
bis-phosphate (reviewed in [2]). Binding sites on calpain-2 for 
Ca2+, calpastatin, and selected small molecule inhibitors (as 
determined in co-crystal structures) are shown in Figure 2.

Calpain expression levels in cell lysates or in situ can be 
readily assessed by immunoblotting, immunohistochemical, or 
immunofluorescence methods. However, it is much more chal
lenging to determine the activation status of calpain in cells or 
tissues. Biochemical zymography methods are used exten
sively to measure calpain activity in cell lysates [27], but 
these are semi-quantitative and do not necessarily reflect 
calpain activity in situ. Fluorescent substrates have been devel
oped as tools for measuring calpain activity in vitro. These 
probes typically consist of a fluorophore-quencher pair linked 
by a calpain-sensitive peptide [28]. Such probes are not com
pletely specific for calpain, so investigators should exercise 
caution when using cell permeable forms of these probes to 
assess cellular calpain activity. Fluorescence resonance energy 
transfer (FRET) probes, consisting of optimal calpain-sensitive 
peptides bridging CFP and YFP, have also been expressed in 
cells to measure in situ calpain activity [29]. While these can be 
excellent calpain substrates in cells, there is still some concern 
that the apparent calpain activity could be due in part to other 
proteases. Many researchers assess calpain activity in cells by 
immunoblotting for known calpain substrates and comparing 
the relative level of the uncleaved substrate with the pre
sumed calpain-generated fragments. While this approach is 
widely used, it is challenged by the typically low stoichiometry 
of substrate cleavage, as well as uncertainty about protease 
specificity, since calpain cleavage sites may also be targeted 
by other proteases. Measuring physiologically relevant calpain 
activity in situ remains an important challenge in calpain 
research. The terminal amine isotope labeling of substrates 
(TAILS) mass spectrometry (MS) approach [30], combined 
with genetic model systems, has the potential to address 
these problems and to identify novel physiologically relevant 
calpain substrates.

2. Calpains

2.1. The role of calpains in human health and disease

The biological function of calpains in human health is multi
faceted, which likely reflects diverse roles in cell signaling by 
15 isoforms, many of which display distinct tissue-specific 
expression (reviewed in [8]). Among the first known cellular 
functions was cleavage of cortical cytoskeletal proteins. 
Calpain-1 and −2 are involved in turnover of cell adhesion/ 
protrusion structures via proteolytic degradation of scaffolding 
proteins, such as spectrin, cortactin, ezrin, and beta-catenin 
(see Table 1 for a list of in vivo validated calpain-1 and −2 
substrates). These cleavage events have been shown to pro
mote motility of fibroblasts [31] and morphological changes to 
platelets to facilitate clotting [32]. It has also become apparent 
that calpain-1 and −2 modulate the activity of many substrates 
through limited proteolysis of regulatory domains. For exam
ple, calpain-2 mediated truncation of the androgen receptor 
results in ligand-independent activation in prostate cancer 
cells [33]. In normal cells, activation of calpain-1 and −2 can 

potentiate pro-apoptotic cell signaling upon Ca2+ influx 
induced by chemical insults or ER stress [2,34]. However, cal
pains are involved in both pro- and anti-apoptotic signaling 
pathways. CAPNS1 gene knockout, which results in loss of 
both calpain-1 and −2, sensitized mouse embryonic fibroblasts 
to stimuli including staurosporine and tumor necrosis factor 
alpha, while conferring resistance to puromycin, camptothe
cin, etoposide, hydrogen peroxide, ultraviolet light and serum 
starvation [35]. These findings highlight the context- 
dependent and opposing pro- and anti-survival roles for cal
pain that might be exploited for therapeutic benefits. 
However, this potential opportunity has been limited by ques
tions surrounding which calpain isoforms are playing which 
roles, and in what specific cellular contexts.

Calpains have been implicated in the progression of several 
human diseases. A large body of evidence suggests that cal
pain-2 dysregulation contributes to the neuropathogenesis of 
Alzheimer’s disease, possibly through roles in amyloid beta 
aggregation and accumulation of tau neurofibrillary tangles 
(for a recent comprehensive review see [51]). Recent work by 
Baudry and colleagues suggests that calpain-1 and −2 may 
have opposing roles in neuronal cell protection and degenera
tion, respectively [52]. Consistent with this hypothesis, muta
tions in CAPN1 have recently been linked with cerebellar ataxia 
[53]. Calpain-1 dysfunction has also been implicated in blood 
clotting disorders, with CAPN1 knockout mice displaying 
reduced platelet aggregation and clot retraction [54].

Other calpains have also been implicated in other human 
diseases. Mutations in CAPN3 result in limb-girdle muscular 
dystrophy type 2A, and this was phenocopied in mouse 
CAPN3 knockout models [55] (reviewed in [56]). CAPN5 muta
tions contribute to autoimmune uveitis, retinitis pigmentosa, 
and retinopathies that lead to irreversible blindness [57,58], 
while CAPN14 is upregulated in response to IL-13 in esopha
geal epithelial cells in patients with eosinophilic esophagi
tis [59].

An emerging area of interest in the calpain field is their 
potential involvement in cancer, including regulation of can
cer cell survival, metastasis, and susceptibility to chemother
apeutics and targeted agents. Activating or inactivating 
mutations in calpain genes do not appear to play a role in 
cancer. However, upregulation of calpain-1 and −2 have been 
described in several cancers (reviewed in [2]), and there is 
a growing appreciation for how calpain-1 and −2 are regu
lated by pro-oncogenic signaling pathways. These questions 
will be discussed in the following sections.

