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ABSTRACT
Introduction: Saliva has gained increasing attention in the quest for disease biomarkers. Because it is 
a biological fluid that can be collected is an easy, painless, and safe way, it has been increasingly 
studied for the identification of oral cancer biomarkers. This is particularly important because oral 
cancer is often diagnosed at late stages with a poor prognosis.
Areas covered: The review addresses the evolution of the experimental approaches used in salivary 
proteomics studies of oral cancer over the years and outlines advantages and pitfalls related to each 
one. In addition, examines the current landscape of oral cancer biomarker discovery and translation 
focusing on salivary proteomic studies. This discussion is based on an extensive literature search 
(PubMed, Scopus and Google Scholar).
Expert opinion: The introduction of mass spectrometry has revolutionized the study of salivary 
proteomics. In the future, the focus will be on refining existing methods and introducing powerful 
experimental techniques such as mass spectrometry with selected reaction monitoring, which, despite 
their effectiveness, are still underutilized due to their high cost. In addition, conducting studies with 
larger cohorts and establishing standardized protocols for salivary proteomics are key challenges that 
need to be addressed in the coming years.
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1. Introduction to saliva as a liquid biopsy source

Oral cancer is a subtype of head and neck cancer that starts in the 
squamous cells of the inner mucosa, being one of the most 
common malignant cancers worldwide. When diagnosed in 
advanced stages, oral cancer has a poor prognosis and is a very 
mutilating type of cancer [1]. The main risk factors associated with 
the development of oral cancer are age, male gender, alcohol 
consumption and smoking. Due to the frequent late-stage diag-
nosis of oral cancer, there is a crucial need to identify biomarkers 
enabling earlier detection, allowing personalized prognosis pre-
diction, and anticipating patient’s response to treatment [2].

As powerful analytical techniques have evolved, saliva has 
gained increasingly recognition as a valuable source of liquid 
biopsy for identification of oral cancer biomarkers. This fluid is 
mainly produced by three major salivary glands – parotid, sub-
mandibular and sublingual glands – alongside minor salivary 
glands. A healthy individual typically produces around 500–2500  
mL of saliva per day, with a composition primarily comprising 97 
to 99% of water and a small percentage of lipids, proteins, and 
inorganic substances [3]. Saliva mainly contains four groups of 
secretory proteins: proline-rich proteins, statherins, histatins and 
cystatins. Saliva collection is a noninvasive and safe procedure, 

enabling the collection of multiple samples with minimal infection 
risk. In the context of oral cancer, saliva has the advantage of being 
in the proximity of tumor cells that may be reflected in its mole-
cular composition [4,5]. However, the salivary molecular profile is 
very susceptible to several factors such as circadian rhythm, sali-
vary flow rate, type of saliva, genetic polymorphisms, clinical and 
epidemiological characteristics of the patient [6–9]. After collec-
tion of this fluid, hydrolases are activated, increasing the molecular 
complexity of this body fluid. For instance, proteases degrade the 
proteins into peptides which makes the analysis of the salivary 
peptidome extremely important for the discovery of biomarkers 
since peptides are more than just protein degradation products. 
Integrating the biological and molecular functions of salivary 
peptides and proteins is pivotal for gaining a deeper understand-
ing of the disease mechanisms underlying the development and 
progression of oral cancer [10]. However, the lack of standardized 
protocols for sample collection, processing and proteome charac-
terization and validation has hampered the effective translation of 
salivary biomarkers to the clinical setting [5,11,12]. This review 
aims to critically analyze the main proteomics approaches 
employed in the identification of salivary biomarkers for oral 
cancer, highlighting their advantages and limitations.
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To gain a comprehensive understanding of the knowledge 
surrounding salivary proteomics in the context of oral cancer, 
a bibliometric analysis was conducted using VosViewer. For this, 
the search formula [saliva and protein and (oral cancer) or oscc or 
(oral squamous cell carcinoma)] was used in Scopus, and 822 
articles were obtained. After excluding literature reviews and 
articles in languages other than English, 650 articles were included 
in the bibliometric analysis being most of them published from 
2010. Co-occurrence analysis was performed and a minimum of 2 
citations for each keyword of interest was established as a filter. 
Through manual curation, from 2450 keywords the most relevant 
were selected resulting in the networks presented in 
Supplementary Figure S1A and Supplementary Figure S1B. It is 
possible to observe that when studies using mass spectrometry 
began, there was a significant increase in salivary proteins identi-
fied as oral cancer biomarkers. The first mass spectrometer was 
developed by J.J. Thomson in 1912 (Supplementary Figure S1C). 
However, due to the high costs associated with the use of this 
technique, mass use of this technique has only occurred in recent 
decades. This evolution has sparked a transformative impact on 
proteomics, particularly in the analysis of proteins in saliva sam-
ples, where analytes are present at low concentrations. The sub-
sequent sections provide an overview of the key advancements in 
discovering oral cancer biomarkers through salivary proteomics, 
emphasizing both the challenges encountered and the notable 
achievements within this research domain.

2. Advancements in the discovery of salivary 
biomarkers

2.1. Workflow for biomarkers discovery and clinical 
implementation

Biomarkers are defined as characteristics that can be indicators 
of both physiological and pathogenic processes or can be 
used to assess the biological response to a particular exposure 
or intervention. Ideally, in the case of salivary biomarkers, they 
should be sensitive and specific and objectively quantifiable in 
saliva samples. Quantification must be reliable and reproduci-
ble [13]. To enhance the translation of salivary biomarkers into 
clinical practice, there are some steps that should be taken in 
a systematic way. The main steps for identifying and develop-
ing salivary biomarkers are shown in Figure 1. The first step is 
biomarker discovery. Once the biomarkers of interest have 
been selected, proof of concept is required to optimize the 
conditions relating to the identification and quantification of 
the biomarker of interest to ensure that the results are reliable 
and reproducible. The biomarker is then validated in a group 
of selected patients. If the results are sensitive, specific, reli-
able, and robust, there is potential for them to be translated 
into clinical practice [13–15].

