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Introduction

Acetylcholinesterase (AChE) is a key component of cholinergic 
brain synapses and neuromuscular junctions. The major bio-
logical role of the enzyme is the termination of impulse trans-
mission by rapid hydrolysis of the cationic neurotransmitter 
acetylcholine (ACh) [1]. According to the cholinergic hypoth-
esis, the memory impairment in patients with senile dementia 
of the Alzheimer type results from a deficiency in cholinergic 
functions of the brain [2,3]. Hence, the most promising thera-
peutic strategy for activating the central cholinergic function 
has been the use of cholinomimetic agents. The enzyme, 
AChE has long been an attractive target for the rational drug 
design and discovery of mechanism-based inhibitors used 
for the treatment of Alzheimer’s disease (AD) [4]. The AChE 
inhibitors boost the endogenous levels of ACh in the brain of 
AD patients and thereby boost cholinergic neurotransmis-
sion. As far as the active site, responsible for catalytic action 

of the AChE is concerned, studies have suggested that this site 
is localized at the bottom of a narrow catalytic gorge [5,6]. The 
complex nature of the gorge fluctuations has been revealed 
by carrying out the 10-ns molecular dynamics (MD) simula-
tions of AChE [7]. A collective motions on many scales deter-
mine the opening behavior of the gorge; two distinct states, 
one narrow and one wide, have been found. Correlation 
results identified the motions of many residues within the 
AChE moiety including the gorge that apparently move away 
from its entrance when it opens. The opening of alternative 
passages to the active site was found to be infrequent, since 
less than one-hundred of the frames collected were available 
to create the opening of alternative passages. These alterna-
tive passages are the back door bounded by residues Trp86, 
Tyr449 and Ile451 [8] and the side door, bounded by residues 
Thr75, Leu76 and Thr83 [9,10].
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abstract
Molecular Dynamics (MD) simulations were carried out for human acetylcholinesterase (hAChE) and its 
 complex with Axillaridine–A, in order to dynamically explore the active site of the protein and the behaviour of 
the ligand at the peripheral binding site. Simulation of the enzyme alone showed that the active site of AChE is 
located at the bottom of a deep and narrow cavity whose surface is lined with rings of aromatic residues while 
Tyr72 is almost perpendicular to the Trp286, which is responsible for stable π -π interactions. The complexation 
of AChE with Axillaridine-A, results in the reduction of gorge size due to interaction between the ligand and 
the active site residues. The gorge size was determined by the distance between the center of mass of Glu81 
and Trp286. As far as the geometry of the active site is concerned, the presence of ligand in the active site alters 
its specific conformation, as revealed by stable hydrogen bondings established between amino acids. With 
the increasing interaction between ligand and the active amino acids, size of the active site of the complex 
decreases with respect to time. Axillaridine-A, forms stable π -π interactions with the aromatic ring of Tyr124 
that results in inhibition of catalytic activity of the enzyme. This π -π interaction keeps the substrate stable at 
the edge of the catalytic gorge by inhibiting its catalytic activity. The MD results clearly provide an explanation 
for the binding pattern of bulky steroidal alkaloids at the active site of AChE.
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Results of X-ray crystallography provide a picture of 
a protein in its native conformation as a well defined, 
densely-packed structure. Other experimental data [11–20] 
and theoretical considerations [21–23] indicate that there 
is considerable local motion inside a protein at ordinary 
temperatures. Moreover, the structural data themselves 
show that significant residue or subunit displacements have 
an important role in the activity of proteins (for example, 
enzyme catalysis [24], hemoglobin cooperativity [25], and 
immunoglobulin action [26]). To obtain a more complete 
understanding of proteins, it is essential to have a detailed 
knowledge of their dynamics. In spite of the considerable 
effort directed toward protein folding [27], very little has 
been done to investigate the motions of a protein in the 
neighborhood of its equilibrium configuration. For certain 
cases, in which the displacements along a suitably chosen 
co-ordinate system can be isolated, it has been demon-
strated that empirical energy functions can be used to ana-
lyze the motions involved.

Axillaridine-A is one of the cholinesterase inhibitors that 
binds at the active site and is responsible for inhibiting the 
catalytic action of AChE. In the previous papers, we reported 
the isolation, characterization and biological evaluations 
of a series of steroidal alkaloids including Axillaridine-A 
isolated from S. saligna [28] as well as described our 
efforts toward the better understanding of interaction of 
Axillaridine-A in the active site of AChE enzyme obtained 
from Torpedo californica [29]. Axillaridine-A was first iso-
lated from Pachysandra axillaries and its structure was 
identified as 20-dimethylamino-3-benzoylamino-5-
pregna-2(3)-en-4-one [30]. This paper is an attempt to 
study the interactions of Axillaridine-A on the binding site 
of AChE as well as to determine the structural and dynamic 
effects of Axillaridine-A present at the catalytic gorge of the 
AChE.