2.2. Evidence for calpain involvement in cancer

A growing number of translational studies suggest that aber
rant calpain activity contributes to tumorigenesis and cancer 
progression (reviewed in [3–7].). An early clinical study 
reported that CAPN1 transcript levels were associated with 
higher regional metastasis in renal cell carcinoma [60], while 
a more recent meta-analysis showed that high CAPNS1 pro
tein expression independently predicted shorter overall survi
val across eight common cancer types, including colorectal, 
ovarian, lung, liver, and glioblastoma [61]. Similar studies sug
gesting pro-tumorigenic roles for calpain have emerged across 
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Table 1. Biologically relevant calpain substrates validated in vivo.

Substrate Cleaved by Type of Cancer* Molecular/physiological context References

Apoptosis 
Inducing 
Factor (AIF)

Calpain-1 Human non-small cell 
lung cancer

In U1810 cells, mitochondrial AIF is cleaved into a 57 kDa fragment that is 
subsequently released into the cytosol to promote apoptosis.

[101]

Androgen 
Receptor 
(AR)

Calpain-1 Prostate In LNCaP cells, cleavage of AR produces ~80 kDa truncated fragment, contributing 
to prostate cancer cell survival.

[36]

Bax Calpain-1/2 Breast, Leukemia In Jurkat T and MCF-7 cells, Bax is cleaved into an 18 kDa fragment which 
promotes the release if cytochrome C and downstream activation of caspases.

[94]

Beclin-1 Calpain-1/2 Colorectal In Ras mutant intestinal epithelial cells, calpain mediated degradation of beclin-1 
promotes anchorage-independent growth.

[37]

β-catenin Calpain-2 Breast, Prostate N-terminal cleavage of β-catenin produces a 75kDa fragment that accumulates in 
the nucleus, promoting transcription of the Wnt signalling pathway.

[126]

BID Calpain-2 Melanoma Calpain cleaves BID into a 14kDa fragment in cisplatin-treated cells, resulting in an 
increase in cytochrome C release from the mitochondria.

[96]

Caspases Calpain-1/2 Breast, Cervical, 
Neuroblastoma

Calpain-mediated cleavage directly activates caspases-3, 7, 10 and 12, and inhibits 
caspase-9.

[38,39]

CDK5 Calpain-2 Multiple Calpain cleaves CDK5 cofactors p35 and p39 into p25 or p29 respectively, 
producing holoenzymes with longer half-lives, greater solubility and altered 
substrate specificity. Note that CDK5/p25 is also associated with 
neurodegenerative diseases.

[40,100]

Cortactin Calpain-2 Breast Cleaved between the actin binding repeats and the α-helical domain to promote 
invadopodium disassembly and cell migration.

[41,86,122,123]

CRMP-4 Calpain-2 Prostate Cleaved into an N-terminal fragment, promoting migration and invasion via 
nuclear translocation and activation of DNA methyltransferase.

[65]

Cyclin E Calpain-2 Breast Cleaved into low molecular weight fragments that contribute to enhanced CDK 
activity, angiogenesis and metastasis.

[42,115]

E-Cadherin Calpain-1/2 Breast, Prostate Calpain cleaves within the cytoplasmic domain, preventing association of 
E-cadherin with β-catenin, γ-catenin and p120.

[125]

EGFR Calpain-1 Breast Calpain cleaves within cytoplasmic domain to downregulate kinase activity. [111]
Ezrin Calpain-1 Breast First reported as a calpain substrate in gastric parietal cells, ezrin has also been 

implicated in focal adhesion dynamics and invadopodia turnover in MDA-MB 
-231 cells. Furthermore, ezrin regulates calpain-1 localization to promote 
cleavage of cortactin, FAK and talin.

[43,86]

FAK Calpain-2 Breast, Colon Cleavage to promotes focal adhesion turnover and cancer cell migration. [86,87,120]
FLNA Calpain-1/2 Melanoma, Prostate, 

Mouse Fibrosarcoma
Cleavage promotes increased nuclear localization of HIF1-α to promote tumor 

growth and angiogenesis.
[131,132]

HER2 Calpain-1 Breast HER2 is cleaved in juxta- membrane region, cleavage products result in feedback 
inhibition of HER2, regulating trastuzumab sensitivity.

[111]

c-MYC Calpain-1/2 Lymphoma, Prostate, 
Colon, 
Neuroblastoma

Cleaved into ‘myc-nick,’ promoting microtubule stabilization, autophagy, and 
drug resistance.

[104]

P53 Calpain-2 Breast, Cervical, Colon Calpain cleavage facilitates p53 degradation and attenuation of apoptosis. [44]
PP2A Calpain-1/2 Breast Calpain cleaves the B56 subunit of PP2A, preventing its association and 

subsequent deactivation of AKT.
[108]

PTP1B Calpain-2 Breast Cleavage releases PTP1B from the ER, thereby increasing its phosphatase activity 
and promoting invadopodium formation via Src.

[123]

Rb Calpain-1 Cervical Calpain cleavage results in degradation thereby alleviating repression of pro- 
tumorigenic E2F transcription factors.

[45,46]

RhoA Calpain-1 Breast Calpain mediated cleavage activates RhoA and inhibits cell spreading, promoting 
migration.

[47,124]

Spectrin Calpain-1/2 Gastric, Lung, 
Leukemia

Well-established calpain substrate often used as an indicator of calpain activity. 
Cytoskeletal protein with roles in cell motility, apoptosis, platelet activation and 
long term potentiation.

[48,138]

Talin Calpain-1/2 Multiple cancers Calpain cleavage mediates cell adhesion and cytoskeletal remodelling to promote 
cancer cell migration.

[119]

Vinculin Calpain-1/2 Multiple cancers Cleavage promotes MT1-MMP membrane translocation and subsequent 
endothelial sprouting, supporting tumor angiogenesis.

[49]

C-fos/C-jun Calpain-1/2 Mammalian cells 
(MEFs, NIH3T3)

PEST-containing transcription factors degraded by calpain, thereby regulating 
gene expression and apoptosis.