2.2. Optimizing saliva sample handling and 
standardization strategies

Standardizing the collection, processing, and storage of saliva 
samples is critical to ensure reliable and consistent results in 
proteomics applications. Before starting the collection, it is 
important to establish guidelines regarding the collection 
method, type of saliva, fasting duration, and whether to rinse 
the oral cavity immediately before collection. There are several 
methods of saliva collection, namely for unstimulated saliva, 
stimulated whole saliva and gland-specific saliva. Among 
these, the unstimulated saliva is generally considered as the 
most suitable for salivary proteomics studies aimed at identi-
fying oral cancer biomarkers. In this case, saliva is collected 
from patients in a resting state using methods such as passive 

Article highlights 

● The establishment of harmonized protocols for consistent research 
results.

● Saliva is becoming increasingly important in medical research due to 
its simple, painless, and safe collection method.

● Saliva is a source of biomarkers for oral cavity cancer, a malignancy 
that has a high mortality rate when detected late.

● Early detection of oral cavity cancer can significantly improve prog-
nosis and contribute to personalized treatment.

● A thorough overview of the improvements needed in study design 
for such research is provided.

Figure 1. Steps from biomarker discovery to clinical implementation. The image was created in BioRender.
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drooling, spitting/suction or absorbent materials. These meth-
ods are noninvasive, easy to implement and enable the collec-
tion of large volumes of samples. Several devices have been 
developed to support saliva collection (Figure 2). Passive 
drooling involves minimal oral movement, minimizing the 
stimulation of salivary secretion and maintaining unaffected 
salivary rate. This method of saliva collection was validated by 
Khurshid et al. [16]. In the spitting/suction method, the patient 
spits the saliva into a collection device. In the absorbent 
method, an absorbent material is placed on the floor of the 
mouth. The results obtained with these two methods may be 
influenced by salivary sampling and in the case of the absor-
bent method, biomarker absorption to the absorbent material 
may occur [14,15]. The collection of stimulated whole saliva 
involves stimulating salivary secretion prior to its collection. 
This stimulation can be done through masticatory or gustatory 
stimuli (chewing gum, wax blocks, cotton swabs, citric acid). 
The choice of the stimulant material may impact the composi-
tion of salivary proteins identified in oral cancer patients, 
leading to significant variations in study outcomes [14]. 
When focusing on studying salivary proteins specific to sali-
vary glands (parotid, submandibular/sublingual, or other 
minor glands) some methods are available. For investigating 
proteins secreted by the parotid gland, the Lashley cup or 
cannulation methods can be used [13–15]. Lashley cup 
method is noninvasive and involves attaching a device to 
the mucosa of the inner cheek using a vacuum, allowing saliva 
to be collected into a tube [17,18]. On the other hand, the 
cannulation method requires the placement of a tube at the 
level of Stensen’s duct for selective saliva collection; however, 
it is an invasive approach. For submandibular and sublingual 

saliva collection, customized collectors or the suction method 
can be employed [14]. In the case of the minor glands, the 
available methods include customized collectors, the suction 
method, and filter paper. Customized collectors allow selective 
collection but often require specialized personnel to collect 
the saliva samples. The suction method is noninvasive but 
may result in higher variability among the collected samples. 
Filter paper, while noninvasive, typically yields smaller sample 
volumes, and the filter paper itself can influence the 
results [14].

In addition to the collection method, there are other vari-
ables that should be considered when collecting saliva. Age, 
gender, circadian rhythm, recent food intake or smoking, 
hydration level, and oral cavity condition are some of the 
factors that may influence the composition of the saliva [6– 
9]. Before collection, the patient should have restricted food 
intake and smoking for 30 to 60 min and should have rinsed 
the oral cavity with water for about 60 seconds. For saliva 
collection there are several devices, such as Salivette, Saliva 
Collection Device (SCS), Orapette, SuperSAL and VersiSAL [9].

After saliva collection, there is another set of variables that 
need to be considered such as storage temperature, proteo-
lysis, and radiation. In an attempt to create a protocol for 
a standardized handling of saliva samples, Chevalier et al. 
compared the stability of salivary proteins at different condi-
tions using one and two-dimensional electrophoresis 
approaches. It was possible to verify that saliva samples 
should preferably be collected in the morning, 2 h after eating 
and following a rinse of the oral cavity with water [19]. Before 
being stored, they should be placed in ice with protease 
inhibitor, centrifuged and the supernatant stored at − 80°C 

Figure 2. Main characteristics of saliva as biofluid and types of devices for saliva collection. The image was created with the BioRender.
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[18,19]. This protocol ensures the preservation of sample 
integrity. Salivary proteins have a very limited stability at 
room temperature, about 1 h [19]. Therefore, it is important 
to place the samples in a container with ice immediately upon 
collection. The addition of protease inhibitors is questionable, 
since there are already collection tubes that come with 
a solution that allows stabilization of the proteins at the time 
of collection [20–23]. While the addition of protease inhibitors 
may inhibit protein degradation, they may introduce complex-
ity into proteomics analysis by interacting with proteins other 
than proteases. For long-term storage, typically up to approxi-
mately 5 years, saliva samples can be safely maintained at −  
80°C [24]. This freezing temperature effectively inhibits the 
degradation of the sample contents, allowing for future ana-
lyzes. Another important issue of processing saliva samples is 
centrifugation, which should ideally be done after sample 
collection. As an alternative, filtration can be performed but 
tends to be more time consuming and may result in some 
protein loss through the filters [25].

2.3. Methods for protein extraction and separation

There are several methods for protein extraction and separa-
tion. The first step consists of lysing and solubilizing the saliva 
samples. This step can be done using either detergents 
[sodium dodecyl sulfate (SDS) or sodium deoxycholate (SDC)] 
or chaotropic agents [urea or guanidine hydrochloride 
(GndHCl)]. Subsequently, the saliva samples can be processed 
using different methods, namely, in-solution digestion (ISD), 
filter-aided sample preparation (FASP), solid-phase-enhanced 
sample preparation (SP3) and protein aggregation capture 
(PAC). Depending on the method and type of proteomics 
analysis, proteins may or may not be digested. The most 
used enzyme for digesting proteins presents in saliva samples 
is trypsin [26].