Methods

MD simulation is one of the most versatile and widely 
applied computational techniques for the study of biological 
macromolecules. Particularly, it is valuable for understand-
ing the dynamic behavior of proteins at different timescales, 
from fast internal motions to slow conformational changes 
or even protein folding processes.

MD simulations were performed on AChE protein, 
based on the crystal structure details obtained from pro-
tein databank (PDB code: 1B41) [31] refined at 2.76 å 
resolution in complex with fasciculin. Fasciculin and 
other non-proteinic residues were removed from the com-
plex and missing atoms of the residues were added using 
Biopolymer module of SYBYL7.2 (Tripos Inc, St. Louis, 
MO). Hydrogen atoms were added to the protein amino 
acids and atomic partial charges for the all-atom Amber 
force field were loaded. The three dimensional model of 
Axillaridine-A was geometrically optimized by means 
of PM3 semi-empirical Hamiltonian and atomic partial 
charges were derived using the Restrained electrostatic 

potential (RESP) charge fitting procedure [32] by carrying 
out single-point ab initio calculation at the HF/6-31G(d) 
level using Gaussian 98 [33]. MD simulations were car-
ried out on the protein as well as on its complex with 
Axillaridine-A using the cornell et. al. [34] force field for 
the protein, general amber force field (GAFF) [35] for 
Axillaridine-A and the sander module implemented in 
AMBER 7 [36]. To ensure electro-neutrality of the protein 
and its complex, eight sodium ions were added with the 
subsequent solvation with TIP3 water boxes requiring a 12 
Å thick solvent shell in all directions resulted in a system 
of dimension 93 × 92 × 88 Å3 containing about 13500 water 
molecules [37]. Minimizations were carried out, starting 
with 500 steps and harmonic restraints of 25 kcal mol-1 Å-2 
on protein or complex and counterion positions. During 
the following 500-steps minimizations, the restraints on 
the counterions were relaxed faster than on the protein or 
complex. Finally, 500 steps of unrestrained minimization 
were carried out. A similar procedure was applied for the 
equilibration process. The system was heated from 50 to 
300 K during 10-ps under constant-pressure conditions 
and harmonic restraints. Subsequently, the restraints were 
once again relaxed and finally an unrestrained 5 ps equili-
bration was carried out. After this procedure, the systems 
were subjected to constant temperature that was kept con-
stant at 300K. General simulation parameters were kept 
constant during whole simulation: 2-fs time step, SHAKE 
algorithm to constrain bonding involving hydrogen atom 
[38], 9 Å cutoff and 0.00001 convergence criteria of the 
Ewald summation was used for part of the non-bonded 
interactions. The structural information was collected 
every 1000 steps (2-ps). The simulations were performed 
on eight processors of a Xeon 2.66 GHz Linux Cluster run-
ning under SUSE 9.2. The resulting MD trajectories were 
analyzed by means of carnal module of the same package.

Results and discussion

MD simulations were analyzed for the AChE protein and 
its complex with Axillaridine-A. AChE obtained from 
protein databank (PDB code: 1B41) and its complex with 
Axillaridine-A obtained from previous docking studies [29] 
were chosen as starting point for MD simulation. Docking 
studies revealed that only the ligand was treated in a flexible 
way. Therefore, in order to relax the Axillaridine-A / AChE 
complex and to evaluate the dynamic behaviour of the sys-
tem at 300 K, exhaustive protocols of MD simulations were 
applied. The solvation of the system and the induced-fit 
at the binding site, as well as other aspects of the ligand/
enzyme interaction, lead us to assess the feasibility of the 
binding modes as identified by Autodock [39]. For this 
purpose 2-ns of MD simulations sampling the NPT ensem-
ble is carried out on the Axillaridine-A / AChE complex. 
During MD simulations, Total Energy, Potential Energy, 
Density and Temperature were monitored such that they 
reached stable values for the complex after a few hundreds 
of picoseconds. 
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Figure 1 shows a 3D structure of Axillaridine-A that is 
pregnane-type steroidal alkaloid obtained from Sarcocca 
saligna, optimized at the HF/6-31G(d) level. Axillaridine-A 
interacts at the active site that is located at the bottom of a 