[35,99]

Dysferlin Calpain-1/2 Muscular dystrophy Cleaved into mini-dysferlin that promotes cell membrane repair. [141,153]
NCS-1 Calpain-1 Chemotherapy induced 

peripheral 
neuropathy

Degradation results in loss of intracellular calcium signalling and irreversible 
damage to peripheral nerve fibers.

[83]

Src Calpain-1 IschemicStroke, 
Neurodegenerative 
Diseases

Cleaved into a 52kDa truncated protein that facilitates neuronal cell death via AKT 
inactivation.

[50]

* Note: Type of cancer refers to the subtype(s) explored within the references provided. Many substrates/cleavage products have important biological functions in 
multiple cancer subtypes, as well as normal cell physiology. The last four entries are calpain substrates with established physiological relevance in non-cancer 
contexts. 
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various cancer subtypes. For example, high CAPNS1 transcript 
expression was associated with metastasis and shorter survival 
in gastric cancer patients [62], while immunostaining has been 
used to show that colorectal cancer patients had poorer prog
nosis when tumors contained high levels of calpain-1 and low 
levels of its substrate filamin-A (FLNA) [63]. Interestingly, 
another study linked calpain-1 cleavage of FLNA to enhanced 
migration of androgen receptor-deficient prostate cancer cells 
[64]. Calpain-2 has been implicated in prostate cancer metas
tasis through regulation of gene expression by a mechanism 
involving cleavage of collapsin response mediator protein 4 
(CRMP4), which in turn regulates DNA methyltransferase 1 
expression [65]. In pancreatic cancer, a subtype infamous for 
rapidly spawning metastases, high tumor calpain-1 expression 
was associated with increased metastasis and shorter overall 
survival [66]. These authors showed that RNAi-based knock
down of calpain-1 in pancreatic cancer cell lines correlated 
with reduced proliferation and invasion in vitro [66]. The non- 
specific calpain-1 and −2 inhibitor, calpeptin, suppressed pan
creatic cancer cell proliferation, migration, and invasive beha
vior in vitro [67], but the in vivo effect of calpeptin in mouse 
xenograft models was dependent on co-engrafted fibroblasts 
[67], suggesting that calpain contributes to a stromal support
ing role in tumorigenesis. Calpain-2 has also been identified as 
a potential predictive biomarker in ovarian cancer, with high 
expression associated with resistance to platinum-based thera
pies [68].

Multiple research groups have published observations of 
increased calpain expression in breast cancer. Storr and collea
gues reported that elevated levels of calpain-1 and calpain-2 
were associated with poor clinical outcomes in HER2-positive 
and triple negative breast cancer (TNBC) subtypes, respectively 
[69,70]. High calpain-1 expression was also associated with 
shorter disease-free survival in breast cancer patients treated 
with trastuzumab [71]. Conversely, low calpain-9 expression 
has been linked to poor outcomes in breast cancer patients 
who received endocrine therapy [72]. Interestingly, one study 
reported that high calpain-1 and high calpastatin levels were 
associated with better survival of patients with inflammatory 
breast cancer, while high calpain-2 and low calpastatin was 
correlated with improved survival in patients with non- 
inflammatory breast cancer treated with neoadjuvant che
motherapy [73], which invokes a more complex relationship 
between these calpain isoforms and their endogenous inhibitor 
in different types of cancer. Thus, while most of the current 
literature suggests a pro-tumorigenic role for calpains in cancer 
progression, there is conflicting evidence suggesting that, under 
some circumstances, calpains may have anti-tumorigenic roles. 
Higher calpain-1 and calpastatin levels in gastro-esophageal 
cancer predicted better survival in cohorts both with and with
out neoadjuvant chemotherapy [74]. In one study of pancreatic 
cancer subtypes, tumors of the bile ducts and ampulla were 
marginally more aggressive when calpain-1 and −2 levels were 
low [75]. In contrast, another pancreatic cancer study reported 
reduced survival for patients with increased calpain-1 expression 
[66], despite both these pancreatic cancer studies analyzing 
protein levels and employing similar immunohistochemistry 
approaches [66]. It has been observed that analyses of calpain 
protein levels and mRNA levels do not necessarily correlate. For 

example, in basal cell skin carcinoma, mRNA levels of CAPN1 
were significantly higher than in normal tissue while protein 
levels of CAPN1 were reduced [76]. These authors suggested 
that higher proteolytic and autolytic activity might be respon
sible for reduced calpain-1 protein, despite the increased pre
sence of mRNA [76].

In addition to looking at expression of calpains, investigators 
have also looked at calpain substrates as prognostic biomarkers 
in cancer and other diseases. For example, FLNA has been 
characterized as a calpain-1 target, and its degradation along 
with elevated calpain-1 levels has been associated with poorer 
outcomes in colorectal cancer [63]. However, as with calpain 
itself, there is contrary evidence for the predictive power of 
FLNA. It was suggested that in glioblastoma, more FLNA clea
vage predicts better patient survival and greater cancer cell 
apoptosis in vitro [77], presumably due to co-occurrence of pro- 
apoptotic calpain activation and FLNA degradation. Products of 
calpain breakdown are used as biomarkers for cell death in other 
diseases. For example, troponin I degradation products are an 
established clinical blood biomarker for injured myocardium in 
a variety of cardiovascular conditions [78], where it was shown 
that degradation is caused by hypoxia-induced calpain- 
mediated proteolysis [79]. Spectrin degradation products have 
been used as biomarkers for kidney disease and traumatic brain 
injury (TBI) [80]. Most recently, a calpain-2 mediated cleavage 
product of tyrosine phosphatase PTPN13, has been used as 
a biomarker for traumatic brain injury, where it is correlated 
with the severity of injury [81].

