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ABSTRACT
Introduction:  Spirometry is the gold standard for COPD diagnosis and severity determination, but 
is technique-dependent, nonspecific, and requires administration by a trained healthcare professional. 
There is a need for a fast, reliable, and precise alternative diagnostic test. This study’s aim was to 
use interpretable machine learning to diagnose COPD and assess severity using 75-second carbon 
dioxide (CO2) breath records captured with TidalSense’s N-TidalTM capnometer.
Method:  For COPD diagnosis, machine learning algorithms were trained and evaluated on 294 
COPD (including GOLD stages 1–4) and 705 non-COPD participants. A logistic regression model was 
also trained to distinguish GOLD 1 from GOLD 4 COPD with the output probability used as an index 
of severity.
Results:  The best diagnostic model achieved an AUROC of 0.890, sensitivity of 0.771, specificity of 
0.850 and positive predictive value (PPV) of 0.834. Evaluating performance on all test capnograms 
that were confidently ruled in or out yielded PPV of 0.930 and NPV of 0.890. The severity 
determination model yielded an AUROC of 0.980, sensitivity of 0.958, specificity of 0.961 and PPV 
of 0.958 in distinguishing GOLD 1 from GOLD 4. Output probabilities from the severity determination 
model produced a correlation of 0.71 with percentage predicted FEV1.
Conclusion:  The N-TidalTM device could be used alongside interpretable machine learning as an 
accurate, point-of-care diagnostic test for COPD, particularly in primary care as a rapid rule-in or 
rule-out test. N-TidalTM also could be effective in monitoring disease progression, providing a 
possible alternative to spirometry for disease monitoring.

Introduction

According to the World Health Organisation in 2020, Chronic 
Obstructive Pulmonary Disease (COPD) was the third lead-
ing cause of mortality, accounting for 6% of global deaths 
[1]. It is estimated that the prevalence of COPD is growing, 
with the number of people receiving a COPD diagnosis in 
the UK alone increasing by 27% in the past 10 years [2]. This 
trend is only set to increase over the next decade [3].

Currently a cure for COPD does not exist [4]. Therefore, 
early diagnosis and treatment is key to prevent disease pro-
gression, improve quality of life, reduce exacerbations, and 
limit the economic burden associated with management of 
the disease [5, 6]. Spirometry is the current gold standard for 

diagnosis and COPD severity determination, but it relies 
heavily upon a patient’s ability to exhale forcefully. There is 
also a widespread shortage of trained healthcare professionals 
able to perform quality-assured spirometry and its use remains 
limited in some areas due to the associated risk of an 
aerosol-generating cough. In addition, spirometry has been 
shown to be ineffective at screening for early cases [7]. It has 
been estimated that in the UK, only between 9.4% and 22% 
of those with COPD have been diagnosed [8], in part due to 
spirometry’s poor precision of only 63% [9]. The global short-
age of adequately trained staff and protracted waiting lists for 
spirometry have resulted in the Lancet Commission recognis-
ing that diagnostics must move beyond spirometry [10].
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Capnography is a widely used technique in critical care 
and anaesthesia. Previous work has demonstrated that the 
geometry of time and volumetric capnograms can be used 
to identify physiologic patterns associated with respiratory 
diseases such as COPD [11, 12]. In particular, Abid et  al. 
[13] achieved an area under the receiver operating charac-
teristic curve (AUROC) of 0.99 when differentiating COPD 
from healthy capnograms using classical machine learning 
techniques, while Murray et  al. [14] achieved an accuracy of 
81% in differentiating COPD from congestive heart failure. 
Both studies used features derived from accurate mechanis-
tic models of airflow fitted to the capnograms, to differenti-
ate COPD from a single condition.

Furthermore, a previous study by Talker et  al. [15] 
showed that features derived from high-resolution time cap-
nograms recorded using TidalSense’s N-TidalTM device can 
be used to accurately differentiate severe COPD from a vari-
ety of other lung conditions, achieving an AUROC of 0.99. 
This suggested that machine learning in conjunction with 
high-resolution time capnography could be an appealing 
alternative to spirometry for diagnosis. The COPD diagnosis 
element of the present study built upon the aforementioned 
analysis by adding patients with less severe COPD to the 
dataset, increasing the resulting model’s real-world 
applicability.

