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ABSTRACT
We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the 
chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in 
Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control 
(no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. 
While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone 
resulted in some level of antitumor effect (p < .05). Superoxide dismutase, catalase activity and 
glutathione content were significantly decreased in the liver of tumor-bearing animals as compared 
with the control group (p < .05). The decreases in antioxidant defenses accompanied histological 
findings of suspected liver damage. However, hepatic levels of thiobarbituric acid reactive sub-
stances, an indicator of lipid peroxidation, were three times lower in EMF and DOX + EMF groups 
than in no treatment and DOX (p < .05). EMF and DOX + EMF showed significantly lower activity of 
serum ALT than DOX alone (p < .05). These results indicate that EMF treatment can inhibit tumor 
growth, causing less pronounced oxidative stress damage to the liver. Therefore, EMF can be used 
as a therapeutic strategy to influence the hepatic redox state and combat cancer with reduced side- 
effects.

ARTICLE HISTORY 
Received 27 April 2021  
Accepted 26 June 2021 

KEYWORDS 
Electromagnetic field; 
doxorubicin; Walker-256 
carcinosarcoma; oxidative 
stress; hepatic redox state

Introduction

Cancer has been the second leading cause of death for 
over a century, reaching 18 million new cases worldwide 
in 2018. World Health Organization (WHO) predicts at 
least a 70% increase in the number of cancer-related 
deaths by 2030 (Copur 2019; Ferlay et al. 2019). 
Current cancer treatments, including tumor surgery, 
chemotherapy, immunotherapy and hormonal therapy, 
have some inherent limitations and side effects (Bernini 
and Bencini 2012; Haanen et al. 2017).

Non-ionizing electromagnetic fields (EMF) have been 
shown to exert antitumor effects in vitro and in vivo 
(Muramatsu et al. 2017; Omote et al. 1990). Clinical 
trials focused on the antitumor efficacy of EMF given 
as the primary or adjunctive therapy may contribute 
additional support for treatment outcomes and patient 

survival. One potential advantage of EMF is that mag-
netic fields cause less damage to normal tissues than 
other cancer treatments (Tatarov et al. 2011). The tis-
sues, however, are vulnerable to chemotherapy toxicity 
and the energy of electric fields, commonly used in 
hyperthermia treatment (Glazer and Curley 2011). 
Previously most studies have only considered thermal 
effects of EMF on tumor cell killing, further investiga-
tions recognize the importance and advantages of non- 
thermal effects (Bystrom and Rivella 2015; Klimanov et 
al. 2018; Mattsson and Simko 2019; Wust et al. 2010; Xu 
et al. 2021). The application of magnetic fields ranging 
between 0.3–0.4 T increased the oxidation rate of a 
hydrocarbon by 10–70% with a markedly accelerated 
initiation phase and reduced chain termination. The 
biological effects of EMF are associated with the triplet- 
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singlet spin transitions in free radical pairs. Spin- 
dependent electron transport can be useful for elucidat-
ing the oxidation mechanism of organic compounds, e. 
g., lipids and proteins (Pliss et al. 2017). The mechanism 
underlying the antitumor activity of EMF is based on the 
increased generation of reactive oxygen species (ROS) 
and change in antioxidant systems.

The current understanding of redox state in tumor 
development involves a complex interplay between proox-
idants and antioxidants (Hawk et al. 2016). Despite the 
essential role of oxygen in cellular respiration, natural 
metabolism is not limited to ROS but also gives rise to 
reactive nitrogen species. Exposure to endogenous and 
exogenous oxidants, such as hydroxyl radical (•OH), 
hydrogen peroxide (H2O2) and superoxide radical (O2

•-), 
is an inevitable feature of living organisms. Hence, main-
taining redox homeostasis and protecting against oxidative 
stress is vital for cells. Superoxide dismutase, catalase and 
peroxidases are the main antioxidant enzymes that elim-
inate superoxides and peroxides. Some enzymes as methio-
nine sulfoxide reductases and disulfide reductases/ 
isomerases react to repair cellular damage. Antioxidants 
with low molecular weight, e.g., ascorbic acid, thiols, toco-
pherols, carotenoids, bilirubin and urate, serve as electron 
donors to prevent the oxidation of lipids, proteins, DNA 
and carbohydrates (Davies 2016).