2.2.1. Calpains and chemotherapy-induced toxicities
In addition to their roles in disease progression, calpains 
have been implicated in cancer associated diseases linked 
to chemotherapy. Once again, calpains have been shown to 
have both detrimental and protective effects on patient 
health in the context of chemotherapy induced toxicities. 
For example, Peng and colleagues reported that overexpres
sion of calpain-2 protected the heart against doxorubicin 
induced cardiotoxicity [82]. Calpain-2 is thought to promote 
AKT activation and subsequent upregulation of mitogen- 
activated protein kinase (MKP-1) to attenuate cardiomyocyte 
apoptosis in response to doxorubicin therapy [82]. Perhaps 
unsurprisingly, calpains are also involved in chemotherapy 
induced peripheral neuropathy. Treatment with the microtu
bule stabilizing drug, Taxol, has been shown to promote 
calpain-1 mediated cleavage of the neuronal Ca2+ sensor-1 
(NCS-1) [83]. NCS-1 degradation was associated with a loss of 
intracellular Ca2+ signalling and irreversible damage to per
ipheral nerve fibers [83]. Similarly, calpain activation has 
been identified as an important early step in cisplatin- 
induced neurotoxicity [84]. Taken together, these observa
tions underscore the potential of combining calpain inhibi
tion with chemotherapy as a strategy to reduce 
cardiotoxicity and neurotoxicity [82–85].

2.3. Calcium signaling induces calpain activation in 
cancer cells

One model for calpain regulation predicts activation upon 
influx of extracellular Ca2+ into the cytoplasm via Ca2+ 
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channels in the plasma membrane. Substrate cleavage would 
be conditional upon cortical localization of calpain, its sub
strates, and a Ca2+ signal. A recent study in breast cancer cells 
showed that recruitment of calpain-1 to the plasma mem
brane by the ezrin adaptor protein promoted cleavage of its 
classical substrates talin, FAK, and cortactin [86]. Other studies 
show that induction of Ca2+ signals by various external treat
ments can trigger calpain-2 activation in cancer cells. For 
example, exposure of cancer cells to calcium lactate increased 
intracellular Ca2+ levels, induced calpain-2 mediated degrada
tion of FAK and p53; and promoted cell motility [87]. Ca2+ can 
also be mobilized from the ER through activation of the 
inositol 1,4,5-trisphosphate receptor (IP3R). Such 
a mechanism was exploited to induce calpain-1-mediated 
apoptosis of an acute lymphoblastic leukemia cell line derived 
from a paediatric pre-B acute lymphoblastic leukemia patient 
[88]. Induction of Ca2+ influx and the ensuing calpain activa
tion can feed into either pro-autophagy or pro-apoptosis sig
naling cascades, depending on other susceptibility factors, like 
intracellular levels of Atg5 or Bax, respectively [89]. While 
calpain inhibition on its own is often cytoprotective, when 
autophagy is induced under proteasomal stress, calpain inhi
bition can promote an anti-tumor effect of small-molecule 
cytotoxins [90].

2.4. Calpain mediated pathways in cancer

Calpain activation in vivo, limited by Ca2+ signals, is transient 
and localized to specific subcellular domains [86,91]. One of 
the challenges associated with identifying true physiologic 
substrates lies in the promiscuous activity of calpain outside 
of the cellular context. As a result, substrates identified in vitro 
remain hypothetical substrates that require validation in live 
cell systems. In this regard, the study of calpain is analogous to 
the study of protein kinase A (PKA) which can phosphorylate 
many substrates in biochemical assays with purified proteins 
[92]. However, its physiologic activity is closely regulated 
in vivo by localized cAMP signaling and the location of 
A kinase-anchoring proteins inside the cell [92]. Therefore, 
researchers must be careful when discerning between possible 
calpain substrates and biologically validated ones. Calpain 
substrates are found in many cancer-related signaling path
ways and include products of oncogenes and tumor suppres
sor genes. We next discuss several key substrates involved in 
signaling pathways associated with cancer progression, metas
tasis, and treatment response. Please refer to Table 1 for 
a summary of several biologically relevant calpain substrates 
that have been validated in live cells.

2.4.1. Conventional calpain substrates associated with cell 
growth and death
For a comprehensive review of calpains in cancer apoptosis 
the reader is referred to the review by Storr and colleagues [2]. 
Briefly, several lines of evidence suggest calpains interact with 
the caspase family of cysteine proteases to initiate apoptosis 
[93]. Proteolytic cleavage mediated by conventional calpains 
directly activates caspases-7, −10 and −12 and inhibits cas
pase-9 [2]. Furthermore, calpain-1 and −2 mediated cleavage 
of the pro-apoptotic BCL2 family member, Bax, promotes the 

release of cytochrome c from the mitochondria which leads to 
downstream activation of executioner caspase-3 [94]. There is 
also evidence to suggest that Bax cleavage requires caspase- 
dependent activation of calpain [95]. As summarized in 
Table 1, other pro-apoptotic calpain substrates include BID 
[96,97], c-FOS [98,99], c-JUN [98,99], CDK5 [100], and apopto
sis-inducing factor (AIF) [101]. Please refer to Figure 3 for 
examples of calpain substrates involved in cell survival and 
apoptosis.