The objective of the present study was to apply interpre-
table machine learning techniques to capnography data 
recorded by the N-TidalTM device across five clinical studies 
and evaluate the performance of the diagnostic and severity 
classifiers. The primary aim was to construct a classifier that 
could distinguish capnograms of patients with varying sever-
ities of COPD (GOLD stage 1–4) from those without COPD. 
A secondary aim was to develop an alternative severity 
index to percentage predicted FEV1 that could be used as an 
aid by clinicians to quantify COPD severity. The potential 
advantages of using the N-TidalTM device in the context of 
COPD diagnosis include: the capture of CO2 data from tidal 
breathing for improved ease of use and absence of 
aerosol-generating cough; immediate transmission of data to 
the cloud via 2 G or 4 G; the speed of administration of the 
test (under five minutes); and an automated diagnostic out-
put not reliant on specialist training [15]. These advantages 
could extend to using the device for severity determination 
and could be helpful clinically in monitoring disease 
progression.

Methods

Studies

The capnography data used for this analysis were collected 
from five different longitudinal observational studies, namely 
CBRS, CBRS2, GBRS, ABRS and CARES. A summary of 
each of these studies containing their objectives, participant 
information and inclusion/exclusion criteria can be found in 
the supplementary material. These studies, and therefore the 
dataset used in this analysis, included patients with COPD 
(GOLD stage 1–4), asthma, heart failure, pneumonia, breath-
ing pattern disorder, motor neuron disease, sleep apnoea, 

bronchiectasis, pulmonary fibrosis, tracheobronchomalacia, 
anaemia, lung cancer, long COVID-19, general upper airway 
obstruction, extrinsic allergic alveolitis, as well as healthy 
participants. The heterogeneity of diseases present in the 
dataset ensured the resultant model’s generalisability to a 
real-world diagnostic scenario, where patients would be 
expected to present with a variety of cardiorespiratory and 
other conditions that have similar initial symptoms.

In patients with COPD, diagnoses were made according 
to NICE guidelines. COPD severity (GOLD stage 1-4) was 
determined from the percentage predicted FEV1 of the sub-
set of COPD patients where spirometry was available. 
Diagnostic criteria used for other conditions, including 
asthma, are in the supplementary material. Potential partici-
pants were identified in outpatient clinics, inpatient wards, 
primary care and secondary care clinics according to each 
study’s protocol before undergoing a screening process with 
the study team to assess their suitability.

Alongside the five studies noted above, capnography data 
was collected from 72 volunteers without any respiratory 
disease between December 2015 and May 2022. These 
healthy volunteers provided written informed consent and 
were screened by a doctor to ensure they did not have any 
confounding cardiorespiratory disease or other comorbidi-
ties. All subjects across the five studies gave informed con-
sent, and their data was handled according to all relevant 
data protection legislation, including the EU/UK General 
Data Protection Regulation (GDPR).

Ethical approval was obtained from the South Central 
Berkshire Research Ethics Committee (REC) for GBRS and 
ABRS, the Yorkshire and the Humber REC for CBRS and 
CARES, and the West Midlands Solihull REC for CBRS2.

Procedure

In all studies, capnography data was collected using the 
N-TidalTM device, a CE-marked medical device regulated in 
the UK and EU. N-TidalTM has been designed to take accu-
rate, reliable recordings of respired pressure of CO2 (pCO2) 
directly from the mouth. It is unique in its ability to accu-
rately measure pCO2 from ambient/background CO2 to 
hypercapnic levels in exhaled breath through unforced tidal 
breathing with a fast response time, meaning that quick 
changes in the geometry of the pCO2 waveform are captured.

For all data, CO2 was sampled at 10 kHz and reported at 
50 Hz providing a level of resolution not possible with alter-
native capnometers. This resolution was critical to the 
machine learning models’ ability to use subtle geometric fea-
tures of the waveform to distinguish capnograms [16].