Doxorubicin (DOX) is among the most widely pre-
scribed anthracyclines to treat solid and hematologic 
tumors (Gastwirt and Roschewski 2018; 
Naruphontjirakul and Viravaidya-Pasuwat 2019; 
Upshaw et al. 2019; Yamashita et al. 2019). In addition 
to extensive hepatic metabolism leading to pronounced 
side effects, DOX dramatically alters the tumor redox 
state (Formelli et al. 1986). EMF acts on DOX-induced 
free radicals due to their paramagnetic properties. The 
influence of the magnetic and electric components of 
EMF converts the triplet state of lower electron energy to 
the excited singlet state in DOX-induced free radicals 
(Houston et al. 2016; Jin et al. 2012; Joshi et al. 2005; 
Usselman et al. 2014). The magneto-electric effects 
induce conformational changes in chemotherapeutic 
agents and, therefore, are critical for DOX intercalation 
into DNA (Nakata and Hopfinger 1980; Orel et al. 
2019a). Tumor cells are more susceptible to damage 
from oxidative stress than normal cells. 
Electromagnetic modulation of oxidative stress is one 
approach to improve the antitumor efficacy of DOX, in 
which the generation of hydroxyl radicals under EMF 
causes DNA damage in the cells (Zorov et al. 2014). 
Moreover, the contribution of EMF to the redox state 
can be seen as a double-edged sword causing an 

increased production or inhibition of ROS (Barnes and 
Greenebaum 2018; Orel et al. 2018).

The concept of redox modulation in cancer treatment 
can be employed as a combination of EMF and che-
motherapy to reduce free-radical mediated toxicities. 
Nevertheless, the lack of fundamental understanding of 
ROS-mediated signaling pathways and the relationship 
between intra- and extracellular ROS interactions in the 
liver remains a major hurdle to developing anticancer 
treatments (Bauer 2014). The present study aims to 
compare the influence of DOX and EMF on the growth 
of Walker-256 carcinosarcoma and the hepatic redox 
state.

Materials and methods

Laboratory animals

Noninbred female rats with body weight 140 ± 3 g were 
obtained from the vivarium of the National Cancer 
Institute (Kyiv, Ukraine) following a 2-week quarantine. 
The animals were implanted in the right hind dorsum 
with Walker-256 carcinosarcoma cells (2 × 106 in 200 μl 
medium 199). The current study followed the design 
recommendations of (Shaw et al. 2017).

The rats were divided into one control (no-tumor) 
and four tumor-bearing groups (n = 10 per group): no 
treatment, DOX, DOX + EMF and EMF treatment. 
DOX was given intravenously 1.5 mg/kg of body weight 
in 0.3 mL saline on day 2 after tumor implantation. 
Animals received EMF in the prone position every 
other day 5 times in total. EMF treatment involved 
immobilization of anesthetized with 1–2% isoflurane 
rats in a horizontal volume coil for 80 min. Fiber-optic 
thermometers TM-4 (Radmir, Ukraine) were used to 
monitor the temperature rise on the surface and inside 
the tumor below 33 °С (Figure 1). Animal studies com-
plied with the Law of Ukraine N 3447-ІV regarding the 
protection of animals from cruelty and European 
Directive 2010/63/EU regarding the use of animals for 
scientific purposes (Guillen 2012).

Electromagnetic field apparatus and exposure

An EMF inductor with the dimensions of 130 × 80 × 15 
mm was fixed in a plastic box during treatment. The 
distribution of EMF on the surface of the apparatus is 
shown in Figure 2. EMF comprised the electric compo-
nent with a maximum strength of 1994 V/m, whereas 
the magnetic component had a strength of 2040 A/m, 
frequency of 50 Hz, and output power of 19 W.

476 V. E. OREL ET AL.



Tumor growth and body weight

Tumor volumes were calculated from measurements of 
length (L), width (W) and height (H) taken three times 
each by an electronic digital caliper (Tayek et al. 1986). It 
was assumed that the tumors were approximately pro-
late spheroids with the volume (V): 

V ¼ L �W � D � π=6 (1) 

Nonlinear kinetics of tumor growth was assessed 
through the growth factor ϕ by the autocatalytic 
equation: 

dx=dt ¼ ϕ xþ x0ð Þ 1 � xð Þ (2) 

where Φ0 and Φ∞ respectively are the initial and the 
limiting tumor volumes; Φ is the tumor volume at the 
time t; x = (Φ – Φ0)/(Φ∞ – Φ0) is the relative tumor 

growth at the time t; and x0 = Φ0/(Φ∞ – Φ0) is the 
relative tumor volume at the time t = 0 (Emanuel 1982; 
Orel et al. 2014).

