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Abstract
Chagas’ disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms
of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for
antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships
(2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and
semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q 2 ¼ 0.75 and r 2 ¼ 0.96;
classical QSAR, q 2 ¼ 0.72 and r 2 ¼ 0.83) were obtained, indicating their consistency for untested compounds. The models
were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the
predicted values were in good agreement with the experimental results (HQSAR, r 2

pred ¼ 0.95; classical QSAR, r2
pred ¼ 0.91),

indicating the existence of complementary between the two ligand-based drug design techniques.

Keywords: Chagas’ disease, enzyme inhibitors, drug design, chemotherapy, QSAR

Introduction

Enzymes are extremely attractive targets for small-

molecule drug intervention in human diseases [1–4].

The ability to efficiently design or discover novel,

patentable new chemical entities which are potent and

specific inhibitors of enzymes is, therefore, of great

importance [5,6]. Chagas’ disease or American

trypanosomiasis is a major cause of morbidity and

mortality in Latin America, where about 16-18 million

people are infected with Trypanosoma cruzi [7].

The two nitroheterocyclic drugs (nifurtimox and

benznidazole) available for the treatment of this

parasitic disease have severe limitations, including

poor efficacy, high toxicity, and long courses of

parenteral administration. Therefore, there is an

urgent need for new drugs for chemotherapy of the

disease [8–10]. This has led to a new paradigm for the

discovery of drug candidates that act on specific

enzymes or metabolic pathways. Cysteine proteases

are essential components for the survival of several

parasitic protozoa. Cruzain, the major cysteine

protease of the protozoan parasite T. cruzi, has been

identified as an attractive target for the development of

a new generation of antitrypanosomal agents [11,12].

Structure- and ligand-based drug design techniques

are vital components of modern drug discovery.

Success in this endeavor has been driven by scientific
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and technological innovation that enabled the

discovery of new therapeutic agents [13,14]. Compu-

tational techniques have provided valuable infor-

mation for the design of enzyme inhibitors with a wide

variety of pharmacological properties, however,

designing compounds that are effective against a

single target is a difficult task [15]. The understanding

of the chemical basis involved in the complex process

of molecular recognition and biological activity,

remains a major challenge. One of the key strategies

in inhibitor drug design is the development of

quantitative structure-activity relationships (QSAR)

from a correct interpretation of the mutual binding-

mode and mechanism of action within series of

structurally related inhibitors. In the present study,

hologram QSAR (HQSAR) and classical QSAR

methods have been employed to explore both the

molecular basis underlying the selective modulation of

T. cruzi cruzain, and to investigate the QSAR of a

series of chemically versatile thiosemicarbazone and

semicarbazone derivatives as selective inhibitors of this

trypanosomal cysteine protease.

Materials and methods

Data sets

The data set used for the QSAR studies contains 55

thiosemicarbazone and semicarbazone derivatives as

inhibitors of the trypanosomal cysteine protease

cruzain, which have been selected from the literature

[16]. The structures and corresponding IC50 values

for the whole set of inhibitors are included in Table I.

The IC50 (concentration required for 50% inhibition

of cruzain) values were converted to pIC50 (2 log

IC50) values and used as dependent variables in the

QSAR analyses. The complete data set was divided

into training (compounds 1–45, Table I) and test

(compounds 46–55, Table I) sets. A statistical cluster

analysis was carried out with Tsar 3D version 3.3

(Accelrys, San Diego, USA) using the complete

linkage clustering method (Euclidean distances) with

no data standardization.

HQSAR analysis

The HQSAR modelling analyses, calculations and

visualisations were performed using the SYBYL 7.3

package (Tripos Inc., St. Louis, USA) running on Red

Hat Linux 7.3 workstations, as previously described

[17–21]. Basically, HQSAR models can be affected

by a number of parameters concerning hologram

generation: hologram length, fragment size, and

fragment distinction. The generation of the molecular

holograms was carried out using several combinations

of the following fragment distinction: Atoms (A),

Bonds (B), Connections (C), Hydrogen atoms (H),

Chirality (Ch), and Donor & Acceptor (DA).