Study participants were given an N-TidalTM device to take 
home after completing training on the correct operation and 
storage of the device. Capnography data was serially col-
lected twice daily for varying lengths of time ranging from 
2 weeks up to 12 months according to each study’s protocol. 
Following startup, the device performed a 60 s warm-up 
sequence that included a process to zero the output CO2 
trace to the background level. Patients then performed nor-
mal tidal breathing through the N-TidalTM device for 75 s 

https://doi.org/10.1080/15412555.2024.2321379
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using a mouthpiece in an effort-independent process. A sin-
gle episode of use (breath recording) produced a single cap-
nogram, with each respiratory cycle (inspiration and 
expiration) forming a single waveform. In addition to cap-
nometry data, the following data was also collected from the 
majority of participants on all five studies: basic demograph-
ics, spirometry, smoking history, comorbidities and medica-
tions. Some of this information was used in conjunction 
with capnography data in subsequent analysis. Other clinical 
and questionnaire data varied across studies (see 
supplementary material). Personal data was pseudonymised 
in accordance with GDPR. All analysis was performed retro-
spectively, after data collection for the studies had been 
completed.

Feature engineering

Raw pCO2 data collected in each breath recording was first 
denoised then separated into breaths, each of which was 
then segmented into its constituent phases. At this point, 
breaths that were anomalous and could not be processed 
were excluded from subsequent processing and analysis 
using a set of proprietary rules built into the N-TidalTM 

cloud platform. An overview of the preprocessing pipeline 
can be found in Figure 1.

To generate features for machine learning classification, 
two categories of information were captured: geometric char-
acteristics of the waveform associated with each breath 
(referred to as ‘per breath features’); and features of the 
whole capnogram, such as respiratory rate or maximum 
end-tidal CO2 (ETCO2), referred to as ‘whole capnogram 
features’. More information on the types of features calcu-
lated can be found in the supplementary material, and an 
example capnographic waveform with illustrated phases and 
angles can be found in Figure 2.

Any breaths where the full feature set could not be cal-
culated were also automatically excluded from analysis, and 
further checks were carried out manually to ensure that all 
condensation-compromised breaths had been excluded by 
automated methods.

Machine learning

Following pre-processing and waveform parameterisation, a 
reduced number of capnograms were randomly selected for 
each participant in the dataset such that the COPD and 

Figure 1. high-level overview of the data processing pipeline applied to the fast-response CO2 data collected through the n- tidaltm device.

https://doi.org/10.1080/15412555.2024.2321379
https://doi.org/10.1080/15412555.2024.2321379


4 L. TALKER ET AL.

non-COPD cohorts had the same number of capnograms. 
Then, each machine learning model was trained and evalu-
ated using a nested cross-validation scheme (see supplementary 
material for more information).

For the present study, the models selected were all simple 
classical machine learning algorithms, in contrast to the more 
complex deep-learning architectures used for many machine 
learning applications. The distinct advantage of many simpler 
algorithms is their interpretability, allowing direct visibility of 
the weights the model is assigning to each input feature. 
Interpretability in this context is defined as a measure of the 
transparency of an algorithm’s inner workings, and therefore 
the ability to understand cause and effect between individual 
features and the model output. This is imperative to ensure 
that the model is using characteristics of the waveform that 
have a plausible basis in respiratory physiology, without being 
influenced by possible confounding factors in the training data. 
‘Black-box’ methods like neural-networks have been observed 
to produce models based largely on confounding data. For 
example, a neural-network developed to screen x-rays used 
information such as the scanner’s exact position relative to the 
patient to detect pneumonia [17]. In this situation, having full 
visibility of the model’s inner workings may have allowed the 
developers to notice that the model’s most important features 
were not radiological features which would plausibly have been 
expected to be associated with pneumonia. Furthermore, in 
cases where patterns in the training data are fairly simple and 
features are pre-calculated, classical machine learning methods 
can be just as effective as deep-learning.

Furthermore, the ability to extract the model weight 
assigned to each input feature is useful in describing how 
the model made its decision to the end user – also known 
as explainability. This allows, for example, the visualisation 
of the phases of the capnograph that contributed most to 
each of the models’ decisions.

