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Abstract

Acetylcholinesterase (AChE) is a widely spread enzyme playing a very important role in nerve signal transmission. As AChE
controls key processes, its inhibition leads to the very fast death of an organism, including humans. However, when this feature
is to be used for killing of unwanted organisms (i.e. mosquitoes), one is faced with the question - how much do AChEs differ
between species and what are the differences? Here, a theoretical point of view was utilized to identify the structural basis for
such differences. The various primary and tertiary alignments show that AChEs are very evolutionary conserved enzymes and
this fact could lead to difficulties, for example, in the search for inhibitors specific for a particular species.
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Introduction

Acetylcholinesterase (AChE, EC 3.1.1.7) is one of the
most important enzymes in many living organisms,
including humans and vertebrates, and is located in
the nervous system and in muscles [1]. AChE is
responsible for regulation of acetylcholine concen-
tration during nerve signal transmission. In the central
and peripheral nervous systems, the nerve signal is
usually transmitted by the neurotransmitter acetyl-
choline. The transmission is terminated by the
cleavage of acetylcholine by AChE directly in the
synaptic gap [2]. The AChE is a very efficient catalyst.
It catalyses the hydrolysis of acetylcholine with a
turnover number of 10%s~! [3]. This high turnover
implies that Nature has created a perfect enzyme
working on rates very close to diffusion limits. AChE
has been studied for a long time [1-7] and many
important and interesting observations have been
achieved. The first crystallographic structure [6] was
solved in 1991 (pdb code: 1AC]). AChE is an
alpha/beta protein with a large twisted beta sheet
spanning through the whole molecule (see Figure 1a).

Nowadays in the PDB database, there are 69
structures of AChE’s from various organism sources
including Homo sapiens (1B41, 1F8U), Mus musculus
(IN5M, 1N5R, 1JO6, 1JO7), Torpedo californica
(1EADS5), Electrophorus electricus (1C20) and Drosophila
melanogaster (1Q09). These structures are very
important for grasping the mode of action of AChE.
Because the crystal structures are known, the active
site of AChE is quite well described, although the
precise function of some of the active site residues
remains unclear.

There are several subsites, which can be distin-
guished in AChE’s active site: esteratic subsite, also
called the catalytic triad (Ser203, His447, Glu334),
oxyanion hole (Glyl121, Glyl122, Ala204), anionic
subsite (Trp86, Tyr133, Glu202, Gly448, Ile451),
acyl binding pocket (Trp236, Phe295, Phe297,
Phe338), peripheral anionic subsite (Asp74, Tyrl124,
Ser125, Trp286, Tyr337, Tyr341) and other residues
of the omega loop (Thr83, Asn87, Pro88) (see
Figure 1b). The omega loop is a disulphide-linked
loop (Cys69 - Cys96) that covers the active site of
AChE, which is buried at the bottom of a 20A
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(a)

omega loop

active site
channel

Figure 1. a) AChE crystal structure (1N5M) with highlighted secondary structure elements and active site entrance. Beta sheets are yellow,
alpha helical structures are violet and unordered structures are grey. Catalytic triad is represented by bold tubes. b) A detailed view of the
ACHE active site, which is located under the omega loop. Secondary structures are highlighted and active site residues are represented by bold
tubes. The numbering used is valid for human and mouse structures of AChE. (Please see colour online)
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deep gorge approximately in the centre of the in the development of medicinal agents for the
molecule (see Figure la and 1b). treatment of Alzheimer disease, and in agriculture to

Knowledge gained about AChE is utilized, for design pesticides especially against insects and other
example, to control its inhibition, which is then used arthropod vertebrates [7]. In regard to pesticides, an
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Figure 2. Alignment of primary structures of AChE sequences from Homo sapiens HUMAN), Mus musculus (IMOUSE), Torpedo californica
(TORCA) and Drosophila melanogaster (DROSQO). Positions of secondary structures depicted under alignment are taken from mouse IN5M
ACHE structure. The red arrows point to active site residues. The grey row of bars under each row of alignment is a graphical representation of
the alignment score for each column of residues. The score is also marked by signs (star, colon, full stop, space) above the alignment rows.
Aminoacid residues are highlighted by colours: acidic (D,E) are red, basic (K,R,H) are blue, polar (N,Q,S,C,T,W,Y) are yellow, non-polar
(A,V,L,I,M,F) are green and the others (P,G) stayed white. The far right column shows the number of the last residue in the row. Colour
online version. (Please see colour online)
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inhibitor specific for each species would be an ideal
situation. Unfortunately, in the terms of AChE
inhibitory specificity, it is only possible to distinguish
between mammals and insects, due to the very high
functional and structural similarity of AChE’s of
different species that are evolutionary more similar
than the above mentioned mammals and insects. This
fact is firmly based on the primary and tertiary

structure of AChE’s of various species and the aim of
this article is to elucidate these differences and
similarities using an alignment method.