The influence of fragment size, which controls the

minimum and maximum length of fragments to be

included in the hologram, was further investigated by

using six distinct fragment sizes over the 12 default

series of hologram lengths of 53, 59, 61, 71, 83, 97,

151, 199, 257, 307, 353, and 401 bins. The patterns

of fragment counts from the training set inhibitors

were then related to the experimental biological data

using the partial least squares (PLS) analysis.

Classical QSAR analysis

Classical QSAR studies were carried out using the

DRAGON 5.4 (Talette SRL, Milan, Italy), BuildQ-

SAR [22] and PIROUETTE 3.11 software (Infome-

trix, Washington, USA), as previously described

[19,20]. Briefly, 2D molecular descriptors, including

topological descriptors, connectivity indices, 2D

autocorrelation descriptors, and Burden eigenvalues

indices, among others, were computed using the

software DRAGON 5.4 and used as independent

variables in the QSAR analyses. Next, about 950

molecular descriptors were subjected to the following

selection criteria. Descriptors with zero variance as

well as those with poor correlation to biological

property (r 2 , 0.10) or those more than 0.97 pairwise

correlated were discarded. This strategy afforded a

total of 247 descriptors. Subsequently, the BuildQ-

SAR software was employed to search for multiple

linear regressions (MLR) models of up to 4 variables

using genetic algorithm (GA). The selection protocol

was applied to 50 individuals (models with up to 4

variables) that were evaluated through 200,000

generations. During this processes mutation (10%)

and cross-over were allowed in order to increase

model fitness, which was evaluated according to the

correlation coefficient criteria. All descriptors present

in the 10 best MLR models were pooled together,

autoscaled and used for the PLS analyses performed

with the PIROUETTE software.

QSAR models validation

The QSAR models were investigated using full cross-

validated r 2 (q 2) PLS. Leave-one-out (LOO) cross-

validation has been applied to determine the number

of components that yield optimally predictive models.

Leave-many-out (LMO) validation procedures with

either 10 (LMO10) or 5 (LMO5) randomly selected

groups were used as more rigorous tests to assess

model stability and statistical significance. Each

random cross-validation run was repeated 25 times

to obtain mean values for q 2 and the corresponding

standard error of prediction (SDEP). External

validation was conducted employing a test set of 10

compounds, which were not considered for QSAR

model generation.
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Table I. Chemical structures and corresponding pIC50 values for a series of inhibitors of cruzain from Trypanosoma cruzi.

Training Set Inhibitors

Cpd Structure pIC50 Cpd Structure pIC50 Cpd Structure pIC50

1 6.55 10 7.30 19 6.70

2 5.15 11 7.70 20 7.22

3 6.85 12 5.00 21 6.34

4 6.55 13 5.41 22 7.30

5 5.55 14 6.25 23 5.72

6 5.00 15 5.00 24 6.70

7 5.00 16 5.89 25 7.10

8 5.55 17 6.49 26 6.57

9 6.66 18 6.32 27 6.64

28 7.22 34 5.00 40 5.00

29 7.15 35 5.00 41 5.00

30 7.10 36 5.80 42 5.00

31 5.00 37 6.00 43 5.00

32 5.00 38 5.85 44 5.00

R. V. C. Guido et al.966



Results and discussion

Chemical and biological data

HQSAR and classical QSAR models were derived for

a data set of 55 inhibitors of T. cruzi cruzain (Table I).

The series of chemically attractive thiosemicarbazone

and semicarbazone derivatives examined has substan-

tial structural diversity. The bulk of the structural

diversity lies in the nature of the substituent linked to

the N1, N4 and C5 of the thiosemicarbazone and

semicarbazone moieties (Figure 1).

The in vitro IC50 values employed in this work were

measured under the same experimental conditions

[16], a fundamental requirement for QSAR studies

[5,17,20]. The IC50 values of the data set inhibitors vary

from 20 to 10,000 nM, and are acceptably distributed

across the range of property values (Figure 2).