COPD diagnosis

N-TidalTM capnographic features were used to train three 
different machine learning algorithms: logistic regression 
(LR); extreme gradient boosted trees (XGBoost); and a sup-
port vector machine (SVM). LR and XGBoost were chosen 
as they are very different in their approach to training, yet 
similarly interpretable – they both provide direct visibility of 
the weights the model is using. SVM with radial basis func-
tion (RBF) kernel was chosen as the non-linear classical 
learning algorithm that is less interpretable but often maxi-
mises supervised performance.

Model performance was delineated into performance on 
each of the most commonly presenting diseases in the 
non-COPD class and each severity in the COPD class. The 
impact of the most prevalent comorbidities on model per-
formance was assessed for participants with comorbidities in 
addition to COPD, to investigate the model’s analogy to a 
real-world use case where testing on patients with COPD 
and additional comorbidities is likely to be common. The 
most significant features driving model learning were 
extracted to understand which areas of the capnogram wave-
form were most predictive of COPD.

Severity determination

A proposed method for severity determination was to train 
a machine learning classifier to distinguish between partici-
pants with GOLD 1 and GOLD 4 COPD and use the prob-
ability of having GOLD 4 output by this model as an 
indication of COPD severity. This ‘severity index’ would 
indicate where on the spectrum between mild and very 
severe COPD a patient falls. When testing on unseen patients 
of all severities, the output probability distribution for GOLD 
2 and GOLD 3 patients would be expected to fall in between 

Figure 2. illustration of a capnogram waveform and its phases and angles. Phase 1 is the inspiratory baseline, Phase 2 is the expiratory upstroke (representing 
the first phase of exhalation), Phase 3 is the expiratory plateau (representing the majority of exhalation), Phase 4a is the inspiratory downstroke (representing the 
first phase of inhalation), and Phase 4b is the inspiratory baseline. note that the start of Phase 1 and the end of Phase 4b may technically be considered part of 
the same phase.

https://doi.org/10.1080/15412555.2024.2321379
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the distributions for GOLD 1 and GOLD 4, and for a 
patient’s probability output (severity index) to steadily 
increase as their disease progresses.

Given the small number of patients available for this 
analysis and the predominance of comorbidities, especially 
among GOLD 1 patients (25/47 patients), this analysis was 
conducted after removing comorbid patients from the data-
set. This was so the machine learning model would be able 
to more effectively infer the underlying signal of COPD 
severity without the potential confounder of comorbidities.

Following model training, the distribution of each COPD 
severity in the model’s probability output was investigated, 
and random waveforms from adjoining severity classes were 
inspected to explore the probability output’s efficacy as a tool 
for severity determination. To investigate the relationship 
between traditional spirometric methods and the proposed 
model probability severity indication, each patient’s severity 
model probability output was plotted against their paired per-
centage predicted FEV1 value and a correlation was calculated.

Results

Between 6 December 2015 and 8 December 2022, 115,053 
capnograms were collected from 1114 patients. On average, 
each patient collected 103 capnograms over 57 days. 
Demographic data for the preprocessed and class-balanced 
machine learning dataset were collated (Table 1).

COPD diagnosis

All performance statistics were obtained using a decision 
boundary of 0.5 on the models’ probability outputs. In clas-
sifying COPD vs non-COPD participants, the support vector 
machine (SVM) marginally showed the best performance, 
with accuracy, AUROC, sensitivity, specificity, NPV and PPV 

at 0.811, 0.890, 0.771, 0.850, 0.792 and 0.834 respectively 
(Table 2). Model performance was consistent between itera-
tions (Table 2); all three algorithms had a standard deviation 
of less than 0.03 in accuracy over the five folds.  
These metrics were produced from the aggregated predic-
tions on all five unseen outer-loop test sets, while the stan-
dard deviation describes the variation of model performance 
between the five outer-loop test sets and gives an indication 
of model generalisability. As performance for all models was 
extremely similar, further analysis is only presented for the 
LR model, as it is the most interpretable. Receiver operating 
characteristic (ROC) and precision-recall curves for this 
model are shown in Figure 3.