Protein separation generally relies on electrophoresis and/ 
or chromatography-based approaches. In terms of electro-
phoresis, one-dimensional SDS-polyacrylamide gel electro-
phoresis (1-DE), two-dimensional SDS-polyacrylamide gel 
electrophoresis (2-DE), two-dimensional difference gel electro-
phoresis (2D-DIGE) may be used. Briefly, 1-DE allows the 
separation of proteins based on their molecular weight. 
Proteins migrate along the polyacrylamide gel in response to 
the electrical field according to their molecular weight and, 
after gel staining, bands can be observed. The pore size 
depends on the concentration of acrylamide and bisacryla-
mide. In the proteome characterization of biological fluids 
such as saliva containing hundreds of proteins, this is not 
the best approach for the separations of proteins present in 
a complex mixture [27,28]. 2-DE was developed by O’Farrell 
and was one of the major advances in proteomics studies. This 
electrophoretic approach comprises 2 steps for the separation 
of proteins present in complex mixtures. First, proteins are 
separated according to their isoelectric point and then accord-
ing to their molecular weight. Considering that hardly two 
proteins have the same isoelectric point and molecular 
weight, 2-DE allowed to overcome the problem of low resolu-
tion observed with 1-DE, being possible to identify a high 
number of proteins even if they are present in a small amount 

of sample. The proteins that are best identified using 2-DE are 
those with a molecular weight between 20 and 220 kDa and 
an isoelectric point between 3 and 9. It is a more expensive 
and poorly reproducible approach, but robust and high reso-
lution [28]. 2D-DIGE is a variation of 2-DE developed by 
Minden and colleagues that consists of labeling proteins 
with fluorescent cyanine probes that allow the identification 
and quantification of proteins without affecting molecular 
weight and isoelectric point. This method solves the gel-to- 
gel variations problem enabling the use of multiple samples in 
single gels. The sensitivity is better in relation to the other 
types of electrophoresis due to use of fluorescent dye. 
However, it is time consuming, and it is necessary that the 
operator has experience with this technique to obtain good 
results. It is not the best technique for separating proteins 
with very low or very high isoelectric points [29]. Thus, one- 
dimensional electrophoresis methods are suitable for protein 
separation in simple samples, but when it comes to separating 
and identifying proteins present in a complex mixture, two- 
dimensional approaches should be preferred.

As an alternative or complement to 2D-PAGE separation, 
high-performance liquid chromatography (HPLC) is an excel-
lent option due to the reproducibility of results and the pos-
sibility of being coupled with mass spectrometry (MS). There 
are several types of liquid chromatography, namely reversed- 
phase, ion-exchange, size-exclusion, and affinity chromatogra-
phy [30]. Reversed-phase chromatography (RPLC) is the most 
widely used type of chromatography due to its compatibility 
with the various MS methods. RPLC allows the separation of 
compounds with hydrophobic properties. While in standard 
liquid chromatography, the stationary phase is nonpolar and 
the mobile phase is polar, in RPLC it is the other way around. 
RPLC has the advantage of being less toxic, more economical 
and with less sample volume it can perform as well as aqu-
eous normal-phase chromatography. When samples contain 
very large amounts of proteins and peptides in the hundreds 
of thousands, one-dimensional approaches are often not 
enough due to insufficient peak capacity. In this case, multi- 
dimensional approaches (ion-exchange chromatography- 
RPLC, affinity chromatography-RPLC, size-exclusion-RPLC) are 
often necessary [30]. An overview of proteomics workflow is 
displayed in Figure 3, highlighting the most frequently 
employed experimental approaches.

2.4. Methods for identification of proteins

MS has been increasingly used for large-scale protein charac-
terization as it is a high-throughput technique. The principle is 
the formation of ions in the gas phase that are characterized 
in terms of mass-to-charge ratio (m/z) and relative abundance. 
A beam of high-energy electrons hits the molecules, fragment-
ing them. From the analysis of the m/z of the fragments and 
their relative abundance, it is possible to obtain information 
about the amino acid sequence and, consequently, on pro-
teins present in the saliva samples. For salivary biomarker 
discovery, there are two strategies: top-down and bottom- 
up. In the top-down approach, intact proteins are analyzed, 
while in the bottom-up approach, peptides that result from 
the digestion of proteins by a specific protease such as trypsin 
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Figure 3. Proteomics workflow and most used experimental approaches in proteomic studies using saliva as liquid biopsy for oral cancer. This image was created in 
BioRender.
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are analyzed. In the case of the bottom-up approach, the 
study is usually complemented by HPLC, as the proteins 
when digested generate a very complex mixture of peptides. 
These peptides are separated according to their degree of 
hydrophobicity, with the most hydrophilic peptides being 
eluted the fastest.

After the sample peptides have passed the chromato-
graphic column and separated based on hydrophobicity, 
they undergo ionization, followed by separation according to 
their m/z ratio and subsequent detection. The most important 
ionization methods include electrospray ionization (ESI), 
matrix-assisted laser desorption/ionization (MALDI), and sur-
face-enhanced laser desorption/ionization (SELDI), although 
the latter two are less commonly employed in salivary proteo-
mics. After ionization, the generated ions pass through a mass 
analyzer such as Time-of-flight (TOF), Orbitrap, Ion Trap, or 
Quadrupole to accurately determine the m/z ratio and the 
intensity of the signals under vacuum-induced electric fields.

