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REVIEW

Anti-neuraminidase immunity in the combat against influenza
Xiaojian Zhanga and Ted M. Rossa,b,c,d
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GA, USA; cCleveland Clinic, Florida Research and Innovation Center, Port Saint Lucie, FL, USA; dDepartment of Infection Biology, Lehner Research 
Institute, Cleveland Clinic, Cleveland, OH, USA

ABSTRACT
Introduction: Anti-neuraminidase (NA) immunity correlates with the protection against influenza virus 
infection in both human and animal models. The aim of this review is to better understand the 
mechanism of anti-NA immunity, and also to evaluate the approaches on developing NA-based 
influenza vaccines or enhancing immune responses against NA for current influenza vaccines.
Areas covered: In this review, the structure of influenza neuraminidase, the contribution of anti-NA 
immunity to protection, as well as the efforts and challenges of targeting the immune responses to NA 
were discussed. We also listed some of the newly discovered anti-NA monoclonal antibodies and discussed 
their contribution in therapeutic as well as the antigen design of a broadly protective NA vaccine.
Expert opinion: Targeting the immune response to both HA and NA may be critical for achieving the 
optimal protection since there are different mechanisms of HA and NA elicited protective immunity. 
Monoclonal antibodies (mAbs) that target the conserved protective lateral face or catalytic sites are 
effective therapeutics. The epitope discovery using monoclonal antibodies may benefit NA-based 
vaccine elicited broadly reactive antibody responses. Therefore, the potential for a vaccine that elicits 
cross-reactive antibodies against neuraminidase is a high priority for next-generation influenza vaccines.
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1. Introduction

Influenza is a respiratory disease, caused by influenza viruses, 
resulting in 290,000–650,000 annual deaths worldwide accord
ing to the World Health Organization (WHO) [1,2]. Vaccination is 
the recommended measurement for controlling influenza virus 
infections in humans during annual outbreaks. The hemaggluti
nin (HA) and neuraminidase (NA) are two surface glycoproteins 
on the surface of virions, and both are targets for vaccine devel
opment. Compared to HA, NA is the second-most abundant 
surface glycoprotein, often undergoes less antigenic drift com
pared to the HA protein for both H1N1 and H3N2 subtype 
influenza viruses [3]. Multiple subtypes of HA share the same 
subtype of NA (e.g. N1 NAs are usually found in H1 and H5 
viruses, while N2 NAs are usually found in H1, H2, H3 and H9 
viruses). Anti-NA antibodies potentially have broader cross reac
tivity to heterologous strains than anti-HA antibodies, indicating 
its value as a supplement to anti-HA antibodies in the prevention 
against novel influenza viruses [4]. For example, the seasonal 
influenza vaccine induced partial immunity against lethal H5N1 
challenge and complete protection can be achieved with use of 
adjuvants [5]. Therefore, by targeting only two antigenic sub
types of NA (N1 and N2), the protective breadth is widened to 
cover human seasonal epidemics strains (H1N1 and H3N2) and 
potential pandemic strains (H5N1, H2N2, H5N2, H7N2, and 
H9N2), indicating the potential of NA to be a complementary 
component in a multivalent universal vaccine with broad 
immune reactivity and longer-term protection [5,6].

On June 7 of 2023, we conducted a literature search of the 
PubMed with terms: influenza neuraminidase antibodies and 
influenza neuraminidase vaccine. By going through the title 
and abstract for influenza neuraminidase vaccine develop
ment and antibody responses, a total of 123 articles were 
selected from database. In this review, we aim to cover the 
structure of NA, immunity provided by NA, approaches and 
challenges in developing anti-NA immunity, and NA-specific 
broadly protective monoclonal antibodies in therapeutics as 
well as in influenza universal vaccine development.

2. The neuraminidase of influenza

The neuraminidase is a type II membrane-anchored homo- 
tetramer glycoprotein on the surface of the influenza virions. 
The protein is 450–470 amino acids in length, depending 
upon the subtype and host-lineage [7]. Each NA monomer 
consists of a head domain, a stalk domain, a transmembrane 
domain, and a cytoplasmic tail (Figure 1(a)). The globular head 
is supported by a thin stalk portion which stands on the sur
face of virion. The stalk connects to the transmembrane 
domain through the apical transport, and lastly the transmem
brane domain reaches the intra-virion region with 
a cytoplasmic tail [8,9]. The NA head region but no other 
regions (stalk, transmembrane domain, and cytoplasmic tail) 
has been successfully crystallized. The NA head protomer 
appears to be a six-bladed propeller three-dimensional (3D) 
structure as revealed by X-ray crystallography [10]. Both 
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intrachain and interchain disulfide bonds as well as the inter
nal protein interactions are all involved to form the homo- 
tetramer conformation [11–13].