Laboratory digital scales ТВЕ-0.5–0.01а were used to 
measure body weight of tumor-bearing animals.

Histological evaluation

Tumor and liver tissue samples were collected from 
euthanized rats under sterile conditions and fixed for 
seven days in Bouin mixture, then embedded in paraffin, 
sliced into 5-μm sections and stained with hematoxylin- 
eosin-orange (H&E) (Kiernan 2008). H&E stained tissue 
slides were examined under a light microscope (Olympus 
BX-41, Olympus Europe GmbH, Japan) according to 
(Thoolen et al. 2010). The assessment of changes in 

Figure 1. Animal positioning for extremely low-frequency electromagnetic irradiation (a): 1 – apparatus; 2 – rat position. Intratumoral 
temperature measurements (b): 3 – fiber-optic sensor, 4 – thermometer.

Figure 2. Distribution of electromagnetic fields on the apparatus surface: (a) electric field; (b) magnetic field.

ELECTROMAGNETIC BIOLOGY AND MEDICINE 477



tumor and liver tissues was performed using the histolo-
gical criteria defined by (Boroday and Chekhun 2018).

Texture analysis of digital pathology specimens quanti-
fied tumor heterogeneity based on standard deviation 
(SD) and brightness levels. The asymmetry plugin was 
applied to the liver images, which calculated the asymme-
try parameter. CHAOS & IMAGE 1.0 software (developed 
by the National Cancer Institute of Ukraine, NCI) was 
used for computer-aided image analysis (Orel et al. 2007).

Assay of antioxidant parameters

The activity of superoxide dismutase (SOD), catalase 
(CAT), reduced glutathione (GSH) content, glutathione 
peroxidase (GP) and thiobarbituric acid reactive sub-
stances (TBARS) were used for assessing the hepatic 
redox state. Liver samples were washed and rapidly 
frozen at −70°C in phosphate buffered saline (PBS) 
with 1 mM ethylenediaminetetraacetic acid (EDTA) 
and 0.4 mM serine protease inhibitor (PMSF) at рН 
7.0. Frozen samples were then thawed and gently homo-
genized in PBS with 1 mM EDTA and 0.4 mM PMSF, 
filtered and centrifuged at 10000 g for 15 min. Total 
protein was measured using a standard reagent kit 
(Diagnosticum Zrt, Hungary). Spectrophotometry char-
acterized the levels of SOD, CAT, GSH, GP and TBARS.

The assay of SOD activity was based on the method 
described in (Salbitani et al. 2015). The ability of SOD to 
inhibit the tetrazolium dye reduction with superoxide, 
was measured by absorbance at 540 nm. For SOD, one 
unit was defined as the amount of enzyme providing 1% 
inhibition of tetrazolium dye reduction.

CAT activity was determined spectrophotometrically 
at 410 nm using a previously reported method with 
molybdenum salt (Goth 1991). The reaction started 
with the addition of 0.03% Н2О2 solution. The activity 
was calculated based on the rate of Н2О2 decomposition, 
where the extinction coefficient was 22.2 M−1 cm−1.

Colorimetric assay determined GSH content at 
412 nm. GSH was oxidized by 5,5′-dithiobis-(2-nitro-
benzoic acid) to glutathione disulfide and 5-thio-2- 

nitrobenzoic acid (Tipple and Rogers 2012). GP activity 
was measured using unconsumed GSH after incubation 
with t-butyl hydroperoxide (Faraji et al. 1987).

TBARS were measured by absorbance at 532 nm. The 
extent of lipid peroxidation was expressed as TBARS 
given the extinction coefficient of 1.56 × 105 M−1 cm−1 

(Tukozkan et al. 2006).

Liver function tests

Blood samples were collected from the carotid artery 
immediately after euthanasia and centrifuged for 10 min-
utes at 1000 g. Measurements of alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) activity were 
completed by a standard analyzer (DiagnosticumZrt, 
Hungary).