The generation of consistent statistical models is

dependent on the adequacy of the training and test sets

used. Therefore, from the original data set, 45 inhibitors

(compounds 1–45, Table I) were selected as members

of the training set for model generation, whereas the

other 10 inhibitors (compounds 46–55, Table I) were

held as part of the test set for external validation.

A statistical cluster analysis revealed an appropriate

composition of both training and test sets in terms of

chemical diversity and distribution of the biological

property across the range of IC50 values. Thus, the data

set is suitable for QSAR model development.

HQSAR analysis

HQSAR analyses require as input only 2D chemical

structures and the corresponding biological activity

data. Basically, the 2D QSAR analyses carried out

Table I – continued

Training Set Inhibitors

Cpd Structure pIC50 Cpd Structure pIC50 Cpd Structure pIC50

33 5.00 39 5.00 45 5.00

Test Set Inhibitors

46 7.00 51 5.42

47 6.52 52 7.40

48 6.25 53 5.00

49 7.70 54 5.77

50 6.77 55 5.00

Figure 1. General scaffold of thiosemicarbazone and semicarbazone

derivatives.
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in this work involved three main steps: (i) the

generation of substructural fragments for each

T. cruzi cruzain inhibitor member of the data set;

(ii) the encoding of these fragments into a molecular

hologram; (iii) the statistical generation of PLS QSAR

models [20,23]. The molecular hologram (a special-

ised fragment fingerprint) generated consists of several

substructural fragments of the thiosemicarbazone and

semicarbazone derivatives that were counted into bins

of a fixed length array. The bins represent all of the

unique fragments included within a particular

molecule and were assigned by a cyclic redundancy

check (CRC) algorithm. The bin occupancies of the

molecular hologram are structural descriptors (inde-

pendent variables) encoding compositional and

topological molecular information, that is, a funda-

mental component of molecular basis for the process

of target recognition and biological activity. Thus, the

molecular hologram includes information on the

quantity and type of each fragment in each molecule

of the data set, encoding all linear, branched, and

overlapping molecular fragments without requiring

the 3D alignment of the inhibitors.

HQSAR uses the molecular holograms and PLS to

generate fragment-based structure-activity relation-

ships. This investigation requires selecting values for

parameters that specify the length of the hologram, as

well as the size and type of the fragments that are to be

encoded [24–26]. Therefore, several combinations of

fragment distinction were considered during the

QSAR modelling runs using the fragment size default

(4-7), as follows: A/B, A/B/C, A/B/C/H, A/B/C/H/Ch,

A/C, A/C/Ch, A/C/DA, A/C/H/Ch, A/C/Ch/DA,

A/B/H, A/B/C/Ch, A/B/DA, A/B/C/DA, A/B/H/DA,

A/B/C/H/DA, and A/B/H/Ch/DA. The HQSAR

analyses were performed over the 12 default series of

hologram lengths ranging from 53 to 401 bins.

The statistical results from the PLS analyses for the

45 training set inhibitors of T. cruzi cruzain using

several fragment distinction combinations are sum-

marized in Table II.

As can be seen, the best statistical results were

obtained using A/C/Ch/DA as distinction information

(model 9, q 2 ¼ 0.72 and r 2 ¼ 0.94, with SEE ¼ 0.23).

During the development of the several models, a

considerable influence of the fragment distinction

parameter on the predictive ability of the models was

observed, as indicated by the values of q 2 in Table II

(models 1–8, 10–15). This is probably due to an

increase in poor information generated by the

descriptors used for model development, which adds

substantial noise to the cross-validation process [27].

Conversely, the inclusion of the fragment distinction Ch

and DA has dramatically improved the predictive ability

of the model 9 when compared to models 6 and 7,

suggesting that steric and hydrogen-bonding properties

play a major role towards the inhibitory potency in this

series of cruzain inhibitors. These results highlight the

importance of selecting the most appropriate combi-

nation of molecular descriptors for the generation of

predictive models, which reflects the quantitative

description of the structure-activity relationships within

Figure 2. Distribution of pIC50 values for the data set compounds.
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the data set. Subsequently, the influence of different

fragment sizes on the key statistical parameters was

further investigated for the best HQSAR model

generated (Table III). Fragment size parameters control

the minimum and maximum lengths of fragments to be

included in the hologram fingerprint. The results for the

different fragment sizes evaluated (2–5, 3–6, 4–7, 5–8,

6–9 and 7–10) show that the statistical quality of

models improved with the increasing of the fragment

size up to 6–9 (model 21, q 2 ¼ 0.75 and r 2 ¼ 0.96,

with SEE ¼ 0.20).