The catalytic site locates in the head domain of each promo
tor, orientating away from the center of the tetramer 
(Figure 1(b)). The catalytic site (sialic acids direct contact residues 
and framework residues) is highly conserved and is the target of 
antiviral drugs and monoclonal antibody development. 
Conversely, the head of some avian-like but not human-like NA 
subtypes, also contains a secondary SA⍺-2,3 Gal-preferential sia
lic acid-binding site (2SBS), which is different from the HA bind
ing site [14–17]. Avian-like NAs bearing this functional 2SBS 
exhibited higher enzyme activity in cleaving multivalent sub
strates than those NAs of human-like, indicating a potential 
adaptation from avian influenza to human influenza viruses 

[18]. The ‘Bind and trans-cleave’ or ‘Bind and transfer’ models 
were proposed as the possible mechanism of how this 2SBS 
helps to shuttle sialic acid terminals into the cleavage active 
site [19,20]. This 2SBS may also contribute to the balance 
between HA and NA since the compensatory mutations in the 
HA protein were detected if there have been mutations within 
the 2SBS [18]. Additionally, calcium ions are also important for 
enzymatic activity and thermostability. For some NA subtypes, at 
least four Ca2+ binding sites are needed to maintain the thermo
stability [21–25]. Although, the structure of the NA stalk domain 
remains unknown, the length of this domain varies. The length of 
the stalk alters the enzymatic activity by adjusting the NA acces
sibility to bind to sialic acid terminals on the cell surface [26–29]. 
Alternatively, there are differences in NA globular head exposure 
and alter viral infectivity and transmission, as well as immuno
genicity of the protein [28,30–34]. The NA proteins isolated from 
avian hosts may contain a deletion of ~ 20 to 30 amino acids in 
the stalk region as a compensatory deletion for poultry adapta
tion from aquatic avian hosts [26,28,29].

The surface of the NA protein (head and stalk) may be 
highly glycosylated depending on the specific amino acid 
sequence, the host, and the evolutionary lineage of the 
virus. Depending on the sites and domain, the glycosylation 
motifs may contribute to NA structure, activity, specificity, 
and thermostability [35] as well as the antigenicity and 
immunogenicity. The addition of a glycosylation site 
increases the ability of the virus to avoid the immune system 
by sterically hindering antibodies from binding to immuno
genic antigenic epitopes and also making the protein inac
cessible to antiviral drugs [36–43]. In support of this, HA 
proteins without the structurally nonessential glycans elicit 
antibodies with better binding affinity and neutralization 
activity against influenza subtypes than the fully 

Article highlights

● The conserved catalytic site and less antigenicity diversity makes 
neuraminidase an attractive target for a universal influenza vaccine.

● Both anti-hemagglutinin and anti-neuraminidase immunity contri
bute to protection, with anti-hemagglutinin immunity clear virus 
infection, while the anti-neuraminidase immunity is infection 
permissive.

● Targeting the immune response to both hemagglutinin and neura
minidase may be critical for achieving the optimal protection.

● The low potency and stability of neuraminidase in current influenza 
vaccines are the main challenges in inducing strong immune 
responses against neuraminidase.

● Different approaches that aim to enhance anti-neuraminidase 
immune responses have been tested.

● Isolation and characterization of broadly reactive anti-neuraminidase 
monoclonal antibodies benefits influenza therapy and discovery of 
protective epitopes for influenza vaccine development.