Statistical analysis

Experimental data were recorded and processed in 
Microsoft Excel (Microsoft Corporation, USA). Statistical 
tests were performed in STATISTICA 12.6 (StatSoft 2015).

Variables of tumor growth kinetics, liver antioxidant 
parameters, liver function tests and texture analysis were 
presented as the mean and the standard deviation of the 
mean (mean ± SD). Data were tested for normality 
(Kolmogorov-Smirnov’s test) and homogeneity of var-
iance. A two-tailed Student’s t-test determined the sig-
nificance of differences between animal groups at the p 
< .05 level. Liver antioxidant parameters were compared 
between groups using one-way analysis of variance 
(ANOVA) followed by Tukey’s HSD post-hoc test (p 
< .05). Kaplan–Meier survival analysis was performed 
and then compared with the log-rank test (p < .05).

Results

Tumor growth, body weight and survival

The results in Figures 3–5 show the tumor growth 
kinetics, body weight changes and survival of animals 
assigned to different study groups. Statistical analysis 

Table 1. Walker-256 carcinosarcoma growth on day 15 after implantation (M ± m).
Animal group Tumor growth φ, day–1

No treatment tumor 0.73 ± 0.02
DOX 0.45 ± 0.061

DOX + EMF 0.49 ± 0.041

EMF 0.60 ± 0.09123

1Statistically significant difference from no treatment tumor, p< .05; 
2Statistically significant difference from DOX, p< .05; 
3Statistically significant difference from DOX + EMF, p< .05.
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revealed significant differences between tumor-bearing 
rats receiving no treatment, DOX, DOX + EMF and 
EMF alone (Table 1). EMF treatment induced some 
level of antitumor effect, while its combination with 
DOX and DOX alone resulted in a greater Walker-256 
carcinosarcoma growth inhibition (Figure 3).

Animals treated with DOX exhibited a reduced body 
weight gain as compared to DOX + EMF (144%) and 
EMF (26%), p < .05. The most pronounced relative 
changes in body weight were observed in DOX + EMF 
treatment (Figure 4), demonstrating the complex inter-
actions between the combined treatment and the tumor- 
bearing host (Safdie et al. 2012). There were no signifi-
cant differences in body weight changes between no- 
treatment and DOX groups during the early stage of 
tumor development (the first 8 days following 
implantation).

Survival rates of tumor-bearing animals were consis-
tent with Walker-256 carcinosarcoma growth kinetics 
across the duration of the study. Each treatment resulted 
in increased survival as compared with the no-treatment 
group. DOX and DOX + EMF treatments led to the 
extended survival (100%) of tumor-bearing rats, while 
EMF alone resulted in 70% overall survival (Figure 5).

Histological findings

Histological changes in tumors obtained from Walker- 
256 carcinosarcoma-bearing animals are shown in Figure 
6 and Table 2. In no-treatment group tumors had carci-
nomatous and sarcomatous components mostly with 
fibrotic tissue and interstitial edema (Figure 6a). 
However, numerous necrotic foci were present in ani-
mals treated with DOX. Tumors showed structural 

Figure 3. The growth kinetics of Walker-256 carcinosarcoma (M ± m): 1 – no treatment; 2 – DOX; 3 – DOX + EMF; 4 – EMF.

Figure 4. Changes in body weight of control and Walker-256 carcinosarcoma-bearing rats relative to day 3 after tumor implantation: a 
– control; b – no treatment tumor; c – DOX; d – DOX + EMF; e – EMF.
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damage containing an epithelioid component and hyper-
chromic undifferentiated cells. Some tumors also under-
went fibrotic changes within the extracellular matrix 
following DOX treatment (Figure 6b). After DOX + 
EMF treatment, animals demonstrated severe pleo-
morphism: many areas of necrosis, extracellular matrix 

and at least minor foci of apoptosis (Figure 6c). EMF 
treated animals had apoptosis occurring with the devel-
opment of pseudo-granular structures and fibrotic tissue. 
Although irradiated tumors were composed predomi-
nately of the epithelioid component with eosinophilic 
content, they also showed small foci of central necrosis 

Figure 5. Overall survival of Walker-256 carcinosarcoma-bearing rats 20 days after tumor implantation: 1 – no treatment; 2 – DOX; 3 – 
DOX + EMF; 4 – EMF. * Statistically significant difference from no-treatment tumor, p < .05.