In some contexts, calpains contribute to pro-survival 
pathways and may even promote resistance to anticancer 
therapies. Elucidating pro-survival roles for calpain has 
great relevance to cancer therapeutics, as researchers 
work to develop calpain inhibitors that may synergize 
with specific cytotoxic agents. For example, calpain- 
mediated cleavage promotes degradation of the p53 
tumor suppressor, thereby attenuating apoptosis [102]. In 
human ovarian cancer cells, cleavage of p53-associated 
parkin-like cytoplasmic protein prevented nuclear localiza
tion of p53, thus inhibiting apoptosis [103]. Under stressful 
conditions, calpain cleaved cytoplasmic Myc to produce an 
N-terminally truncated protein termed ‘Myc-nick’ [104,105]. 
Myc-nick attenuated cell death by promoting drug resis
tance and autophagy under conditions of nutrient depriva
tion [104]. Grieve et al. demonstrated that CAPNS1 
knockdown was associated with increased sensitivity to 
the HSP90 inhibitor 17AAG in HER2+ and TNBC cell lines 
[106]. This observation is believed to be the result of 
calpain-mediated effects on ABC transporters involved in 
drug efflux [106]. Calpain-2 has been shown to promote 
cancer cell survival via the PI3K-Akt-FoxO-p27Kip1 signaling 
pathway [107]. Ho et al. demonstrated that calpain-2 
knockdown was associated with reduced Akt phosphoryla
tion, thus preventing the inhibition of Foxo3a mediated 
transcription of cyclin dependent kinase inhibitor p27 
[107]. Bertoli and colleagues had also previously demon
strated that calpain negatively regulates Foxo3a by cleav
ing, thereby inactivating the Akt phosphatase, PP2A [108]. 
PP2A has also been shown to dephosphorylate calpain-1 
and −2, attenuating their activation and reducing lung 
cancer cell migration and invasion in vitro [109].

Calpain mediated proteolysis of multiple members of 
receptor tyrosine kinase (RTK) family has been observed, 
where it can release the cytoplasmic domain from the 
membrane. For example, calpain cleaves Met, producing 
a stable and pro-metastatic p45 fragment [110]. Calpain- 
mediated cleavage in the juxta-membrane region of HER2 
was also reported, which produced either the complete 
cytoplasmic domain or a truncated fragment [111]. In that 
context, inhibiting calpain resulted in accumulation of more 
full-size RTK and greater cell survival [111]. In line with such 
a model, MacLeod et al. have shown that knockout of 
calpain-1 and −2 in an activated HER2-driven transgenic 
mouse mammary carcinoma model changed its phospho- 
proteomic landscape, producing more phospho-EGFR [112].

While calpains can target multiple members of RTK super
family, alterations in RTK signaling have been implicated in the 
regulation of calpain as well. For example, overexpression of 
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HER2 induced CAST transcription, which correlated with higher 
levels of Src, FAK, and ERK – all predicted calpain substrates 
[113]. Another study also suggested EGF-mediated activation 
of calpain as a mechanism of cyclin G2 degradation [114]. 
Cyclin E [115] and cyclin D1 [116] are also suspected calpain 
substrates. In addition, calpain activation has been observed 
as an effector of VEGF stimulation in endothelial cells, promot
ing angiogenesis [117]. Miyazaki et al. reported that overex
pression of calpastatin in mouse endothelial cells attenuated 
angiogenesis by preventing calpain-mediated cleavage of 
SOCS3 and downstream activation of the JAK/STAT pathway 

[118]. Calpain involvement in tumor angiogenesis remains to 
be fully elucidated, but evidence including that described 
above supports pro-metastatic roles for calpain.

2.4.2. Conventional calpains and metastasis
Calpains contribute to tumor cell migration, invasion, and 
metastasis by altering focal adhesion dynamics and promoting 
cytoskeletal remodelling (reviewed in [2,3,5–7]). A graphical 
overview of some of these processes and calpain-1 and −2 
functions are illustrated in Figure 4. Huttenlocher and collea
gues demonstrated that calpain-2 mediated proteolysis of the 

Figure 3. Calpain substrates in cell survival and apoptosis. Calpains become activated by increases in intracellular Ca2+ concentration, through Ca2+ influx or 
release from intracellular stores. Calpains are implicated in many key signalling pathways associated with cell death and survival including the PI3K-AKT [107,108], 
ERK [113], p53 [102], MYC [104,105], caspase [38,39] and AIF pathways [101]. Created with BioRender.com.

Figure 4. A schematic representation of calpain substrates in cell motility. Calpain cleaves PTP1B to facilitate its relocalization from the ER to the cytosol. There, 
PTP1B de-represses Src which subsequently activates cortactin and promotes actin branching – a key event in the formation of invadopodia structures. Calpain-1 
cleaves Src kinase [50], and calpain-2 cleaves paxillin (PXN), focal adhesion kinase (FAK) and talin (TLN1) [127]. Vinculin (VCL) is a calpain substrate, but isoform 
specificity is unknown [128]. Colocalization of PXN, FAK, VCL and TLN1 at FAs and their structural organization are demonstrated [129]. Src is also localized at FAs 
[130].Created with BioRender.com
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cytoskeletal protein talin is required for adhesion disassembly 
[119]. Furthermore, focal adhesion kinase (FAK) is cleaved by 
calpain-2 in vivo, promoting adhesion turnover, in part by 
altering talin dynamics [120]. A more recent study found that 
silencing CAPNS1 in renal carcinoma cells reduced talin clea
vage and significantly impaired migration and invasion in vitro 
[121]. Calpain-2 mediated cleavage of the actin-assembly pro
tein cortactin also promoted cell migration by modulating 
invadopodium formation [122]. The actin-membrane linker, 
ezrin, has been identified as a substrate of calpain-1, but 
interestingly, ezrin also acts upstream of calpain to regulate 
focal adhesion and invadopodia turnover [86]. Protein tyrosine 
phosphatase 1B (PTP1B) becomes hyperactivated in response 
to calpain-2 mediated truncation [123]. Interestingly, this clea
vage removes a C-terminal ER localization domain that allows 
PTP1B to relocalize from the ER to the cytosol, where it acts as 
a positive regulator of the nonreceptor tyrosine kinase c-Src to 
promote invadopodium formation in metastatic breast cancer 
cells [123]. The calpain-1 isoform has been shown to nega
tively regulate cell adhesion by cleaving and inactivating the 
RhoA GTPase, a key player in the formation of stress fibers and 
focal adhesion complexes [124]. Calpains also cleave the cell- 
cell adhesion molecule, E-cadherin, preventing its association 
with beta-catenin, gamma-catenin, and p120 catenin [125]. 
The functional inactivation of E-cadherin has been shown to 
promote a metastatic phenotype through loss of epithelial 
cell-cell adhesion [125]. Calpain has also been shown to cleave 
and activate beta-catenin in metastatic prostate and breast 
cancer cells, thereby promoting Wnt pathway activation [126].