Figure 1. Structure of neuraminidase and its catalytic sites. Reproduced with permission from Sarah Creytens et al. [113].
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glycosylated HA proteins [44]. Removal of glycans at the top 
of neuraminidase results in improved protection [38]. The 
addition of N-glycans decreases the overall stability of the 
N1 NA, but does not affect N2 NA stability [45]. The neur
aminidase of A(H3N2) influenza viruses that have circulated 
since 2016 are antigenically distinct from the A/Hong Kong/ 
4801/2014 vaccine strain used in the previous season due to 
amino acid mutations at NA residues 245, 247 (S245N/S247T; 
introducing an N-linked glycosylation site at residue 245) 
and 468 [40]. In addition, the glycosylation at 245 is also 
associated with decreased virus replication in human nasal 
epithelial cells (hNECs) and decreased enzymatic activity of 
H3N2 clade 3c.2a viruses. The addition of this glycosylation 
site alters virus replication, enzymatic activity and inhibitory 
antibody binding [41]. Conversely, losing the glycosylation 
motif at residue 329 and the E344 in the neuraminidase of 
H3N2 influenza viruses contribute to antigenic drift [43]. For 
sites not protected by glycans, the changes to the lateral 
surface of the NA head result in antigenic drift, which also 
contributes to evasion from the host immune system [46].

3. Anti-neuraminidase immunity contributes to 
protection

Both the innate and adaptive immune systems play important 
roles in controlling and clearing the viral infection (reviewed in 

[47,48]). Upon detection of foreign antigens, the innate 
immune system is activated to produce and release more 
cytokines and chemokines in order to recruit more immune 
cells (e.g. monocytes, neutrophils, blood borne dendritic cells, 
and natural killer cells) to the infection site (reviewed in 
[49,50]). Antigen-presenting to naïve and memory T-cells by 
antigen-presenting cells (APCs) is a major step for inducing 
adaptive immunity against viral antigens as this activates both 
CD4+ and CD8+ T-cells. The activation of adaptive immune 
system is important for clearance of influenza virus and pre
vention of reinfection [51,52]. Thus, influenza virus infection 
builds strong, but strain-specific immunity and memory 
against influenza viruses by inducing both humoral and cellu
lar immune responses. And influenza virus infection induces 
balanced immune responses by eliciting antibody responses 
to both HA and NA proteins [53]. Inhibiting antibodies to the 
NA protein are created and reach peak NAI titers, as soon as 7  
days post the onset of disease [54]. Compared to influenza 
virus infection, the immune response induced by influenza 
vaccination is narrow (reviewed in [53]). Both HA- and NA- 
specific antibody responses can be induced by influenza vac
cination depending on the amount and stability of the antigen 
contents in the vaccine formula (Figure 2).

Early studies have demonstrated that the optimal protec
tion can be achieved if both anti-NA and anti-NA immunity 
were induced [55,56]. Since the types of immunity against 

Figure 2. Eliciting NA-specific immunity. the anti-NA immunity can be induced by (i) pulmonary infection with influenza virus, (ii) immunization with variety of 
vaccines, and (iii) passive immunization with NA-specific polyclonal or monoclonal antibodies. NA-specific immunity provides protection against severe disease with 
reduced morbidity and mortality, decreased pulmonary virus titers and diminished lung lesions.
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HA and NA are different with anti-HA immunity clear virus 
infection, while the anti-NA immunity is infection permissive 
but can significantly reduce the incidence of illness or 
shorten the duration of disease caused by influenza infection 
in humans [55]. Results from animal studies confirmed this 
observation, HA immunization prevented manifest infection, 
while NA immunization reduced the pulmonary virus loads 
in a dose depended manner [57]. This balanced and broa
dened immune response to both surface antigens seems 
critical to fight homotypic and heterotypic influenza virus 
infections [58–61]. This is true for both type A and 
B influenza vaccines.

Studies in both animal models and humans have demon
strated the correlation between NA-specific antibodies and 
decreased risk of infection (Table 1). In animal models, immu
nity directed to NA contributes to decreased pulmonary viral 
loads thus confer protection against influenza viral infection 
[57,62,63]. In humans, NA-specific antibodies mitigate clinical 
symptoms and viral shedding thus further shortened the 
duration of infection [64]. It was also reported that the NA 
inhibiting antibody titers superior to both the HA inhibiting 
antibody titer and the HA-stem binding antibody titer in 
reducing viral shedding and symptom severity in humans 
[65–68]. The gene expression profile in the peripheral blood 
leukocytes seems different as in the presence of anti-NA, 
anti-HA head or anti-HA stalk antibodies during infection, 
this may be associated with the types of protection offered 
by these antibodies [69].