Figure 6. Histological findings in Walker-256 carcinosarcoma. H&E stain. (a) no-treatment group: sarcomatous (sc), carcinomatous (cc) 
components, fibrotic tissue (f) and interstitial edema (arrow), magnification x100; (b) DOX treatment: sarcomatous (sc), epithelioid (ec) 
components, fibrotic tissue (f) and necrosis of tumor cells (n), magnification x200; (c) DOX + EMF treatment: necrosis (n) and apoptosis 
(a) of tumor cells with extracellular matrix (m), magnification x400; (d) EMF: apoptosis of tumor cells (a) and pseudo-granular structures 
(arrows) magnification x400.
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(Figure 6d) due to continued growth in the late phase 
(Casciato 2009; Schatten 1962). Texture analysis of tumor 
images revealed changes in structural heterogeneity after 
given treatments.

Figure 7 and Table 3 compare histological changes in 
the livers of Walker-256 carcinosarcoma-bearing ani-
mals. Liver tissue isolated from rats with implanted 
tumors receiving no treatment exhibited hepatocyte 
hypertrophy, ground glass changes and biliary hyperpla-
sia (Figure 7a) because of host adaptation to the malig-
nant process (Hargrove et al. 2017). DOX treatment 
alone resulted in swollen hepatocytes with empty nuclei, 
ground-glass changes in the cytoplasm, hypertrophy of 
surviving hepatocytes, biliary hyperplasia and neutro-
phil infiltration indicative of inflammatory response 
with mixed injury patterns (Figure 7b). Pathological 
changes observed in DOX + EMF group included less 
pronounced hepatic inflammation (Wieczorek et al. 
2017) than in DOX group: ground-glass appearance, 
inflammatory cell infiltrates and bile duct hyperplasia 

(Figure 7c). EMF treatment alone was associated with 
adaptive changes in the liver similar to those seen in the 
no-treatment group; however mild neutrophil infiltra-
tion was also present (Figure 7d). The asymmetry para-
meter computed in liver tissue images from no- 
treatment and DOX groups was higher than after DOX 
+ EMF or EMF alone treatments.

Hepatic redox state and liver function tests

Analysis of the hepatic redox state revealed significant 
differences in antioxidant parameters between animal 
groups (Figure 8). TBARS levels showed potential hepa-
toprotective effects of EMF on lipid peroxidation as 
compared with DOX alone and no treatment. While 
the level of TBARS in animals receiving no treatment 
was about 8 times as much as in the control group (no 
tumor), DOX treatment resulted in 3 times as much as 
in EMF alone or DOX + EMF (Figure 8a). Enzymatic 
antioxidants in the liver, SOD and CAT, were also 

Table 2. Tumor growth on 15th day after Walker-256 carcinosarcoma implantation (M ± m).

Histological findings

Animal group

No treatment DOX DOX + EMF EMF

Necrosis + +++ +++ ++
Apoptosis - - + +++
Structural heterogeneity, arb. unit 40.7 ± 2 36.6 ± 1.8 24.0 ± 1.2 22.6 ± 1.1

The level of pronunciation: “-“ not pronounced; “+” low pronounced; “++” moderate pronounced; “+++” high pronounced.

Figure 7. Histological findings in the liver of Walker-256 carcinosarcoma-bearing animals. H&E stain. (a) no treatment; (b) DOX; (c) DOX 
+ EMF; (d) EMF: neutrophil infiltration (ni), hepatocytes with empty nuclei (Eh), hepatocyte hypertrophy (h), ground-glass hepatocytes 
(gh), biliary hyperplasia (e), magnification x400.
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affected by the tumor-host interactions and given treat-
ment. SOD activity was about 5 times lower in the 
tumor-bearing groups than in the control. There was a 
significant difference in SOD activity between DOX + 
EMF treatment and DOX alone, p < .05 (Figure 8b). 
Similarly, the activity of CAT in the control group (no 
tumor) was 15 times as high as in tumor-bearing rats 
receiving no treatment. EMF + DOX and EMF alone 
resulted in significantly decreased CAT activity com-
pared to DOX (Figure 8c). Besides a significant differ-
ence in GSH between the control and the tumor-bearing 
groups, only non-significant tendencies were apparent 
for decreased GSH content after EMF or DOX + EMF 
treatment compared to no treatment and DOX (Figure 
8d). No significant differences were detected in GP 
activity between the groups.