Methods

The alignment method attempts to arrange the
sequences in such a way, that the most similar regions
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Alignment of primary structures of AChE sequences from Homo sapiens (HUMAN), Mus musculus (MOUSE), Torpedo californica

(TORCA). For further description, see Figure 2. For more details see the text. (Please see colour online)
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Figure 4. Alignment of primary structures of AChE sequences from Homo sapiens HUMAN), Mus musculus IMOUSE), Rattus norvegicus
(RAT), Felis silvestris catus (FELCA), Oryctolagus cuniculus (RABIT) and Bos raurus (BOVIN). For further description, see Figure 2. For more
details see the text.
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Figure 5. 3-D alignment of human 1B41 and drosophila 1QO09 structures. Mutated residues and flipped Trp86(83) are coloured by red for
human and orange for the drosophila structure. The first residue number always belongs to the human AChE and “/” character means a
mutation, where the first aminoacid is from the human structure. Colour online version.

are superposed. The amino acids in these regions can be a score. Furthermore the sequences can be moved
either identical (identity) or similar (similarity). The against one another, or a gap can be inserted. However
similarity is based on amino acid properties such as the insertion of the gap and the length of the gap
acidity, basicity, polarity, aromaticity etc. The math- contribute negatively to the whole score. The align-
ematical expression of these properties is called a weight ment of two sequences (pair-wise alignment) is solved
(scoring) matrix. So each pair of amino acids is assigned by algorithms of dynamic programming [9]. The
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Figure 6. 3-D alignment of human 1B41, mouse 1N5M and torpedo 1EA5 structures. Residues which show the biggest deviations are
coloured by red for human, blue for mouse and yellow for the torpedo structure. Torpedo californica has also one mutation of Tyr337 (in the
case of human and mouse) to Phe330 (torpedo). The first residue number belongs to the human or mouse AChE. Colour online version.



alignment of more sequences (multiple alignment)
computes firstly pair-wise alignments, constructs
phylogenetic tree and then proceeds by adding
sequences according to the phylogenetic tree branching
order to finally construct the multiple alignment. This
algorithm is called progressive multiple sequence align-
ment [10]. Clustal W [11] and Clustal X [12] utilised in
this work use a modified progressive approach.

Firstly, an alignment of the primary sequences of
known crystallographic AChE structures was carried
out. The structures were taken from the PDB database
[13]. The human (1B41, Homo sapiens, [14]), mouse
(IN5M, Mus musculus, [15]), torpedo (1EA5, Torpedo
californica, [16]) and drosophila (1Q0O9, Drosophila
melanogaster, [17]) AChE’s were taken into account in
this first step. Then the Swiss-Prot database, version
50.1 released 13-Jun-2006 [18], was used to extract
more AChE sequences (Rartus norvegicus, Felis
stlvestris catus, Oryctolagus cuniculus and Bos taurus).
These are sequences of AChE from species that could
serve as testing animals. Multiple alignments of these
sequences with human AChE were also performed.

If the structure and function of a protein are tightly
tied together, then proteins with similar structures are
likely to have similar functions. Three dimensional
alignment can give useful information in this type of
study. The 3-D alignment is a method that attempts to
fit two structures in such a way that the RMSD
(root-mean-square deviation) between atoms of two
structures is as small as possible. There are many
algorithms that are able to do this task. We have used
the “Best fit procedure” for backbone atoms
implemented in the Swiss-Pdb Viewer [19,20],
because the crystal structures of compared AChE’s
do nothave the same number of atoms or even residues.

Results and discussion

As mentioned earlier, AChE’s from different species
are generally similar or different depending on how
evolutionary similar the species are. The question is
how to measure their similarities or differences. One
branch of reliable sources to measure this is certainly
enzyme kinetics and the specificity of a chosen set of
inhibitors and AChE reactivators [21]. The second
branch, utilized in this paper, is based on primary
and/or tertiary structure of the AChE molecules.