Antibodies targeting the conserved active site or lateral 
surface of NA may inhibit the enzymatic activity by direct 
binding or steric hinderance which may serve as the main 
mechanism of action for anti-NA antibodies [70,71]. Other 
mechanisms such as antibody-dependent cell-mediated cyto
toxicity (ADCC) or complement-dependent cytotoxicity were 
also identified [72]. It has been shown that both N1 or N2 viral 
proteins can boost ADCC antibodies in H1N1 or H3N2 infected 
people [73]. And the reduced protective efficacy of anti-NA 
immune sera in Fc receptor common gamma-chain deficient 
mice further confirmed the role of Fc receptor in NA immu
nity [74].

4. NA-based vaccine development

NA proteins isolated from influenza virions is as immunogenic 
as HA protein and induces robust antibody response after 
vaccination [57]. In addition, there is no antigenic competition 
between N1 and N2 when they were administered together 
[75]. NA proteins purified from intact influenza viruses, bacu
lovirus, yeast, or HEK-293T cell expression systems were immu
nogenic and safe when administer in humans and animals 
[24,38,76–87]. A more balanced and broadened immune 
response can be achieved through supplementing the con
ventional influenza vaccines with purified viral neuraminidase 
[58,60] or using the disassociated HA and NA protein from 
intact virions or recombinant HA and NA protein produced in 
baculovirus as the vaccine [59,61,88].

Structure design of the neuraminidase plays a larger role in 
inducing protective antibody response than the enzyme activ
ity. The recombinant NA (rNA) possessing the full ectodomain 

and the tetramerization motif from the human vasodilator- 
stimulated phosphoprotein was superior to that of rNA with 
the same tetramerization motif, but higher enzymatic activity 
in eliciting protective immune responses [84]. A measles virus 
phosphoprotein tetramerization domain, as well as the addi
tion of cysteines in the stalk domain, can stabilize the influ
enza virus rNA vaccine candidate and enhance the protection 
from virus challenge in the mouse model [83,85]. Besides 
stabilizing the NA tetramer, swapping the 5’ and 3’ terminal 
packaging signals of the HA and NA genomic segments results 
in more NA and less HA expressed in rescued influenza viruses. 
And the anti-NA antibody response was enhanced by using 
the modified viruses as antigen [86].

In addition to subunit neuraminidase vaccines, neuramini
dase-expressing DNA vaccines used to immunize mice elicited 
optimal protective immunity suckling offspring following vac
cination in mother mice to only when mice were co- 
administratered of both neuraminidase-expressing and 
hemagglutinin-expressing DNA vaccines [89]. The modified 
vaccinia virus Ankara and vesicular stomatitis virus-based repli
cons expressing the influenza neuraminidase as the vaccine 
effectively controlled influenza virus following vaccination 
[90,91]. Vaccination with virus-like particles (VLPs) expressing 
both HA and NA induced the highest CD4(+) T cell, CD8(+) 
T cell, and germinal center B cells, while strongly limiting 
inflammatory cytokine production in the lungs compared to 
other VLP immunizations [92]. There was no significant differ
ence in anti-NA IgG responses against N1 and N2 antigen 
following vaccination with bivalent N1 and N2 VLPs vaccines 
and these VLPs vaccines protected against lethal H1N1 and 
H3N2 viruses [93]. The potential of intranasally delivered NA 
vaccines elicited broader protective immunity in mice than the 
HA-based vaccines. The NA-specific IgA in the upper respira
tory tract induced by intranasal immunization recognized 
more epitopes than did the NA-specific IgG and IgA in plasma, 
indicating increased cross-protection [82]. The computation
ally optimized broadly reactive antigen (COBRA) methodology 
helps to overcome the diversity of NA antigenicity, enhancing 
the broadly reactive antibody responses in both mice and 
ferrets [80,81].