Figure 9 shows the results of liver function tests in 
animal groups. Higher serum AST activity was found in 
tumor-bearing groups than in the control (no tumor). 
DOX, DOX + EMF or EMF treatments caused signifi-
cantly higher AST activities than those observed in 
tumor-bearing animals receiving no treatment. 
Although the activity of ALT in the control group did 
not significantly differ from the no-treatment group, 
lower ALT activities were associated with EMF and 
DOX + EMF treatments (p < .05), suggesting a less 
pronounced form of liver damage (Kuzu et al. 2019).

Discussion

There is a growing body of evidence that EMF have a 
regulatory role in tumor development (Carpenter 2010; 
Kocaman et al. 2018; Tatarov et al. 2011) and anticancer 

Figure 8. Hepatic antioxidant parameters: (a) TBARS, (b) SOD, (c) CAT, (d) GSH in 1 – control, 2 – no treatment, 3 – DOX, 4 – DOX + EMF, 
5 – EMF groups. 
&Statistically significant difference from control (no tumor), p < .05; 
*Statistically significant difference from no-treatment, p < .05; 
+Statistically significant difference from DOX, p < .05.

Table 3. Histological findings in the liver of Walker-256 carcinosarcoma-bearing rats.

Histological findings

Animal group

No treatment DOX DOX + EMF EMF

Hepatocyte hypertrophy ++ ++ ++ +
Empty nuclei - + - -
Ground-glass hepatocytes ++ + +++ +++
Biliary hyperplasia ++ + +++ -
Neutrophil infiltration - ++ + +
Asymmetry parameter, arb. unit 0.58 ± 0.03 0.45 ± 0.02 0.18 ± 0.01 0.19 ± 0.01

The level of pronunciation: “-“not pronounced; “+” low or mild pronounced; “++” moderate pronounced; “+++” high pronounced.

482 V. E. OREL ET AL.



treatment (Cameron et al. 2014). One of the most diffi-
cult challenges related to the combined use of che-
motherapeutic agents and EMF is to maintain efficacy 
and limit toxicities (Gewirtz et al. 2010; Thorn et al. 
2011). Although DOX and DOX + EMF treatments 
resulted in enhanced antitumor effect than EMF alone, 
the present study emphasizes the potential application of 
EMF with less pronounced changes to the hepatic redox 
state in the Walker-256 animal model of breast cancer.

While tumor cells predominantly underwent necro-
sis in animals receiving DOX, morphological findings 
of apoptosis were observed after EMF alone. DOX + 
EMF treatment caused both necrosis and apoptosis of 
tumor cells. The development of fibrotic tissue accom-
panied tumor adaptation to DOX chemotherapy 
(Boroday and Chekhun 2018) and tissue replacement 
(Lushnikova et al. 2011). These results are consistent 
with previous investigations, which showed that the 
mechanism of tumor and liver cell death under the 
influence of EMF was apoptosis (Alves de Souza et al. 
2017; Ghodbane et al. 2015; Lai 2019). The difference 
in texture features of tumor and liver tissue images 
between the groups was due to variability in DOX 
distribution within heterogeneous tumor vasculature 
and microenvironment, whereas the magnetic field 
could penetrate the tumor more evenly (Omote et al. 
1990; Orel et al. 2017).

We focused on changes in liver tissue and oxidative 
stress as it is the main detoxifying organ in the human 
body. Hepatocytes undergo numerous metabolic pro-
cesses to support redox homeostasis and biosynthetic 

function. They are thus vulnerable to damage from 
oxidative stress. Mitochondria generate ROS as by- 
products of cellular respiration. Another source of ROS 
in the liver is microsomal enzymes involved in the 
metabolism of most chemotherapeutic agents (Sanchez- 
Valle et al. 2012). Liver macrophages (Kupffer cells) 
produce signaling molecules such as interleukins, 
tumor necrosis factor, and ROS to promote the immune 
response. Not only antigens but ROS products of lipid 
peroxidation can influence the activation of liver macro-
phages leading to inflammation (Cichoz-Lach and 
Michalak 2014). For this reason, the liver has antioxi-
dant defense systems that maintain the redox state 
(Birben et al. 2012). Many patients, however, experience 
hepatotoxicity from treatment with chemotherapeutic 
agents and radiofrequency EMF (Ozgur et al. 2010; 
Videla 2009).