Table 3 outlines LR model performance of the most com-
monly presenting primary diseases in the non-COPD class 
and each GOLD severity in the COPD class. The COPD (no 
severity label) category consisted of patients who were exhib-
iting symptoms, had received a diagnosis of COPD, but who 
were missing spirometry from their electronic health record. 
Therefore, GOLD stage for these patients could not be 
determined. Subjects with emphysema were diagnosed using 
spirometry and CT scans. Comorbid COPD patients have 
been included in the performance statistics for their respec-
tive COPD severity. Notably high performance was seen in 
classifying healthy participants and those with asthma, 
breathing pattern disorder, and GOLD 2-4 COPD, while 
lower performance was seen in those with heart failure and 
GOLD 1 COPD.

Figure 4 shows the diagnostic performance for the capno-
grams with a greater than 0.8 and less than 0.2 probability 
of COPD. These are capnograms that have been classified 
with high confidence by the model.

To investigate how comorbidities impacted the accuracy 
of COPD classification, COPD patients were grouped accord-
ing to the most prevalent comorbidities and the performance 
was assessed for each of these groups (Table 4).

Table 1. Demographic information from the five studies and the separate healthy volunteer cohort. Categorical data are given as a number with its percentage 
of the total (n (%)). continuous data given as (median (Q1-Q3)). for the COPD classification dataset, smoking history and pack years were absent for 82 and 281 
participants respectively. for the severity determination dataset, smoking history and pack years were absent for 2 and 16 participants respectively.

Diagnosis severity

COPD non-COPD Overall mild COPD very severe COPD Overall

(N = 294) (N = 705) (N = 999) (N = 22) (N = 21) (N = 43)

Age 67 (60-74) 54 (44-66) 59 (48-69) 68 (59-75) 66 (61-69) 66 (60-74)
Sex (female) 138 (47·1%) 395 (62·7%) 533 (57·8%) 8 (36·4%) 9 (40·9%) 17 (39·5%)
BMI (kg/m2) 26·4 (23·0-32·3) 27·6 (23·7-32·8) 27·2 (23·1-32·6) 25·3 (23·0-30·5) 25·4 (22·1-29·5) 25·4 (22·2-29·6)
Smoking History:
Current smoker 61 (21·1%) 51 (8·1%) 112 (12·2%) 7 (31·8%) 1 (5·3%) 8 (19·5%)
ex-smoker 207 (71·6%) 248 (39·4%) 455 (49·6%) 12 (54·5%) 18 (94·7%) 30 (71·1%)
never smoked 21 (7·2%) 329 (52·4%) 350 (38·2%) 3 (13·6%) 0 (0·0%) 3 (7·3%)
Pack Years (all) 30·8 (15·0-42·3) 0·0 (0·0-6·1) 2·1 (0·0-19·4) 25·0 (5·0-37·5) 54·5 (37·5-74·8) 35·0 (17·8-51·8)
Current smoker 33·8 (28·9-39·9) 15·8 (8·8-30·0) 28·5 (12·0-38·1) 33·0 (20·6-45·2) 45·0 (45·0-45·0) 39·0 (26·8-48·1)
ex-smoker 32·3 (18·8-45·0) 6·7 (2·0-15·0) 15·0 (4·1-31·4) 30·0 (17·8-39·4) 63·0 (35·0-75·0) 36·3 (25·0-64·8)

Table 2. aggregated machine learning model performance on all 5 unseen outer-loop test sets, for each of the three models built: logistic regression (lr), extreme 
gradient boosted trees (XGboost), and support vector machine (svm) with an rbf kernel.

accuracy aurOC sensitivity specificity
negative Predictive 

value (nPv)
Positive Predictive 

value (PPv)

lr 0·809 ± 0·028 0·884 ± 0·023 0·788 ± 0·055 0·829 ± 0·017 0·800 ± 0·041 0·818 ± 0·017
XGboost 0·806 ± 0·018 0·891 ± 0·015 0·771 ± 0·034 0·840 ± 0·012 0·790 ± 0·023 0·825 ± 0·014
svm 0·811 ± 0·022 0·890 ± 0·020 0·771 ± 0·038 0·850 ± 0·012 0·792 ± 0·026 0·834 ± 0·015
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An evaluation of the predictive model was conducted to 
identify which capnogram features best distinguished patients 
with and without COPD. The relative feature importances 
for driving learning in the LR model were determined and 
the region of the capnogram waveform from which the fea-
tures were extracted was used to construct the importance 
map for non-COPD and COPD waveforms in Figure 5. The 
heatmap value of each region represents an average of the 
weighted feature importance for that region, across all fea-
tures located in that region. The weighted feature impor-
tance is calculated as the standardised value for that feature 
multiplied by the average feature importance over all train-
ing folds. Features associated with the alpha region of the 
capnogram waveform as well as phase 4a (the inspiratory 
downstroke) were found to be the most important drivers of 
learning.