5. Challenges in inducing NA-specific immunity

Antiviral drugs and therapeutic antibodies usually target to 
NA catalytic site since the residues within this site are 
highly conserved. However, the proportion of broadly inhi
bitory anti-NA antibodies induced by a NA-containing vac
cine remains unknown. One of the challenges in developing 
a universal influenza vaccine is the antigenicity diversity of 
protective antigens (e.g. HA and NA). As compared to HA, 
NA usually has a lower rate of evolution but still can be 
characterized into two major phylogenetic groups (Group 1: 
N1, N4, N5, and N8; Group 2: N2, N3, N6, N7) and two 
special categories: bat-like NA (N10 and N11) and influenza 
B NA [7,94,95]. Among which, N1 and N2 subtype NAs are 
found to have both pandemic and epidemic potentials 
while the influenza B NA is only associated with the epi
demics of influenza in humans. The N1 subtype NA can be 
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further characterized into three main lineages: N1.1, N1.2, 
and N1.3, corresponding to avian, human, and classical 
swine lineage [96]. The N1.1 avian lineage is more diverse 
in hosts, while the other two lineages are not. The N1 
subtype NAs of avian HxN1, the highly pathogenic avian 
H5N1, the Eurasian swine HxN1, and human 2009 pan
demic-like H1N1 influenza viruses all belong to N1.1 avian 
lineage. While the N1 subtype NAs of human seasonal H1N1 
(prior to the 2009 pandemic) influenza viruses and swine 
H1N1 influenza viruses from North American belong to N1.2 
human lineage and N1.3 classical swine lineage, respectively 
[39,96,97]. NAs of N1 subtype can be further categorized 
into more sub-lineages based on geography and host indi
cates the antigenicity diversity for N1 NAs [39,97]. The N2 
subtype NA can be characterized into two main lineages: 
N2.1 and N2.2, corresponding to avian and human/swine 
lineage [96]. The N2.1 avian lineage is comprised of the 
N2.1a (corresponding to many avian influenza viruses circu
lating worldwide) and N2.1b (corresponding to many H9N2 
subtype avian influenza viruses circulating in Asia after 
1994). The N2.2 mainly corresponded to human influenza 
viruses and swine influenza viruses. And the swine influenza 
viruses is highly diversified, distributed among the human 
influenza viruses [96].

The frequencies of NA antibody responses induced by 
conventional influenza vaccines are lower than the frequen
cies of HA antibody responses due to the competition 
between HA and NA, as well as the low content of NA caused 
by low stability of the protein [88]. The NA activity in vaccine 
preparations wane quickly during storage, thus resulting in 
low frequencies of neuraminidase antibody responses after 
vaccination [98]. Also, the enzyme activity of influenza NA 
does not relate to the level of the antibody responses, but to 
the amount of the tetrameric NA in the vaccine [24]. High 
doses of influenza vaccine induce significantly more NA anti
body than the standard vaccine doses in vaccinated elderly 
subjects, indicating that the amount of NA content in the 
vaccine is critical in inducing NA-specific antibodies [99]. 
Unfortunately, the NA potency is not standardized in current 
influenza vaccines, thus the anti-NA immunity induced by 
seasonal influenza vaccines varies due to various amount 
and stability of the NA content in the vaccine [100–103]. 
Thus, conventional influenza vaccines (inactivated or live- 
attenuated influenza vaccines) are not optimal in eliciting NA- 
specific antibody response due to various issues, including 
standardization and stability of NA antigen in the vaccine as 
well as the strain-specific immunity induced by the vaccine. 
Fortunately, the knowledge gained in studying NA-specific 
monoclonal antibodies gave us more information for design
ing a broadly protective NA antigen that could be 
a component for a universal influenza vaccine. Besides, the 
tetrameric design of the recombinant influenza NA antigen is 
also crucial for eliciting protective antibody responses and the 
use of the full ectodomain and the tetramerization motif from 
the human vasodilator-stimulated phosphoprotein contributes 
to the better protection of the rNA vaccine [84].

The NA specific antibody responses are influenced by the 
age of the individual, as well as the NA subtype elicited [104]. 
Influenza-binding antibodies are present in the human 

population and termed ‘immune imprinting’ [105], due to 
the prevalence of circulating influenza viruses and wide use 
of the vaccine. This influenza immune imprinting has long- 
lasting effects on the immune responses to subsequent influ
enza infections and vaccination, usually boosting the antibody 
responses to the cross-reactive epitopes on HA and NA pro
teins [106,107]. Therefore, there is an improved antibody 
responses against neuraminidase for the ‘NA-specific’ vaccine 
immunogen with a HA to which the study population has not 
been previously exposed [108]. Conversely, the NA antibody 
responses to influenza vaccines can be suppressed if subjects 
receiving the vaccine are immunologically primed to its 
hemagglutinin component [109]. This may be due to the 
intravirionic HA that is dominant over NA in both B- and 
T-cell priming [110]. This intravirionic antigenic competition 
can be eliminated by dissociating the influenza HA and NA, 
with the higher doses of purified NA to achieve a more 
balanced HA and NA immune response [58,60,88].