ESI is a technique in which ions are generated using an 
electrospray when a high voltage is applied to a liquid to 
create an aerosol. It is particularly suitable for analyzing 
biomolecules such as peptides and proteins, making it 
a cornerstone of proteomics. ESI is characterized by its com-
patibility with liquid chromatography and enables seamless 
integration into LC-MS/MS workflows. The advantage of this 
method is that it can handle a wide range of molecular 
weights and enables a gentle ionization process that pre-
serves non-covalent interactions. However, the sensitivity to 
sample preparation and matrix effects can be seen as 
a limitation. The application of ESI for the identification of 
salivary biomarkers is facilitated by its versatility in analyzing 
complex mixtures and provides insights into the proteomic 
profile of saliva samples [31]. In MALDI-TOF/MS the analyte 
molecules are embedded in a matrix that can absorb ultra-
violet light. When this matrix-analyte mixture is irradiated 
with a laser beam, the matrix absorbs the energy and sup-
ports the desorption and ionization of the analyte molecules 
into the gas phase. The ions are then separated based on 
their m/z value in the TOF mass analyzer. This technique is 
well suitable for the analysis of proteins with high molecular 
weight, typically greater than 100 kDa. MALDI-TOF-MS is 
valued for its sensitivity, rapid analysis, cost-effectiveness 
and minimal sample pre-treatment or sample volume is 
required. However, there are some limitations to consider. 
One of these limitations is the limited mass range of the 
analyzer, which may not be able to accommodate extremely 
high molecular weights. In addition, MALDI-TOF-MS can be 
sensitive to contaminants, which can affect the reproducibil-
ity of results. Finally, the sample preparation protocol can 
vary significantly depending on the specific characteristics 
and properties of the analyte, which may require different 
approaches for optimal results [32]. SRM is a quantification 
method used in MS that focuses on the accurate measure-
ment of specific proteins in complex samples. SRM involves 
the precise selection of a unique ion (MS1) that corresponds 
to the target protein and is identified by its unique m/z. This 
selected ion is then subjected to fragmentation, and the 
resulting fragment ions are further selected (MS2) according 

to their unique m/z values. This targeted approach enables 
the detailed analysis and quantification of proteins by track-
ing specific ion transitions, facilitating a highly selective and 
sensitive assessment of protein abundance in biological sam-
ples [33]. The application of SRM-MS to the analysis of saliva 
from patients with lymph node metastases has shown sig-
nificant down-regulation of proteins such as CSTB, LTA4H, 
PGK1, COL6A1, ITGAV and NDRG1, highlighting the utility of 
this approach in uncovering critical molecular insights into 
disease progression and metastatic potential [34].

Data-dependent acquisition (DDA) and data-independent 
acquisition (DIA) are the main discovery platforms, being 
DDA the most used. These platforms differ primarily in their 
approach to isolating precursor ions for fragmentation and 
subsequent acquisition of MS2 spectra. DDA essentially 
involves the selection, accumulation and fragmentation of 
precursor ions based on the analysis of data or signals from 
an initial MS1 surveillance scan in real time. DIA, on the other 
hand, systematically works through a predetermined range of 
precursor ion isolation windows. Within these windows, all 
precursor ions are fragmented simultaneously, eliminating 
the need to select precursor ions in real time [35]. DIA tends 
to generate more complex MS2 spectra and multiplex chro-
matograms, which can lead to a reduction in selectivity for 
individual precursor ions. This complexity necessitates the use 
of advanced computational tools specifically designed for the 
interpretation of DIA data [36]. Over the past twenty years, DIA 
methods have evolved significantly, with numerous acquisi-
tion strategies developed and applied to various MS instru-
ment platforms. This evolution has significantly pushed the 
boundaries of what can be achieved in terms of sensitivity, 
specificity, reproducibility and analytical throughput using DIA 
techniques.

DDA and DIA can both be combined with isotope labeling 
for protein quantification. The methods for quantification of 
proteins using MS comprise label-free and label-based MS 
quantification. The results are cross-referenced with databases 
using software such as Sequest, Omssa and Andromeda for 
peptide identification [37–39].

The use of label-free MS quantification comprises two dif-
ferent types of quantification: spectral counting or spectro-
metric precursor signal intensity measure of the protein 
expression. In the first case, the number of spectra obtained 
for each peptide in the different saliva samples is quantified 
and the results of all peptides are integrated. Precursor signal 
intensity is the most used and consists of extracting signals 
from peptides at the MS1 level by applying high-resolution 
scan. The main techniques used with this type of quantifica-
tion are liquid chromatography-tandem mass spectrometry 
(LC-MS/MS), matrix-assisted laser desorption⁄ionization time- 
of-flight mass spectrometry (MALDI-TOF-MS) and selected 
reaction monitoring (SRM).

The application of targeted quantification techniques such as 
Multiple Reaction Monitoring (MRM), Consecutive Reaction 
Monitoring (CRM) and Parallel Reaction Monitoring (PRM) has 
revolutionized the field of proteomics by providing highly repro-
ducible, sensitive and specific methods for the quantification of 
proteins [40,41]. MRM is particularly characterized by its precision 
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in measuring targeted peptides in complex biological samples, 
making it indispensable for the validation of potential biomarkers 
in saliva. In studies using MRM, key proteins associated with oral 
cancer have been successfully identified and quantified, demon-
strating the potential of this technique for clinical diagnostics 
[42,43]. For an introduction to targeted quantification techniques 
and their impact on biomarker discovery the previous paper [35] 
provides a comprehensive overview that is accessible to non- 
specialists.

The use of stable isotope labeling techniques, specifically 
Isobaric Tags for Relative and Absolute Quantitation (iTRAQ), 
Tandem Mass Tags (TMT), Isotope-Coded Affinity Tags (ICAT), 
and Stable Isotope Labeling by Amino acids in Cell Culture 
(SILAC), has greatly enhanced the ability to simultaneously 
quantify protein expression in multiple samples [44]. For 
example, iTRAQ has helped to reveal differential protein 
expression in saliva samples from oral cancer patients, provid-
ing new insights into the proteomic landscape of the disease 
[45,46]. Similarly, TMT labeling has expanded the scope of 
quantifiable proteins in saliva, enabling the identification of 
more than 1400 proteins in certain studies, which reflects its 
sensitivity and throughput [47]. The evolution of TMT from 
a 2-plex to an 18-plex system, including the latest TMTpro 16- 
plex system enhanced with NeuCode isotopes [48], illustrates 
the technological advances in improving analytical through-
put and efficiency. These developments have paved the way 
for comprehensive proteomic profiling of saliva, revealing 
potential biomarkers for oral cancer and other diseases in 
unprecedented depth and specificity [49]. Such advances 
underscore the critical role of MS in advancing diagnostic 
and therapeutic research and promise a future in which saliva- 
based diagnostics could become a routine part of clinical 
practice.