The internal statistical consistency of the model 21

was evaluated through the analysis of values of q 2 and

SDEP obtained by more consistent cross-validation

procedures using about 10% and 20% of training

set compounds (LMO10 and LMO5, respectively).

The cross-validation using 10 random groups yielded

an average q2
10 of 0.72 with SDEP10 of 0.50, while an

average q2
5 of 0.70 with SDEP5 of 0.52 was obtained

for the cross-validation using 5 random groups. These

results confirm the good stability and robustness of the

model.

Although q 2 values may give a suitable representation

of the model internal consistency and predictive power,

the most valuable test of a QSAR model is its ability to

predict the property value for new compounds, not

included in the training set for model generation

[24,28–30]. As the structure encoded in the 2D

specialized fingerprints is directly related to the

biological activity, HQSAR models should be useful to

predict the activity of new structurally related molecules

from its fingerprint [25,26]. Thus, the predictive power

of the best QSARmodel derived using the 45 training set

inhibitors was assessed by predicting the biological

property for 10 test set compounds (inhibitors 46-55,

Table I). The results of the external evaluation are shown

in Table IV, and the graphic results for the predicted

versus experimental activities of both training set and

test set are displayed in Figure 3.

The good agreement between experimental and

predicted pIC50 values for the test set cruzain

inhibitors indicates the high quality of the HQSAR

model (r2
pred ¼ 0.95). The predicted values fall close to

the experimental pIC50 values, deviating by no more

Table II. HQSAR analysis for various fragment distinctions on the key statistical parameters using fragment size default (4-7).

Statistical Parameters

Model Fragment Distinction q 2 r 2 SEE HL PC

1 A/B 0.45 0.83 0.39 307 6

2 A/B/C 0.54 0.87 0.35 401 6

3 A/B/C/H 0.49 0.88 0.33 353 6

4 A/B/C/H/Ch 0.57 0.88 0.33 353 6

5 A/C 0.41 0.79 0.44 199 6

6 A/C/Ch 0.41 0.83 0.38 353 6

7 A/C/DA 0.24 0.49 0.65 97 3

8 A/C/H/Ch 0.38 0.73 0.49 151 4

9 A/C/Ch/DA 0.72 0.94 0.23 353 6

10 A/B/H 0.41 0.86 0.36 401 6

11 A/B/C/Ch 0.56 0.84 0.38 53 6

12 A/B/DA 0.27 0.52 0.64 83 4

13 A/B/C/DA 0.26 0.50 0.65 307 3

14 A/B/H/DA 0.52 0.80 0.42 353 5

15 A/B/C/H/DA 0.53 0.82 0.40 353 6

16 A/B/H/Ch/DA 0.67 0.92 0.27 151 6

q 2, cross-validated correlation coefficient; r 2, non-cross-validated correlation coefficient; SEE, non-cross-validated standard error; HL,

hologram length; PC, optimal number of components. Fragment distinction: A, atoms; B, bonds; C, connections; H, hydrogen atoms; Ch,

chirality; DA, donor and acceptor.

Table III. HQSAR analysis for the influence of different fragment sizes on the statistical parameters.

Statistical Parameters

Fragment Distinction Model Fragment Size q 2 r 2 SEE HL PC

A/C/Ch/DA 17 2-5 0.67 0.86 0.36 59 6

18 3-6 0.70 0.92 0.26 307 6

19 4-7 0.71 0.94 0.23 353 6

20 5-8 0.73 0.95 0.21 353 6

21 6-9 0.75 0.96 0.20 401 6

22 7-10 0.73 0.95 0.22 401 6
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than 0.44 log units. From the low residual values, it

can be seen that the HQSAR model obtained is

substantially reliable and can be employed to predict

the biological activity of novel cruzain inhibitors

within this structural diversity.