6. Anti-neuraminidase antibodies and epitopes

The NA of influenza viruses are targeted by three NA inhibitors 
(oseltamivir, zanamivir, and peramivir) that are licensed in the 
U.S. for the treatment and prophylaxis of influenza (https:// 
www.cdc.gov/flu/professionals/antivirals/summary-clinicians. 
htm). The conserved and protective epitopes may be effective 
targets for antibodies selected for development as therapeutic 
agents against circulating influenza viruses.

On one hand, many monoclonal antibodies (mAbs) that 
targeting either the catalytic site or lateral surface as well as 
the underside of NA protein have been discovered (reviewed 
in [111,112]). For example, the mAb CD6 binds to a conserved 
30-amino-acid spanning epitope on the lateral face of a NA 
dimer [113]. Conversely, the mAb N1-C4 bound to a conserved 
conformational epitope in N1 subtype NA of human 2009 
pandemic-like H1N1 and avian H5N1 influenza viruses, and 
has potent in vitro and in vivo antiviral activities against 
these two subtypes of influenza viruses [114]. The human 
monoclonal antibody DA03E17 is directly targeting to the 
enzyme active site, and has shown both in vitro and in vivo 
protection against infection with influenza viruses with NAs of 
both group 1 and 2 as well as both lineages of influenza 
B [115]. And a monoclonal antibody, Z2B3, isolated from an 
H7N9-infected patient that exhibited cross-reactivity to both 
N9 (group 2) and a broad range of seasonal and avian N1 
(group 1) proteins [116]. More recently, a mAb FNI9 that 
targeting the catalytic site of NA was described to have 
a broader neutralizing spectrum of both seasonal influenza 
A and B viruses [117]. Instead of targeting the NA active site, 
three mAbs were found to recognize the highly conserved 
underside of NA head domain and effecting through both Fc 
effector functions and NA inhibition by steric hindrance [118]. 
All these mAbs inhibit NA activity in enzyme-linked lectin 
assay (ELLA) with large substrates (e.g. Fetuin), while only 
the mAbs that are targeting the catalytic site inhibit NA activ
ity in small substrate (MUNANA or NA-STAR) assays [111].

On the other hand, the key residues that affect binding of 
these mAbs to the epitopes on NA have also been identified. 
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Table 1. NA-based vaccine studies.

Year Vaccine Model Main Findings Ref.

2014 Baculovirus- 
expressed rNA from either A/Beijing/262/95 (BJ/262) H1N1 or 
A/Hong Kong/483/97 (HK/483) H5N1 virus

Rabbits Evaluated the antigenic relatedness and cross-protective 
immunity of the neuraminidase between human influenza 
A (H1N1) virus and highly pathogenic avian influenza 
A (H5N1) virus. The lack of cross-protective immunity 
correlates with low structural similarities of NA from a human 
seasonal H1N1 virus and an avian H5N1 influenza virus.

[121]

2016 Recombinant vaccinia viruses expressing the HA or NA from the 
influenza A/Anhui/1/2013 (H7N9) virus

BALB/c and ICR 
mice

The anti-HA and anti-NA antibodies showed activity against 
homosubtypic HA or NA, but not against heterosubtypic HA 
or NA

[122]

2017 N1 NA protein derived from A/California/04/2009 (A/Cal) H1N1 
and N2 NA protein derived from A/Wisconsin/67/2005 (A/Wis) 
H3N2

BALB/c, C57BL/ 
6, and C3KO 
mice

Anti-NA immune sera could confer better cross-protection 
against multiple heterologous influenza viruses correlating 
with NA inhibition activity compared to split vaccine immune 
sera.

[74]

2018 NA-expressing single-cycle vesicular stomatitis virus replicons C57BL/6 mice 
and ferrets

Robust humoral and cellular immune responses and protected 
against challenge with the homologous influenza virus

[91]

2019 Seasonal inactivated influenza vaccines Human* Seasonal influenza immunization can induce a subset of NA- 
specific B cells with broad protective potential

[123]

2020 rNAs from A/Michigan/45/15 (N1), A/Viet- nam/1203/04 (N1), A/ 
Philippines/2/82 (N2), A/Tanzania/205/10 (N2) or B/Florida/ 
04/06 (BNA) were expressed in High Five insect cells

BALB/c mice The enzymatically active NA is not required to induce protective 
anti- body responses as a vaccine; however a correctly folded 
NA is essential.