2.5. Methods for salivary protein verification and 
validation

After the identification of salivary biomarkers, a validation step 
is necessary so that these biomarkers can be translated to 
clinical practice. Enzyme-linked immunosorbent assay (ELISA) 
and western blotting have been traditionally used for valida-
tion and verification of data retrieved from MS-based proteo-
mics [35,50]. There are several types of ELISA tests, namely, 
direct, indirect, sandwich, and competitive ELISAs [51]. Overall, 
ELISA is a very sensitive technique with good reproducibility 
and specificity, when using well-characterized and validated 
antibodies. However, it requires a considerable sample volume 
and does not allow to control antibody specificity [51]. 
Western blot enables the determination of the molecular 
weight of the target protein, confirming the identity of 
a biomarker by detecting its size and ensuring, to a certain 
extent, the specificity of antibody detection [52]. However, 
western blot is more time-consuming and inherently semi- 
quantitative, though it requires a relatively smaller sample 
volume [53,54]. Nevertheless, compared to MS, which typically 
offers unambiguous protein identification via unique peptides 
at a given false discovery rate, techniques like ELISA, western 
blot, Olink, or SomaScan (mentioned below) rely on the spe-
cificity of affinity reagents, which may be influenced, for 

example, by posttranslational modifications [55]. This limita-
tion underscores the importance of cautious interpretation 
when employing affinity-based techniques for protein analysis. 
Immunohistochemistry is also important to validate in tumor 
tissue samples the biomarkers found in saliva samples from 
oral cancer patients. However, in addition to the limitations 
mentioned for affinity-based techniques, there are salivary 
biomarkers that can be found in saliva samples from oral 
cancer patients that do not originate from tumor tissue.

Recent advances in proteomics have significantly novel 
approaches for biomarker searching and validation. 
Immunoassays such as ELISA only allow one analyte to be 
measured at a time. The application of multiplex assays for 
proteome profiling has made it possible to extract information 
on multiple analytes present in the same sample in a single 
analysis. It is a much more efficient method than ELISA as it 
saves time, costs, and material. There are two types of multiplex 
assays, namely planar microarray (protein chips) and suspension 
array (microparticle or bead microarray) [56]. Protein microarray 
is similar to sandwich immunoassays. That is, several proteins 
can be processed in the same analysis. There are three types of 
microarrays: analytical microarrays, functional protein microar-
rays and reverse phase protein microarrays (RPPA). In analytical 
microarrays, antibodies are immobilized on a matrix. The pro-
tein of interest binds to the primary antibody and then 
a secondary antibody coupled to a fluorophore binds to the 
protein, causing light emission. In functional microarrays, pro-
teins are immobilized on the array and biochemical properties 
of the proteins can be studied. In RPPA, cells are isolated and 
lysed. The resulting product of cell lysis is immobilized on 
a matrix and antibodies are added that bind to a given protein 
of interest with light emission. It is widely used to study post- 
translational modifications [57,58]. However, specificity may be 
an issue thus requiring optimization of the sample volume to 
be used. In the case of bead-based arrays, each bead binds 
a specific capture antibody and emits a specific fluorescence 
intensity. In this way, several proteins can be quantified in the 
same sample using different beads. The capture antibody binds 
to the protein of interest and then a fluorochrome-conjugated 
antibody is added to detect the proteins using flow cytometry. 
The intensity of the fluorescence emission is proportional to the 
amount of protein present in the sample [56]. Table 1 shows 
that most of the studies using multiplex assays for identification 
of salivary biomarkers evaluate cytokines.

Proximity extension assays (PEA) combine the principles 
of sandwich ELISA with the precision of DNA-based readout 
methods such as quantitative PCR or next-generation 
sequencing (NGS). The result is a powerful tool for liquid 
biopsy detection with a broad dynamic range. PEA uses 
pairs of antibodies labeled with DNA oligos that hybridize 
after binding to the target molecule, enabling PCR amplifi-
cation and precise quantification of proteins. PEA has 
a wide range of applications, from the identification of 
prognostic biomarkers in colorectal cancer to the profiling 
of different cancer types, with high sensitivity and specifi-
city. Despite its power, the highly complex variant of PEA 
faces challenges in library preparation and NGS, requiring 
careful validation due to potential bias and variation in 
large-scale studies [145,146]. With the advance of 
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bioinformatics in recent years, there has been a need to 
extract as much information as possible from a given 
sample.

Olink technology harnesses the power of PEA, employing 
pairs of antibodies tethered to DNA oligonucleotides. These 
antibody pairs selectively bind to target proteins within 
a sample. A standout feature of Olink technology is its capacity 
to concurrently measure numerous proteins in a single sam-
ple, facilitating a thorough analysis of protein profiles. This 
high-throughput capability renders Olink assays exceptionally 
valuable in biomarker discovery and validation in clinical 
research contexts using saliva samples [147].

Aptamers, i.e. short strands of DNA, RNA or peptides, fold 
into unique tertiary structures that can bind to target proteins 
with high specificity and affinity. The slow off-rate modified 
aptamers (SOMA) scan assay, a notable application of this 
technology, uses these aptamers or SOMAmers with photo-
cleavable linkers and fluorescent markers to capture and 
quantify proteins and determine their abundance in samples 
[148]. Aptamers offer advantages over antibodies, such as 
higher affinity, specificity, and easier synthesis, which facili-
tates scaling up for high-throughput applications. This has 
enabled the simultaneous profiling of over 7000 proteins 
[114,149,150]. In clinical diagnostics, aptamer-based assays 
have shown great promise. For example, stool-based profiling 
with aptamers has identified characteristic protein patterns for 
the diagnosis of colorectal cancer. Similarly, in non-small cell 
lung cancer, aptamer-based studies have identified several 
protein biomarkers that have led to the development of 
a clinically useful biomarker panel for early detection.