Besides predicting the activities of untested mol-

ecules, the HQSAR model plays another important

role in providing hints about the influence of different

molecular subfragments to biological activity.

It includes the identification of substructural patterns

related to potency (IC50 values) in the data set of

cruzain inhibitors. Therefore, the HQSAR model is

graphically represented in the form of very intuitive

contribution maps where the colours of the atoms

reflect their relative contribution to the overall activity

of the molecule. In this context, an accurate

interpretation of the contribution maps revealed

important molecular fragments related to biological

potency, as well as providing further insights into the

underlying mechanism of action of this series of

cruzain inhibitors. For the analysis of the contribution

maps, colours at the red end of the spectrum (e.g., red,

red-orange, and orange) reflect poor (or negative)

contributions, while colours at the green end of the

spectrum (e.g., yellow, green–blue, and green) reflect

favorable (positive) contributions. Atoms with inter-

mediate contributions are coloured white.

For example, the contribution of different subfrag-

ments for the most potent inhibitor of the series

(compound 11, Table I) is shown in Figure 4. As can

be seen, the contribution map indicates that presence

of the thiosemicarbazone moiety is favorable to the

inhibitory activity. This is supported by the fact that

the replacement of the thiosemicarbazone with a

semicarbazone moiety (compounds 39-44) did

considerably affect the inhibitory potency, showing

that the thiosemicarbazone moiety is essential for this

series of enzyme inhibitors. In addition, the contri-

bution map also highlights the importance of the

sulfur atom (thiosemicarbazone) for intermolecular

interactions with the catalytic cysteine of the T. cruzi

cruzain binding pocket. Concomitantly, the model

also shows the importance of the N4 and C5 alkyl

substituents for activity. This is in agreement with the

fact that compounds 9 and 10, with ethyl substituent

at C5, have enhanced inhibitory activity when

compared to molecules without substituents on C5

(inhibitors 14-18) [16].

Classical QSAR analysis

In order to obtain further insight into the structure-

activity relationships for this series of cruzain

inhibitors, we resorted to a classical QSAR approach.

Recently, the integration between HQSAR and

classical QSAR methods has been successfully applied

[19,20], illustrating the complementary nature of

these approaches as a powerful tool for medicinal

chemistry studies and drug design.

Figure 3. Plot of predicted values of pIC50 versus the

corresponding experimental values for the training (open squares)

and test (solid circles) set inhibitors for the final HQSAR model.

Table IV. Experimental and predicted activities (pIC50) with residual values for the test set inhibitors.

HQSAR Classical QSAR

Cpd Experimental Predicted Residuala Predicted Residuala

46 7.00 6.75 0.25 6.59 0.41

47 6.52 6.51 0.01 6.60 20.08

48 6.25 5.81 0.44 6.52 20.27

49 7.70 7.97 20.27 7.53 0.17

50 6.77 6.91 20.14 6.75 0.02

51 5.42 5.62 20.20 5.62 20.20

52 7.40 7.25 0.15 6.98 0.42

53 5.00 4.85 0.15 4.93 0.07

54 5.77 5.78 20.01 6.35 20.58

55 5.00 5.15 20.15 4.97 0.03

a The difference between experimental and predicted values.
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Classical 2D QSAR studies require the calculation

of molecular descriptors and the construction of

mathematical models. In this work, 2D-topological,

2D-BCUTs, 2D-walk and path counts, 2D-autocor-

relations, 2D-connectivity indices, 2D-information

indices, 2D topological charge indices, and 2D-

eigenvalue-based indices, were computed in the

DRAGON 5.4 software and then used as independent

variables in the QSAR modelling investigations.

In order to reduce redundant and useless information,

descriptors possessing zero variance, poor correlation

to biological activity (r 2 , 0.10) as well as those with

pairwise correlation superior to 0.97 were discarded.