[87]

2020 Formalin-inactivated terminal packaging signals modified 
recombinant virus

BALB/c mice Demonstrates the efficacy of rewiring influenza virus packaging 
signals for creating vaccines with more neuraminidase 
content which provide better NA-based protection.

[86]

2020 LAIVs Human Combining the traditional HI test with the detection of NI 
antibodies can provide a more complete assessment of LAIV 
immunogenicity.

[102]

2021 rNA with a Measles Virus Phosphoprotein Tetramerization 
Domain

BALB/c mice Recombinant Influenza Virus Neuraminidase Vaccine Candidate 
Stabilized by a Measles Virus Phosphoprotein Tetramerization 
Domain Provides Robust Protection from Virus Challenge in 
the Mouse Model

[85]

2021 NA1 and NA2 neuraminidase virus-like particles BALB/c mice Vaccination with NA VLPs is protective against influenza 
challenge and supports, 
focusing on anti-NA responses in the development of future 
vaccination strategies.

[93]

2021 Baculovirus- 
expressed rNA from A/Brisbane/02/2018 (H1N1) with different 
tetramerization motifs

DBA/2 mice Design of the Recombinant Influenza Neuraminidase Antigen is 
Crucial for its Biochemical Properties and Protective Efficacy

[84]

2021 Wild type or COBRA-based NA-expressing virus-like particles and 
rNA produced using EXPI293F cells expression system

BALB/c mice The N1-I NA antigen described here protected mice from direct 
challenge of four distinct influenza viruses and inhibited the 
enzymatic activity of an N1 influenza virus panel.

[81]

2021 Baculovirus- 
expressed rNA from A/Michigan/45/2015 (H1N1) with 
additional Cysteines introduced in the Stalk Domain

BALB/c mice The introduction of cysteines at certain positions led to the 
formation of stable N1 dimers, which are capable of inducing 
a strong antibody response characterized by neuraminidase 
inhibiting activity and protection of mice from high dose viral 
challenge.

[83]

2021 Soluble rHAs and rNAs from A/California/07/2009 (H1N1) were 
generated by using the Expi293 Expression System

C57BL/6J mice Intranasal immunization with recombinant NA (rNA) plus 
adjuvant protected mice against not only homologous but 
also heterologous virus challenge in the upper respiratory 
tract, whereas 
intranasal immunization with rHA failed to protect against 
heterologous challenge.

[82]

2021 A/Chicken/Vietnam/G04/2004 (H5N1) N1 NA-expressing virus- 
like particles

BALB/c mice The lowest bodyweight losses and lung virus titers were 
observed from HANA VLP immunization, and all of the 
immunized mice survived irrespective of the challenge dose.

[92]

2021 N1 from A/California/04/2009 (H1N1) and N2 from A/ 
Switzerland/9715293/2013 (H3N2) rNA produced in 
baculovirus expression system

BALB/c mice NAV-vaccinated mice showed robust antibody titers against N1 
and N2, and after challenge with influenza A (H1N1) virus, 
decreased viral titers and decreased antiviral and 
inflammatory responses by transcriptomic analysis.

[24]

2021 AS03-adjuvanted pandemic H1N1pdm09 split virus vaccine 
(3.75 mg hemagglutinin A/California/7/2009 (H1N1)), trivalent 
seasonal inactivated influenza vaccine, or

Human 
(health care 
workers)

Durable NA-specific antibody responses can be induced by an 
adjuvanted influenza vaccine, which can be maintained and 
further boosted by TIVs. Although NA-specific antibody 
responses are boosted by annual influenza vaccines, high 
preexisting titers may negatively affect the magnitude of 
fold-increase in repeatedly vaccinated individuals.

[106]

2023 A split vaccine ‘Ultrix,’ a subunit vaccine ‘Grippol plus’ and 
a subunit vaccine 
‘Sovigripp’

Human The dynamics of the anti-NA antibody response differed 
depending on the virus subtype: antibodies to A/H3N2 virus 
neuraminidase increased later than antibodies to A/ 
H1N1pdm09 subtype neuraminidase and persisted longer.

[101]

2023 Wild type or COBRA-based NA-expressing virus-like particles and 
rNA produced using EXPI293F cells expression system

Ferrets The N1-I COBRA vaccine elicited protective immune responses 
against both H1N1 and H5N1 infections and partially 
mitigated disease in contact-transmission receiving ferrets.