3. Harmonization of techniques used on salivary 
proteomics

MS-based approaches have shown a growing efficacy in the 
analysis of salivary analytes. However, several preanalytical fac-
tors, namely the methodology and conditions of saliva collec-
tion, as well as the intrinsic quality of the collected biological 
fluid, influence the results obtained. Thus, the creation of stan-
dard operating procedures (SOPs) for each of the steps inherent 
to conducting salivary proteomics studies are crucial to ensure 
reliable and consistent results. Furthermore, harmonization of 
the techniques used will increase reproducibility, reduce tech-
nical noise, and overcome the problem of low sample size 
studies. Another important step is the introduction of quality 
control steps in proteomics studies. Bourmaud et al. developed 
a simple internal quality control procedure that has been tested 
on plasma samples analyzed by LC-MS/MS and can be easily 
incorporated into proteomics studies with saliva [149]. This 
procedure consists in the introduction of a mixture of exogen-
ous proteins, followed by the addition of isotopically labeled 
peptides to the reference samples to assess the performance of 
the sample handling and MS technique. This procedure pro-
vides a necessary system suitability test before starting the 
actual sputum analysis as well as allows continuous monitoring 
of the instrument performance and sample preparation allow-
ing more comparable, robust, and reproducible results 
[145,150]. The main advantage is that in addition to ensuring 
optimal conditions during the proteomics study, deviations or 

malfunctions can be corrected in real time. In this way, the 
creation of SOPs to control preanalytical factors together with 
the implementation of internal quality control procedures will 
ensure the generation of reliable and consistent data for advan-
cing the field of salivary proteomics in oral cancer research and 
beyond. A case in point is the work of Voß et al., who created 
HarmonizR, a data harmonization tool specifically tailored for 
tissue analysis from oral cancer patients [146]. In this study, data 
from several proteomic LC-MS/MS datasets from online reposi-
tories were harmonized. The datasets derived from different 
tissue preservation techniques, LC-MS/MS instrumentation set-
ups and quantification techniques. This work forms the corner-
stone for integrating data across various datasets within 
a specific domain, enabling large-scale data analysis. This type 
of strategy can be expanded to salivary proteomics studies, 
offering a fresh perspective on existing datasets with saliva 
samples from oral cancer patients that would otherwise be 
challenging to analyzed in an integrated way. Nevertheless, 
not all laboratories and research groups have the same 
resources and budget. In this sense, there must always be 
a balance between costs and performance when deciding on 
techniques, and this consideration should be incorporated into 
protocols to ensure standardization across research labora-
tories, regardless of their individual conditions.

4. Limitations of salivary proteomics: the 
importance of small and large cohort studies

The development of increasingly effective strategies for the 
early detection of oral cancer and for predicting prognosis and 
response to treatment tailored to each patient is only possible 
if the results of scientific research are generalizable and reli-
able. Exploratory studies are often initially conducted at an 
early stage. However, studies with small sample sizes often 
have several limitations that hinder this goal. The main limita-
tions include low statistical power, overfitting and high var-
iance, bias and confounding variables, less generalizable 
results, and high influence of outliers. Determining the sample 
size is one of the essential steps in study design. A small 
sample size, together with high variability and small effect 
size, can decrease the statistical power of the study and 
jeopardize the integrity of the results. It is recommended 
that the statistical power should be at least 80%. Beyond 
80%, the identification of statistically significant differences 
or associations become more challenging, as the study may 
be too sensitive and reveal effects that are statistically signifi-
cant but may not be of practical significance. Such oversensi-
tivity can lead to overfitting, a statistical problem in which 
a model is so finely tuned to the training data that it cannot 
be generalized to new, unseen data. This phenomenon can 
lead to overly optimistic results in initial studies, but non- 
reproducible results in subsequent studies [151].

In the case of proteomics studies with two experimental 
groups, the effect size is calculated based on the difference in 
protein abundances between the two different sample groups. 
The main issue is that many of the proteomic studies aimed at 
identifying salivary biomarkers for oral cancer test many pro-
teins, each with its own effect size and variance. However, 
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exploratory studies with small sizes are important because 
they allow estimating a mean variance value to correctly 
determine the appropriate sample size for further validation 
of proteins in larger cohorts. In addition, small salivary proteo-
mic studies are more likely to have biases and confounding 
variables. For example, sampling bias may occur if the sample 
is not representative of the population, distorting the results. 
Confounding variables may not be evenly distributed across 
groups in small studies, leading to misleading associations. 
Due to the limited number of participants, results obtained 
in salivary proteomics studies with small sample sizes may not 
be representative of the population, being associated with 
lower external validity and limiting the generalizability of the 
results to the general population.

Finally, when low sample sizes are used, any abnormal 
results may disproportionately affect the results leading to 
erroneous or inconclusive conclusions. Thus, exploratory studies 
are important to optimize the study design, but must be com-
plemented with large cohort studies so that the proteins of 
interest can be translated into clinical practice [145,150,152– 
154]. Large cohort studies allow for more robust, accurate and 
reproducible results. This type of study represents the corner-
stone for the validation of salivary biomarkers for oral cancer 
and subsequent implementation into clinical practice. Large 
cohort studies have several advantages in relation to small 
salivary proteomic studies such as greater statistical power 
(higher probability of detecting a true effect), better representa-
tiveness (more generalizable results to the population), less 
influence of outliers (more accurate estimates of parameters 
and relationships), detection of subtle effects that are often 
missed in low-sample salivary proteomics studies, better treat-
ment of confounding variables (more accurate estimate of the 
true effect of the variables of interest) and long-term follow-up 
(monitorization of the progression of oral cancer over time). 
Thus, despite the higher cost and logistical burden, large cohort 
studies offer significant advantages by improving the validity, 
reliability, and generalizability of research findings [152,153]. 
They are essential for progress in areas such as salivary proteo-
mics for the detection and treatment of oral cancer.