Calpain-mediated cleavage of the actin cross-linking pro
tein FLNA also contributes to metastatic behaviour. Salimi and 
colleagues showed that the migratory behavior of human 
melanoma cells depends on a 90kDa FLNA fragment produced 
by calpain proteolysis [131]. Calpain-mediated FLNA cleavage 
was also implicated in hypoxic response and tumor angiogen
esis by promoting the nuclear localization of HIF-1α [132]. 
FLNA has also been shown to regulate the transcriptional 
activity of androgen receptor (AR) by sequestering the FHL2 
coactivator [133]. Calpain cleavage of both FLNA and AR 
promotes association and nuclear localization of a FHL2/AR 
complex [133]. However, there are conflicting data pertaining 
to whether calpain-cleaved AR is activated in a ligand- 
independent fashion or degraded [134,135]. In an animal 
model of prostate cancer, where the calpain-AR interaction is 
presumed to play a significant role, inhibition of calpain-2 
resulted in less invasive cancer cells [136].

Calpains also regulate membrane plasticity and protrusions 
through cleavage of the relevant scaffolding proteins. 
Dysregulation of Ca2+ homeostasis in cancer cells promotes 
aberrant calpain activation resulting in cleavage of cytoskele
tal components [137]. Spectrin, a cortical scaffolding protein, is 
a well-established calpain substrate, and it has frequently 
been used as an indicator of calpain activation in situ [138]. 
A recent study showed a novel pathway for inducing calpain- 
mediated cleavage of spectrin through DCC, a netrin-1 recep
tor [91]. Decreased cortical presence of spectrin through cal
pain cleavage was shown to increase the biogenesis of 
extracellular vesicles (EVs) [139], which act as paracrine effec
tors of malignant cells. EV production is upregulated in cancer 

cells and contributes to metastatic and drug resistant pheno
types [109].

Calpain-1 and −2 expression was also associated with 
membrane ‘blebbing’ in mouse embryonic fibroblasts, which 
correlated with altered protein levels of Rho GDP-dissociation 
inhibitor and cofilin-1 [140]. Calpain-cleavage of dysferlin has 
also been linked with membrane repair of mechanical damage 
by promoting vesicle-membrane fusion [141]. Together, these 
observations implicate calpain in disassembly of the cortical 
actin cytoskeleton to allow greater membrane fluidity and 
membrane alterations.

2.4.3. Conventional calpains and immune response
There is considerable evidence suggesting involvement of 
calpains in immune signaling. For example, calpain can cleave 
interleukin-1 alpha to produce its mature form [142]; however, 
caspase activation may be necessary for complete activation 
and release of IL-1 alpha, even after calpain cleavage [143]. 
Calpain has also been implicated in promoting inflammatory 
signaling of NF-kB by cleaving the IkB regulatory protein [144]. 
Dysregulated expression of CAPN14 has also been associated 
with eosinophilic esophagitis [59] Another study found that 
inhibiting calpain activation promoted autophagic degrada
tion of PD-L1, which was associated with beneficial anti- 
tumor effects in an animal model. Beclin-1, a calpain substrate, 
is a suspected mediator of this process [145]. Many other roles 
for calpain in regulation of inflammation have recently been 
reviewed [146]. While many of these studies indicate calpain 
inhibition could protect against tissue and organ damage 
associated with excessive or chronic inflammation, there are 
also observations suggesting calpain inhibition could be detri
mental [146]; thus, careful study of potential side effects will 
need to be carried out in future clinical trials of calpain 
inhibitors.

2.5. Calpains as therapeutic targets

There are numerous readily available active site directed cal
pain inhibitors. However, there is considerable debate about 
the specificity of these inhibitors. Many that are described as 
calpain-specific inhibitors (for example, ALLN or calpeptin) 
exhibit inhibitory effects on other proteases, including cathe
psins, the proteasome, or caspases (as disclosed in major 
vendor’ specifications). Peptidomimetic active-site-directed 
inhibitors have been developed based on the primary 
sequence of calpastatin. While more specific, these peptides 
generally lack good cell permeability and pharmacokinetic 
properties; however, a recent review of calpain inhibitors 
cites a patent on a blood-brain barrier permeable peptidomi
metic inhibitor [147]. The cell membrane or blood-brain bar
rier permeability is achieved by linking the CAST-mimetic 
sequence to lipid-soluble compounds, such as cholesterol, or 
to a cell-penetrating peptide sequence, such as from penetra
tin [147,148]. The benefit of such solubilized peptide inhibitors 
over conventional active site directed cysteine protease inhi
bitors of calpains is their high specificity, with 4–6 orders of 
magnitude difference in Ki between inhibiting calpains versus 
cathepsins, the proteasome, or caspases[149].
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Allosteric inhibitors of calpain exist as well. The most pro
minent of them, PD150606 and AMG853, are presumed to 
bind hydrophobic pockets in the PEF domains [150]. Despite 
published models and co-crystal structures showing such 
interactions, Low et al. showed that, at least in case of 
PD150606, the mode of action is not through binding to 
a hydrophobic groove, and that PD150606 is a much weaker 
inhibitor compared to classic protease inhibitors [151]. 
Currently, there are still no calpain inhibitors approved for 
clinical use.