Tumor-bearing animals are more susceptible to lipid 
peroxidation and antioxidant enzyme downregulation 
(Deminice et al. 2016; Jumes et al. 2010). 
Measurements of antioxidant parameters found signifi-
cant differences in the hepatic redox state between the 
control group (no tumor) and Walker-256 carcinosar-
coma-bearing animals. SOD and CAT activities were 
significantly decreased in tumor-bearing animals com-
pared to those with no-tumor. The activity of SOD after 
EMF significantly differed from DOX treatment; like-
wise, we reported lower CAT activity after EMF than 
DOX. Together, changes in antioxidant enzymes agree 
with earlier investigations that EMF alter antioxidant 
defense systems (Amara et al. 2009; Devrim et al. 2008; 

Figure 9. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities: control group with no tumor (1), 
Walker-256 carcinosarcoma-bearing animals receiving no treatment (2), DOX (3), DOX + EMF (4), EMF (5). 
&Statistically significant difference from control without tumor, p < .05; 
*Statistically significant difference from control no-treatment with the tumor, p < .05, 
+Statistically significant difference from tumor rats treated with conventional DOX, p < .05. 
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Martínez-Sámano et al. 2010; Odaci et al. 2015). Higher 
GSH content observed in DOX-treated animals than in 
EMF or DOX + EMF treatment has been previously 
shown to facilitate tumor progression (Harris et al. 
2015; Luo et al. 2018). Moreover, tumor-bearing animals 
showed histological features of more severe liver damage 
after DOX than EMF or DOX + EMF. The protective 
effect of EMF was based on inhibition of lipid peroxida-
tion as determined by TBARS (Li et al. 2015). In addi-
tion to liver tissue examination, the activity of serum 
ALT was significantly lower in EMF and DOX + EMF 
than in DOX. Thus, our observations that a 50 Hz EMF 
alone or combined with DOX inhibit lipid peroxidation 
in the liver may be beneficial in the treatment of cancer 
patients.

Cysteine thiols in peptides and proteins are highly 
susceptible to oxidative stress. Oxidation of sulfhydryl 
groups forms disulfide bonds that mediate redox- 
regulated conformational switching of proteins. 
Glutaredoxins and thioredoxins are the enzymes to 
reduce oxidized thiols. The dynamic balance between 
reduced and oxidized thiol states is critical for gene 
transcription, cell signaling, antioxidant defense and 
apoptosis regulation. Further investigations should 
examine the effects of EMF and DOX-induced ROS 
(Simkó 2007; Topuz et al. 2017) on the thiol redox 
state under impaired regulation in cancer cells (Dirican 
et al. 2016).

One limitation of this study was that we only assessed 
the antitumor effects of EMF in the experimental animal 
model. The obtained results provide additional support 
for the combination DOX + EMF treatment with fewer 
side effects. Nonetheless, future research should con-
sider the nonlinear relationship between given treat-
ments and tumor-host interactions at different levels of 
biological organization, for example, antioxidant para-
meters, histological findings and tumor growth. The role 
of EMF to modulate ROS and antioxidants lacks a sim-
ple dichotomy; therefore, their interpretation requires a 
deep understanding of EMF effects on free radical pairs 
leading to redox, metabolic, genetic, epigenetic and 
morphological changes in the tumor and the host 
(Harris and DeNicola 2020; Orel et al. 2019b; Walton 
2016).

Conclusion

In summary, this study indicates that a 50 Hz EMF 
treatment can inhibit Walker-256 carcinosarcoma 
growth and result in less pronounced oxidative stress 
damage to the liver of tumor-bearing rats. Although the 
combination treatment DOX + EMF and DOX alone 
showed a greater reduction of tumor growth, they also 

caused more severe liver damage. The mechanism 
underlying hepatoprotective effects of EMF was based 
on inhibition of lipid peroxidation evident by TBARS. 
Serum ALT activity was significantly lower after EMF 
and its combination with DOX than DOX alone. 
Histological findings indicative of tumor cell apoptosis 
were observed after EMF treatment, whereas DOX led 
predominately to necrotic tumor cell death. These 
results provide additional support that non-ionizing 
EMF can be used to influence the hepatic redox state 
and combat cancer with reduced side effects.
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