5. Verification of salivary biomarkers through tumor 
tissue analysis

Immunohistochemistry (IHC) may be used for the verification 
of biomarkers found in the saliva of oral cancer patients 
through proteomics with potential origin in HNSCC, through 
the analysis of tumor tissue samples. IHC involves the specific 
binding of proteins of interest within HNSCC tissue to anti-
bodies conjugated to an enzyme (peroxidase or alkaline phos-
phatase) or a fluorophore. The main disadvantages are related 
to result quantification and susceptibility to human error, as it 
involves a subjective analysis [155,156]. These studies are 
extremely important because they allow us to verify whether 
the proteins identified in the saliva of patients with oral cancer 
reflect tumor biology. The composition of the salivary pro-
teome varies according to the physiological state of the 
patients, and many diseases can influence the protein profile 
in saliva. By comparing salivary biomarkers with tissue IHC 
findings, valuable information about the factors contributing 

to HNSCC-induced salivary proteome remodeling can be 
extracted. This approach may significantly enhance our com-
prehension of HNSCC pathobiology. In recent years, the 
branch of pathomics has emerged. Digital pathomics takes 
advantage of deep learning and machine learning algorithms 
to extract information from high-resolution whole-slide 
images of tissue sections that allows the generation of data 
regarding various phenotypic characteristics of this type of 
sample. Combining proteomics with pathomics studies consti-
tutes an extremely powerful weapon for translating salivary 
biomarkers. For example, Bankhead et al. created QuPath 
which is a digital pathology software that allows the integra-
tion of histopathology data with genomics and medical ima-
ging data to predict response to immunotherapy treatments, 
which has been shown to perform very well on unimodal 
measures including tumor mutational burden and PD-L1 
score [157,158].

6. Validation of biomarkers in patients with 
potentially malignant lesions

Normando et al. performed a comprehensive meta-analysis 
showing an association between a set of proteins and the 
malignant transformation of oral lesions [159]. The inclusion 
of individuals with potentially malignant oral lesions in oral 
cancer proteomics studies provides a better understanding of 
the salivary proteome across various stages of oral cancer 
development. In addition, this validation step has the poten-
tial to uncover biomarkers capable of predicting the risk of 
malignant transformation of oral lesions.

The process of malignant transformation in the context of 
oral cancer comprises several phases of cell differentiation. For 
each stage of disease, there are genetic, epigenetic, environ-
mental and tumor microenvironment factors that facilitate or 
promote this differentiation and are schematized in Figure 4.

The use of saliva as liquid biopsy and source of potential 
biomarkers for the diagnosis of oral potentially malignant 
lesions (OPMD) is also extremely important. Some meta- 
analyzes justify the potential use of salivary biomarkers in 
OPMD. Arroyo et al. demonstrated that salivary carcinoem-
bryonic antigen (CEA) and soluble fragment of cytokeratin 19 
(CYFRA21) can be useful for the differential diagnosis between 
OPMD and OSCC, being CYFRA 21 also capable of differentiat-
ing OPMD from healthy individuals [160]. Salivary levels of the 
cytokines IL-8, IL-6, TNF-α and IL-1β are significantly increased 
in patients with OSCC compared to OPMD. The cytokines IL-6 
and TNF-α in turn are found at significantly higher levels in 
OPMD compared to healthy individuals. This panel of cyto-
kines is useful in the screening of both OSCC and OPMD 
[161,162]. A meta-analysis performed by Velázquez et al. 
showed that salivary LDH is useful in the diagnosis of OSCC 
and OPMD. However, more studies are still needed to define 
the cut off values for use of this biomarker [163].

7. Salivary protein biomarkers in oral cancer: 
current status

Several proteins have been identified and validated in recent 
years as oral cancer biomarkers, with particular interest in 
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cytokines, growth factors, matrix metalloproteinases and acute 
phase proteins [164,165]. Nonetheless, many of the salivary 
biomarkers of oral cancer that have been proposed do not 
originate directly from the tumor. This is an issue that should 
be addressed in the design of future proteomics studies. 
However, the fact that these biomarkers have not been identi-
fied in OSCC tumor tissue does not mean that they cannot be 
a good OSCC biomarker. Their role in the pathophysiology of 
OSCC may not yet be known, and this could be an opportunity 
to expand our knowledge of OSCC. From the salivary biomar-
kers proposed for oral cancer, as shown in Table 1, the two 
most studied ones are IL-6 and IL-8. TNF-α, MMP9, cyfra 21.1 
and MMP1 have also been extensively studied in recent years. 
A meta-analysis performed by Benito-Ramal et al. showed that 
salivary IL-6, IL-8 and TNF-α are suitable to be used in the 
diagnosis and prognosis of oral cancer [166]. Hema Shree 
et al. and AlAli et al. concluded that MMP9 and cyfra 21.1 are 
specific and sensitive biomarkers of oral cancer [167,168]. 
However, they report the need for studies with larger patient 
cohorts. On ClinicalTrials.gov there are three registered clinical 
trials aiming to validate salivary proteins for oral cancer. 
NCT05049408 aimed to validate the MMP1 protein as 
a diagnostic biomarker for oral cancer. About 1100 patients 
were recruited (269 with oral cancer, 518 with oral pre- 
malignant diseases and 313 healthy controls) from whom saliva 
samples were collected and analyzed by ELISA for MMP1 iden-
tification. In this study, MMP1 showed a sensitivity of 69.5% and 
specificity of 95% in detecting oral cancer at an earlier stage 
[60]. In addition, it was shown to be a relevant biomarker in 

monitoring disease progression and recurrence as well as pre-
dicting neck lymph node metastasis. The other two clinical trials 
have no published results. However, NCT03148665 has already 
been completed and aimed to validate CD44 in the diagnosis of 
oral cancer using OncAlert as a collection method. 
NCT03529604 has no information on its stage but involves 
the validation of three biomarkers of which two are proteins, 
SCCA and TROP2. In NCT03529604 trial, 100 patients were 
recruited and the analysis of samples for protein identification 
involves the use of techniques such as ELISA and liquid 
chromatography.