2.5.1. Possible side-effects of calpain inhibition from 
preclinical studies
Systemic inhibition of calpain-1 or calpain-2 is likely to have 
distinct physiologic effects. The phenotype of calpain-1 defi
cient (CAPN1 mutant) mice, dogs, and humans is 
a predisposition to cerebellar ataxia and muscle wasting [53]. 
Additionally, CAPN1 knockout mice have a defect in platelet 
aggregation and clot retraction, but surprisingly, there is no 
significant bleeding defect [54]. There is evidence for several 
roles of calpain in platelet homeostasis [152]. Muscle-specific 
deficiency in both calpain-1 and calpain-2 (through CAPNS1 
knockout) caused dystrophy in aged mice, linked to the 
known role for calpain-1 and −2 in myoferlin cleavage during 
Ca2+-induced membrane repair [153]. Complete germline cal
pain-2 deficiency in mice was associated with embryonic leth
ality [154,155]; however, ubiquitous inducible or tissue-specific 
CAPNS1 knockout (resulting in deficiency in both calpain-1 and 
−2) in adult mice is well tolerated. There are no known human 
pedigrees with loss-of-function mutations in CAPN2 or 
CAPNS1, which would likely be embryonic lethal in the homo
zygous state. However, there are multiple studies in human 
pedigrees describing loss-of-function mutations of CAPN1 that 
are predicted to compromise functions in PC1, PC2, CBSW and 
PEF(L) domains [156,157]. Inhibition of both calpain-1 and −2 
in the brain affects long-term potentiation and susceptibility 
to traumatic brain injury [52] and protects against cytotoxic 
neuronal cell death [158]. Interestingly, inhibition of calpain-2 
alone appears to be beneficial for neuronal survival [52]. 
Similarly, indirect inhibition of calpains was also beneficial to 
survival of neuronal cells in a model of Alzheimer’s disease, 
where calpain activity was reduced through pharmacological 
inhibition of histone deacetylase and transcriptional upregula
tion of calpastatin [159]. There is no evidence that transient 
calpain inhibition would have long-term detrimental effects 
outside of the traumatic brain injury scenario. In contrast, 
preclinical animal models suggest that calpain inhibition may 
protect against neuropathy induced by cancer chemothera
peutics [84].

Other calpain isoforms with well-established roles in 
human disease are calpain-3, −5 and −14. Hypomorphic muta
tions in CAPN3 are associated with limb-girdle muscular dys
trophy, observed both in human pedigrees and in mouse 
knockout models [56], hypermorphic mutations of CAPN5 
lead to retinopathy [58], and CAPN14 is dynamically upregu
lated in patients with eosinophilic esophagitis [59]. Thus, inhi
bition of calpain-3 could cause muscular dystrophy, while 
patients with mutations in CAPN5 or CAPN14 could benefit 
from inhibitors.

These data suggest that intermittent systemic inhibition of 
calpain-1 and −2 might be well tolerated, but considerations 
should be made for toxicities towards embryonic develop
ment, or possibly, effects of extended exposure to calpain 
inhibition on selected tissues. As of this writing, calpain inhi
bitor BLD-2660 is undergoing a clinical trial for treatment of 
COVID-19 to reduce tissue IL-6 and prevent lung fibrosis. 
Another phase-2 trial of this drug in idiopathic pulmonary 
fibrosis was recently withdrawn.

2.5.2. Other proteases in cancer
Calpains are not the only class of proteases studied in the 
context of cancer biology and therapy. Matrix metallopro
teases degrade extracellular matrix (ECM) to promote cell 
motility (reviewed in [160]). The proteasome recycles intra
cellular proteins, which promotes cell survival of both nor
mal and malignant cells (reviewed in [161]). Cathepsins, 
classically lysosomal enzymes, also participate in MHC- 
mediated antigen presentation, ECM degradation for cell 
invasion, and pro-survival autophagy [162]. The plasmin 
protease of fibrin in blood clots can activate latent MMPs, 
and its activators and inhibitors have been implicated in 
cancer invasion [163]; and caspases, general-purpose pro- 
apoptotic factors, can be hindered by dysregulation in cal
pain-mediated proteolysis [2].

Perhaps the most studied among these, with promising 
selective anti-tumor effects in cancer models, are inhibitors of 
proteasomal proteases [161] and matrix metalloproteases 
(MMP) [160]; but both types are excessively vulnerable to 
acquired resistance and relapse in clinical settings, especially 
in solid tumors. However, in specific cases of myeloma and 
mantle-cell lymphoma, proteasome inhibitors like bortezo
mib, ixazomib and carfilzomib have been approved even as 
a first-line therapy [161]. Failures of proteasome inhibitors in 
cancer have been traced to acquired mutations in the drug- 
binding pockets of the enzyme or upregulation of heat-shock 
and antioxidant response pathways [161]. Combination of 
proteasome and HSP90 inhibitors might overcome such resis
tance, but there are no clinical data on the benefits of such 
combinations available yet [161]. MMP inhibitors, which have 
similarly failed to produce reliable anti-cancer effects and also 
had a multitude of adverse side-effects, were speculated to 
be not sufficiently isoform-specific or requiring a very early 
intervention before the tumor has become invasive [160]. 
Some side effects of proteasome or MMP inhibitors are diar
rhea, thrombocytopenia, and painful neuropathy or dyspnea, 
musculoskeletal syndrome, and transaminitis, respectively 
[160,164].