First we performed an alignment between the
aminoacid sequences of four crystallized AChE’s (see
Figure 2). The identity in this case is 27.68%.

We then excluded sequence 1QO9 (the drosophila
sequence). The identity significantly increased to
56.14% (Figure 3). In Figure 4, the identity of the
Swiss-prot-extracted sequences is 80.13%. The
identity of the active site residues is high in all cases.
The values in the three previously mentioned
alignments (Figure 2,3, and 4) are 76%, 92% and
100%, respectively. It can be seen that despite the low
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overall identity between human and drosophila
sequences, the identity of active site residues is still
high. When the drosophila sequence was excluded
from the alignment, the identity significantly increased
and when the torpedo sequence was excluded, the
overall identity increased once again and the identity
of active site residues reached even 100%.

It is accepted in protein homology modelling that a
homology model is likely to be accurate when the
sequence identity of the model and template(s) is
more than 40%. A protein sequence that has at least
40% identity to a known structure can be modelled
automatically with an accuracy approaching that of a
low resolution X-ray structure or a medium resolution
NMR structure [22]. Once the overall sequence
identity of drosophila and human sequences is below
40% (28% in this case), these two proteins might not
have similar 3D structures. The sequence of the
Drosophila fly could have a different tertiary structure
and it might not even have an AChE fold (with
assumption that the human sequence has an AChE
fold). However, this finding is inconsistent with the
very high identity of active site residues. According to
the threshold value of 40%, the torpedo structure
should have the same fold as mouse or human
structures, and the tertiary structure should also be
similar. Another interesting feature, which can be seen
directly from the alignments, is that the insertions and
deletions in drosophila and torpedo sequences appear
solely in the unordered structure or in the loops, when
the mouse secondary structures are used as reference.
This fact together with the conservation of active site
residues indicates a large structural and functional
conservation of AChE’s from different species.

When one considers the 3-D structure of the active
sites, Figures 5 and 6, it can be seen, that although the
primary structures of drosophila AChE and human
AChE are very different, the active sites are similar.
On the other hand there are several mutations,
especially in the peripheral anionic subsite, which
change the properties of the active site. The most
important mutations, in our opinion, are the
mutations of Asp74 in human to Tyr71 in Drosophila
and Tyrl124 to Metl53, which influence both the
steric and electrostatic properties of the upper part of
the active site gorge. The negative charge, located in
the human structure at the entrance of the gorge,
disappears by Asp74 to Tyr71 mutation and appears
on the opposite side of the gorge entrance due to
mutation of Gly342 to Asp375. The active site of
torpedo AChE is nearly identical to the mouse and
human AChEs. The only minor difference is the
mutation of Tyr337 in human to Phe330 in the
torpedo structure, which should not cause any
significant differences in both the electrostatic and
steric properties of the active site gorge.

The trends seen in the 3-D alignment of active site
structures are also reflected by the RMSD values of
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backbone atoms of drosophila, torpedo and mouse
structures from the human one; the values are 1.20A,
0.87A, and 0.57A, respectively. The values were
measured on the maximal number of residues common
in both structures; about 500 residues were utilized in
average to compute this backbone 3-D alignment.
According to RMSD values we can see that all aligned
AChE structures have the same fold and specific
differences are in an exact position, and also it can be
seen that the type of side chain retrospectively influences
the backbone position. For this reason the drosophila
structure, which has the lowest primary structure
identity, has the largest RMSD. But on the contrary to
the results from primary structure alignments, which
show low overall identity between drosophila and
human sequence, the drosophila tertiary structure and
fold is very similar to the human tertiary structure and
fold. Based on this observation, we predict that the
tertiary structures of AChEs from Rattus norvegicus, Felis
stlvestris catus, Oryctolagus cuniculus and Bos taurus will
be very similar to the human structure, because the
identity of the alignment of their primary sequences with
the human sequence is very high.

Conclusions

The 3-D structure of AChE is very evolutionary
conserved, despite the lower conservation of the
aminoacid sequence. The folding were similar when
the structures of AChE from Homo sapiens and
Drosophila melanogaster were compared. In the
structure of Drosophila melanogaster AChE, various
mutations of the active site residues occur leading to
differences in both steric and electrostatic properties
of the active site. Most of the mutations were seen at
the peripheral anionic site. We predict that the
structures of AChEs from Rattus norvegicus, Felis
stlvestris catus, Oryctolagus cuniculus and Bos taurus
should be very similar to the human structure and
should have identical properties of the active site.
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