8. Conclusion

The identification of salivary biomarkers in oral cancer is a very 
promising area that may change the paradigm of this disease. 
Saliva as liquid biopsy source has many advantages in the 
identification of oral cancer biomarkers. The collection is non-
invasive, easy, allows repetitive sampling and establishes 
a close relationship with the main structures involved in oral 
cancer. Several salivary biomarkers have been validated for 
diagnosis and prognosis of oral cancer. The techniques used 
in proteomics are increasingly high – throughput. The advent 
of MS has revolutionized proteomics studies and, today, LC-MS 
/MS stands as the most widely employed MS variant. It is 
anticipated that as the field progresses, researchers will 
move toward increasingly sophisticated techniques that offer 
improvements in sensitivity, specificity, reproducibility and 
overall robustness of study results. Such optimization is 

Figure 4. Temporal evolution of salivary biomarkers and techniques used in its identification. Vosviewer network of most cited salivary biomarkers and techniques 
used in proteomics for biomarkers discovery in oral cancer (a). Vosviewer overlay showing the temporal distribution of the most cited salivary biomarkers and 
techniques used in proteomics for biomarkers discovery in oral cancer (b). Chronological discovery of the most relevant techniques used in studies of proteomics 
using saliva as source of liquid biopsy for discovery of biomarkers of oral cancer (c).
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expected to increase the likelihood that salivary biomarkers 
will be successfully translated into clinical practice. As these 
biomarkers are increasingly incorporated into routine diagnos-
tic and prognostic protocols, patients will benefit from perso-
nalized and timely interventions. The integration of reliable, 
noninvasive biomarker-based tests into the clinical workflow 
may ultimately lead to better outcomes for patients with oral 
cancer and represent a paradigm shift in the management of 
this difficult disease.

9. Expert opinion

The potential of saliva as a liquid biopsy source for identifying 
biomarkers of oral cancer is undisputed. It has ushered in a new 
era in oral cancer diagnostics by providing a noninvasive, easily 
accessible, and patient-friendly medium for disease detection 
and monitoring. With the introduction and refinement of var-
ious proteomic techniques, the proteomics field has made 
remarkable progress over the years. Despite these promising 
advances, the field is not yet mature, as we must fully realize 
the potential of saliva in oral cancer diagnostics. Technological 
advances, particularly in MS, have greatly improved the land-
scape of salivary proteomics. Selected reaction monitoring/mul-
tiple reaction monitoring (SRM/MRM) MS techniques have been 
proven to be valuable tools in this field. Compared to the DIA- 
and DDA-MS approaches, MRM-MS has the highest quantitative 
accuracy allowing relative protein quantification. The main dis-
advantages are that it only detects and quantifies up to 100 
proteins per analysis and that it requires the synthesis of ‘heavy 
peptides’ as internal quantitative standards. MRM-MS is not 
used as a protein discovery strategy, but very promising studies 
are beginning to emerge that combine DIA-MS with MRM for 
biomarker discovery and validation. In this way, MRM-MS can 
also be incorporated into proteomic discovery studies. 
However, it is imperative to overcome the high costs and 
accessibility issues of MRM-MS technology to make it available 
to a broader range of laboratories. Reducing costs and increas-
ing the efficiency of MS platforms, standardizing the experi-
mental approaches used in proteomics studies, creating 
biobanks, and establishing collaborative projects, will lead to 
an expansion of clinical cohort sizes. This will make it possible 
to overcome issues relating to the statistical power of proteo-
mics studies enabling translation of the protein candidates to 
clinical practice. Multi-Omics approaches are extremely attrac-
tive because they can integrate several levels of information, 
namely genomics, proteomics, epigenomics, transcriptomics 
and post-translational modifications. Nevertheless, large 
amounts of data imply the need for superior computing 
power and better data analysis software. These advancements 
will bring us one step closer to translating research findings into 
meaningful clinical applications that can significantly improve 
oral cancer diagnosis and patient outcomes.

Over the next five years, the field of salivary proteomics in 
oral cancer diagnostics is poised for a transformative evolu-
tion that will revolutionize the way we diagnose and track 
this disease. Although sophisticated techniques such as MS 
with SRM/MRM have shown immense potential, their high 
cost has been a barrier to widespread use. As these methods 
become more widely used and more laboratories adopt 

them, costs are expected to decrease significantly due to 
economies of scale. This reduction in cost will not only 
democratize access to cutting-edge technologies, but also 
pave the way for their wider use in salivary proteomics 
research. Targeted approaches, such as the ones based on 
aptamers, are expected to expand the diagnostic arsenal 
available to medical professionals. At the same time, the 
proteomics research landscape will be redefined by the emer-
gence of international consortia dedicated to standardizing 
research protocols. These collaborative networks will focus on 
developing universally accepted best practices spanning 
every phase of a proteomics study – from sample collection 
and processing to data analysis and reporting. This harmoni-
zation of methods across laboratories will not only eliminate 
inconsistencies resulting from different techniques but will 
also improve the reproducibility and comparability of 
research results.

In parallel, we expect to see an increase in collaborative studies 
with large, diverse patient cohorts. The consolidation of resources 
and expertise will enable research initiatives on an unprecedented 
scale, providing more robust data and improving the statistical 
power and validity of results. Most importantly, this collaborative 
approach will facilitate the comprehensive validation of potential 
salivary biomarkers in diverse populations and clinical contexts – 
an indispensable step for their subsequent clinical application.

Finally, artificial intelligence (AI) models incorporating 
machine learning (ML) and deep learning (DL) strategies pre-
sent promising approaches for salivary protein analysis, parti-
cularly with large datasets from MS-based proteomics. 
Capable of handling unstructured data and autonomously 
extracting high-quality features, these AI models enhance 
the accuracy of data analysis, thereby advancing biomarker 
discovery in oral cancer research. The ongoing evolution of 
technology suggests that the seamless integration of salivary 
biomarker discovery and AI-driven analytics holds significant 
potential to revolutionize oral cancer management, paving the 
way for targeted and individualized care. Overall, we are 
entering an exceptionally vibrant and dynamic era of research 
and innovation in salivary proteomics for the diagnosis of oral 
cancer. With greater financial access to cutting-edge technol-
ogies, the development of standardized methods, and an 
increasingly collaborative research ecosystem, breakthrough 
discoveries are within reach. However, it is important to recog-
nize that this optimistic outlook requires a sustained, colla-
borative effort by all stakeholders, including researchers, 
clinicians, and policymakers. Only by confronting the remain-
ing obstacles and seizing the opportunities that present them-
selves can we hope to fully realize this transformative vision 
for the future of oral cancer diagnosis and treatment.
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