In contrast, transient inhibition of calpain-1 and −2 are not 
expected to produce severe side effects in adults. While active- 
site inhibition of these calpains would also likely affect other 
calpain isoforms and other structurally homologous cysteine 
proteases, the dimeric nature of calpain-1 and −2 allows the 
possibility of allosteric protein-protein interaction inhibition of 
the PEF domains, which would likely have little off-target 
effect due to a limited number of other proteins containing 
PEF domains and due to relatively low sequence homology 
among them.
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3. Conclusions

In summary, our growing understanding of the calpain system 
suggests that targeting calpain proteases represents 
a promising approach for the treatment of a wide range of 
diseases, including cancers. As we learn more about calpain 
biology, the complexity of calpain functions may reveal oppor
tunities that can be exploited for therapeutic benefits. As 
novel calpain substrates continue to emerge, our understand
ing of the impact of calpain proteolysis of these substrates on 
pathways that they participate in may provide rationale for 
therapeutic strategies consisting of calpain inhibitors com
bined with other targeted agents. The development of isoform 
specific pharmacologic calpain inhibitors may be required to 
allow this approach to expand further into animal models, and 
eventually human trials.

4. Expert opinion

Calpain proteases have been studied for nearly fifty years, yet 
the extent to which we understand their biologic functions is 
still frustratingly incomplete. While they are widely conserved, 
studies of calpains in simpler organisms have provided limited 
insight into their developmental or physiologic roles. 
Extensive biochemical and structural studies have given us 
a solid understanding of their proteolytic activities and regula
tion by Ca2+, calpastain and other mechanisms, and crystal 
structures are available for some isoforms. Structure-function 
and genetic studies in cell systems, humans, and mice have 
also revealed relationships between mutations and disease 
phenotypes for some isoforms; and these studies continue to 
provide more detailed insights into their cellular and physio
logic functions. However, we still do not have a good under
standing of the cellular context under which the various 
calpain isoforms become activated, what controls their selec
tion of specific substrates, and how substrate cleavage affects 
the global cell signaling network in normal biology and dis
ease. Nevertheless, evidence of dysregulated calpain expres
sion in diseases including cancers, fibrosis, muscular 
dystrophy, retinopathy, eosinophilic esophagitis, and 
Alzheimer’s has provided incentive to better understand 
potential etiologic roles for calpains in these diseases and to 
develop inhibitors that may be used therapeutically. In this 
regard, a challenging and exciting area of calpain research is 
the identification of physiologic substrates and elucidation of 
how calpain-mediated proteolytic cleavage affects their func
tions. Over one hundred protein substrates have been 
reported, and this list continues to grow. However, detailed 
mechanistic information regarding how calpain cleavage 
affects substrate functions and cellular behaviors is lacking 
for most of these substrates. The application of TAILS-MS or 
other emerging proteomic methods to quantify calpain- 
mediated cleavage of substrates under specific conditions 
has the potential to identify additional substrates and better 
understand calpain roles in cell signaling, as well as the impli
cations for systemic calpain inhibition in disease contexts.

We are particularly interested in substrates that play roles 
in the regulation of cancer cell migration, invasion, survival, 
and proliferation because of the importance of these cell 

behaviours in metastasis and tumor progression. Emerging 
studies provide rationale for inhibiting calpains to interfere 
with these mechanisms as a strategy to suppress tumorigen
esis and make cancer cells more susceptible to other thera
peutics, including radiation, chemotherapies and targeted 
agents. Some of this insight comes from correlative transla
tional studies that link high calpain-1 and −2 expression with 
poorer prognosis in different types of cancer. Preclinical stu
dies using cultured cancer cells, engraftment, and transgenic 
mouse models are emerging that show genetic disruption of 
calpain-1 and −2 is associated with suppressed tumor growth 
or reduced metastatic behaviors. Beneficial effects of calpain-1 
and −2 genetic disruption have also been seen in models of 
fibrosis. While these observations inspire efforts to develop 
more effective and specific calpain inhibitors, these efforts 
have not yet resulted in approved therapeutics. This repre
sents an important unmet need which holds promise for the 
treatment of several diseases.

Recent efforts to inhibit calpains include the development 
of calpastatin-derived peptidomimetics and in silico-informed 
molecular design to exploit the hydrophobic pocket of 
CAPNS1. However, we still lack potent selective pharmacolo
gical inhibitors for in vivo studies and specific tools for asses
sing calpain activity in situ. These challenges need to be 
addressed using gene-specific knock-out model systems to 
verify that calpain is the selective target of experimental 
inhibitors. Another weakness is our incomplete understand
ing of calpain isoform-specific functions in different biologi
cal contexts, including cancers. For example, our current 
understanding is that calpain-1 and calpain-2 have both 
redundant and isoform-specific roles in terms of cleavable 
substrates and affected pathways; and current data suggests 
that disruption of either isoform can suppress tumorigenesis 
in some models. These observations argue that targeting 
either calpain-1 or calpain-2 has therapeutic potential in 
cancer. Not only does calpain inhibition have the potential 
to render cancer cells more susceptible to specific therapeu
tic challenges, but there is evidence that systemic calpain 
inhibition could also protect normal cells and tissues against 
the cytotoxic effects of some cancer treatments. This under
scores the need to more fully elucidate the cell-specific roles 
that calpain isoforms are playing, especially in the context of 
systemic cancer therapies, and to ultimately develop isoform 
selective calpain inhibitors to use in rationally designed 
combinatory cancer therapies. The recent discovery that 
loss of function mutations in CAPN1 are associated with 
ataxia, and studies showing a protective effect of calpain-1 
in brain injury suggest that calpain-2 specific inhibitors 
would be preferable in the treatment of neurodegenerative 
diseases and cancer.

Our understanding of calpain continues to grow and much 
of the historical and recently emerging knowledge supports 
the idea that isoform specific calpain inhibitors will become 
effective therapeutics in cancers and other diseases. The chal
lenges going forward include improving our understanding of 
the effects of calpain inhibition on different cell types in 
various disease contexts, refining our knowledge of the struc
ture and regulation of different calpain isoforms, developing 
biomarkers that reveal in vivo calpain activity, and using that 
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knowledge to develop isoform-specific inhibitors that will be 
safe and effective therapeutics.
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