[80]

*Clinical data in humans is listed in bold. 
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For example, glutamic acid residue 311 in the N1 NA was 
found to be critical for the NA binding and antiviral activity 
of monoclonal antibody N1-C4 [114]. And a predicted glyco
sylation site at amino acid 386 in NA emerged in 2013 viruses 
and associated with decreased in vitro inhibition of enzyme 
activity of polyclonal antisera [39]. The residue at 432 in N1 
subtype NA and the residue at 102 in heavy chain of mAb 
Z2B3 seems to be important for the binding activity of Z2B3 
due to the salt bridge formed between K432 in NA and D102 
in Z2B3. Unfortunately, over 99% of seasonal influenza isolates 
after 2013 bearing the substitution K432E results in no binding 
activity for Z2B3. While the salt bridge can be reversed 
between E432 in NA and R102 in Z2B3 and the binding and 
inhibition of Z2B3 to N1 with E432 can be restored [116]. 
Besides, the D107 in FNI9 heavy chain complementarity- 
determinant region 3 (HCDR3) was confirmed to mimic the 
interaction of the sialic acid carboxyl group with the three 
highly conserved arginine residues (R118, R292 and R371) of 
the neuraminidase catalytic site [117]. More mutations (K199E/ 
T, E258K, A272D, and S331N) were identified by sequencing 
the escape mutant viruses. Of them, K199 and E258 in NA 
have potent influence on binding and inhibition of mAbs. 
Importantly, a wildtype strain bearing E258K in NA has 
shown resistance against numerous antibodies tested [119]. 
Lastly, the mAbs targeting to N2 subtype NA of H9N2 influ
enza viruses from 1999 to 2019 can be characterized into 
three main groups: group 1, group 2, and group 3. And each 
group of mAbs recognizes a specific pattern of residue(s) in N2 
subtype NA [120]. All these identified key residues should be 
taken into consideration for the design of broadly protective 
influenza vaccines that target influenza virus NA.

7. Expert opinion

Influenza viruses are common respiratory pathogens that 
cause seasonal influenza in humans, resulting in severe dis
ease with high morbidity and mortality annually. Although, all 
types of influenza virus vaccines induced robust and compar
able homotypic anti-hemagglutinin antibody responses, the 
effectiveness and coverage of the seasonal influenza vaccines 
are low, due to the strain dependent manner of vaccine for
mulation and extensive antigenic drift of influenza viruses. The 
neuraminidase of influenza viruses evolves slower compared 
to hemagglutinin, showing less antigenicity diversity and 
broader cross-reactivity among subtypes. Except for that, dif
ferent types of neuraminidases shared the conserved catalytic 
site and framework residues. These features make neuramini
dase an attractive target for a universal influenza vaccine.

Neuraminidase is as immunogenic as hemagglutinin, but 
was not standardized in current seasonal influenza vaccines, 
resulting in poor anti-NA immune responses. Therefore, the 
frequencies of anti-NA antibody responses induced by seaso
nal influenza vaccines were always lower than the frequencies 
of anti-HA antibody responses, due to the low or no potency 
of NA presented in the vaccines. Although, this can be over
come by use of subunit influenza vaccine with adjuvants or 
supplementing seasonal influenza vaccine with additional 
neuraminidase. Other approaches also like stabilizing neura
minidase tetramer by using a measles virus phosphoprotein 

tetramerization domain or increase expression of neuramini
dase by swapping the 5’ and 3’ terminal packaging signals of 
the hemagglutinin and neuraminidase genomic segments 
have been tested.

As a potential target for a universal influenza vaccine, NA- 
based vaccines elicit virus infection permissive antibodies with 
broader breadth. Targeting the immune response to both 
hemagglutinin and neuraminidase may be critical for achiev
ing the optimal protection since there are different mechan
isms of hemagglutinin and neuraminidase elicited protective 
immunity. The neuraminidase is also a druggable target, and 
three NA inhibitors have been licensed in the U.S. for the 
treatment and prophylaxis of influenza. Monoclonal antibo
dies (mAbs) that target the conserved protective lateral face or 
catalytic sites are effective therapeutics. The epitope discovery 
using monoclonal antibodies may benefit NA-based vaccine 
elicited broadly reactive antibody responses. Therefore, the 
potential for a vaccine that elicits cross-reactive antibodies 
against neuraminidase is a high priority for next-generation 
influenza vaccines.
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