deep and narrow cavity (aromatic gorge) whose surface is 
lined with rings of aromatic residues, after 2-ns MD simula-
tion as shown in Figure 2. The active site of AChE contains 
a number of amino acids, which perform different types 
of interactions with Axillaridine-A. Van der wall interac-
tions likely occur with the ligand by the residues like Trp86, 
Ile451, Gly448, Tyr449 and Ser229, present in the active site 
as shown in Figure 3. Trp86 may perform  - interactions 
with ligand acyl group (if present), while the shape of the 
gorge base is defined by other residues that serve to dis-
criminate between ligands. In the upper gorge area and the 
acyl binding pocket, residues Tyr124, Phe295, Phe338 and 
Phe297 are responsible for making hydrophobic contacts. 
Tyr72 is almost perpendicular to Trp286 ring so it forms a 
blocking wall by causing a stable  - interaction to pre-
vent the ligand ring to move away from its actual position 
as shown in Figure 5. Additionally, Phe295, Phe297, Val365 
and Glu292 form another wall on the other side of the gorge, 
stretching from the acyl pocket toward the peripheral active 
site. The oxyanion hole residues, Gly121 and Gly122, as 
well as other residues like Tyr133, Glu450, Ile451, Ala127, 
Ser128, Tyr133, Ile118 near Trp86 contribute to the forma-
tion of electrostatic interactions in the active site, whereas 

Figure 1. Natural AChE inhibitor, Axillaridine-A.
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Figure 2. Axillaridine–A located at the aromatic gorge of AChE (PDB 
code: 1B41) after 2-ns MD simulation. Only the active site amino acids 
are labeled for the sake of clarity.
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Figure 3. Important amino acid residues within 5.0 Å at the active site of 
AChE after 2-ns MD simulation. For detail refer to the text.
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the primary electrostatic interactions are caused by residues 
like Tyr325, Asp74, Thr83 and Asn87 in the gorge area. The 
activity of ligands having polar groups is probably enhanced 
by residues like Gly342, Leu76, Glu285, Trp286, His287 and 
Glu292.

The dynamics of the gorge have already been investigated 
extensively by MD simulations, given the high flexibility of 
the gorge which is suggested to be necessary for the enzyme 
activity. Our simulation results for the complex show that 
the complication leads to the reduced gorge size due to 
the interaction between the ligand and the active site that 
is determined by the distance between the center of mass 
of Glu81 and Trp286 versus time as shown in Figure 4 The 
geometry of the active site is also changed by the presence of 
ligand in the active site that is obvious from the stable hydro-
gen bondings between the amino acids in the active site 
both for the protein and the complex, as shown in Table 1. 
There is a relationship between the gorge radius and the 

distance between Phe338 and Trp86 as shown in Figure 4. It 
is interesting to note that early MD simulations had focused 
on aromatic side chains and revealed such motions in a 
similar time range [40,41]. The results suggest that such fast 
motions are important for the activity of AChE. In the crystal 
structures and in the vast majority of the structures seen in 
the MD simulations, there is a bottleneck in the channel that 
prevents entry of the substrate. The opening of this channel 
occurs in picoseconds, which is often enough to allow the 
enzyme to maintain the high speed of action needed for the 
destruction of ACh in the function of cholinergic synapses. 
In the case of Axillaridine-A, which differs in size, it has to 
wait for a long time for a correspondingly larger opening 
of the channel. Axillaridine-A would likely diffuse away 
from the entrance and back into the surrounding solution 
rather than reacting. But the presence of the - interaction 
between the aromatic ring of Axillaridine-A and that of the 
Tyr124 makes the substrate stay and stable at the gate of the 
gorge, thereby inhibiting its catalytic activity (Figure 6). The 
distance between the aromatic rings of Axillaridine-A and 
Tyr124 at the catalytic gorge initially increases in the range of 
4.5 – 7.0 Å, approaching to gain stability as time passes and 
finally reaches at the minimum 3.8 Å after 1.5-ns as shown 
in Figure 5.

Conclusion

The objective of this study was to provide an explanation of 
the mechanism of hAChE inhibition, for a relatively bulky 
substrates like steroidal alkaloids. By means of computa-
tional docking, it has been observed that Axillaridine–A, one 
of the reported steroidal alkaloid binds similarly as other 
AChE inhibitors into the aromatic gorge. On the other hand, 
it can not enter deeply into the aromatic gorge as other lig-
ands, which attributed to its bulky steroidal part. MD simu-
lations of the AChE and Axillaridine–A / AChE complex have 
shown that the complexation of AChE with Axillaridine–A 
changes the dynamics and size of the gorge. Rigid hydropho-
bic part of the steroidal alkaloids become sandwich between 
aromatic residues while the flexible part of the substrate 
penetrate towards bottom of the active site.
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