The descriptor space was further reduced through the

selection of descriptors closely related to the biological

activity. In order to achieve this task, BuildQSAR

software was employed to search for the 10 best

multiple linear regression (MLR) models of up to 4

variables using GA [31]. This strategy led to the

selection of 12 descriptors (gathered from the MLR

models) that were pooled together, autoscaled and

used in the principal components analysis (PCA) and

PLS analysis with the PIROUETTE software.

According to the PCA results, 4 principal com-

ponents accounted for 91% of total variance, while

additional components were considered irrelevant.

A graphical analysis of the PCA results indicates that

some molecular features of the data set inhibitors

could be satisfactorily described by PC2. Less bulky

compounds have negative values in PC2, while bulkier

compounds have positive values. Weak inhibitors

(pIC50 ¼ 5.0) are broadly distributed along PC1 and

PC2; however, none of them is located in the lower-

right quadrant. In contrast, 75% of the most potent

inhibitors (pIC50 . 7.0) are located in this region.

These results suggest that the selected descriptors can

be used for deriving QSAR models. Thus, PLS QSAR

models were created using the LOO cross-validation

procedure. As can be seen in Figure 5, the best

statistical model shows good correlation within the

training set (q 2 ¼ 0.72 and r 2 ¼ 0.83). The stability

and robustness of the model was further evaluated

by the LMO cross-validation procedures. In both

cases, no significant differences were obtained

(q2
10 ¼ 0.71, with SDEP10 ¼ 0.52; and q2

5 ¼ 0.69,

with SDEP5 ¼ 0.54).

The predictive ability of the model was assessed

through the prediction of the biological property for 10

test set inhibitors (compounds 46-55, Table I).

The results, of similar quality compared to the

HQSAR investigation, are listed in Table IV

ðr2
pred ¼ 0:91Þ. Besides demonstrating statistical signifi-

cance, QSAR models should also provide useful

chemical insights for drug design. This goal can be

accomplished through a careful interpretation of the

importance of the descriptors for the QSAR model.

Figure 6 illustrates the influence of the descriptors

over the regression vector, which can be regarded

Figure 4. HQSAR contribution map for the most potent cruzain inhibitor 11.

Figure 5. Plot of predicted values of pIC50 versus the

corresponding experimental values for the training (open squares)

and test (solid circles) set inhibitors for the final classical QSAR

model.
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as a weighted sum of the loadings included in the

model. Accordingly, descriptors with small coefficients

(PW3, PiPC09, PiPC10, X5A, EEig03d, EEig02r,

BELe4, BELe3, SEIgv, C-039) did not significantly

affect the quality of the QSAR model. Conversely,

BELm3 and BEHp3 are very important topological

descriptors that can be derived from the connectivity

matrix, the matrix of eigenvectors, and a diagonal

matrix of eigenvalues weighted by an atomic property

(atomic masses and atomic polarizabilities, respect-

ively). These descriptors are collectively known as

BCUT metric and contain contributions from all

atoms, thus reflecting the topology of the whole

molecule. The opposite contribution of BELm3 and

BEHp3 to the final model indicates that highly

polarized undersized molecules have a better inter-

action profile to the cruzain binding site. For instance,

the integrated analyses of classical QSAR and HQSAR

models can be regarded as complementary in nature by

suggesting that the inhibitory potency of compounds 9

and 10 might be improved in the presence of more

polarizable groups of similar molecular mass in

positions N4 and C5 adjacent to thiosemicarbazone

moiety.

Conclusion

The use of fragment-based molecular holograms and

topological descriptors, along with a standard and

reproducible high quality biological data, allowed the

generation of QSAR models exhibiting both good

internal and external consistency, with substantial

predictive power for this series of T. cruzi cruzain

inhibitors. The information gathered from the

HQSAR contribution maps, integrated with a careful

analysis of the topological descriptors from the

classical QSAR, shed some light on the effects of the

substitution pattern related to biological activity

within this series of thiosemicarbazone and

semicarbazone derivatives. The consistent results

confirmed that investigations can be carried out

concomitantly to search for synergies between 2D

QSAR technologies and drug design. In sum, as the

models reported herein have been internally and

externally validated employing different 2D QSAR

approaches, they appear to be valuable tools for

ligand-based enzyme inhibitor design.
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