The average waveforms for healthy, asthma and COPD 
patients in the dataset (median of every viable breath 
recorded for that condition, normalised in CO2 concentra-
tion and time) are shown in Figure 6. By far the greatest 
difference between healthy/asthma and COPD is in the 
alpha angle region, corroborating the result of Figure 5.

Severity determination

Classification was performed using only logistic regression 
in this analysis due to its simplicity, explainability and since 

logistic regression was shown in the COPD diagnostic task 
to be as accurate as non-linear models.

All performance statistics were obtained using a decision 
boundary of 0.5 on the models’ probability outputs. The 
classification model trained to distinguish GOLD 1 from 
GOLD 4 participants achieved an accuracy of 0.959 ± 0·039, 
an AUROC of 0.980 ± 0·013, a sensitivity of 0.958 ± 0·051, a 
specificity of 0.961 ± 0·045, NPV of 0.961 ± 0·047, and PPV of 
0.958 ± 0·039, where the standard deviation describes the 
variability of performance on the unseen outer-loop test sets 
across the five folds.

Manual inspection of the average capnogram waveform of 
each GOLD severity (Figure 9) demonstrates that greatest 
visual difference between severities is seen in the transition 
between the expiratory upstroke and expiratory plateau, 
along with marked differences in the beta region and in the 
phase 2/4a regions. In addition, it can be seen that the dif-
ference in the average waveform between the GOLD 1 and 
GOLD 2 waveforms is slight compared to the difference 
between GOLD 2 and GOLD 3.

The model that gave the median accuracy on the unseen 
outer-loop test set of the five folds was chosen for further 
analysis. It was used to output prediction probability for all 
GOLD 2 and GOLD 3 patients’ capnograms, the remainder 
of GOLD 1 and GOLD 4 capnograms belonging to patients 
who were unseen for this particular model, as well as all 
comorbid COPD patients whose severity could be inferred 
from percentage predicted FEV1. Figures 7, 8 and 10 are the 
result of this process. Figure 8 shows the average waveforms 
of two GOLD 1 and two GOLD 2 capnograms. For each 
severity, one capnogram with probability close to or below 
the lower quartile was chosen and one capnogram with 
probability close to or above the upper quartile was ran-
domly chosen.

To understand the relationship between the standard spi-
rometric indication for COPD severity and the severity 
index developed in this paper, the percentage predicted 
FEV1 for each participant was correlated with the severity 
model output probability for all 224 patients with paired spi-
rometry (spirometry taken on the same day as a capno-
gram), unless the paired capnogram was used for training. 
This data was plotted in Figure 10, where the linear 

Figure 3. (A) receiver operating characteristic (rOC) curve for the lr model, reported with results of a theoretical ‘random’ classifier with no predictive power. 
(B) Precision-recall Curve for the lr model, reported with the results of a theoretical ‘random classifier’ and the average precision (aP).

Table 3. accuracy of COPD/non-COPD diagnosis for most commonly presenting 
disease groups and all COPD severities, over all five outer-loop test sets.

number of 
patients

number of 
capnograms Diagnostic accuracy

asthma 257 1538 0·839 ± 0·027
healthy 125 607 0·923 ± 0·056
heart failure 65 389 0·661 ± 0·055
breathing Pattern 

Disorder
10 60 0·950 ± 0·075

GOlD 1 COPD 47 632 0·606 ± 0·152
GOlD 2 COPD 107 1451 0·815 ± 0·054
GOlD 3 COPD 53 725 0·898 ± 0·099
GOlD 4 COPD 24 325 0·985 ± 0·019
COPD (no severity 

label)
55 720 0·692 ± 0·067

emphysema 8 112 0·804 ± 0·263
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relationship gave a Pearson’s product moment correlation 
coefficient (PPMCC) of −0.71.

Figure 7 shows the distribution of each GOLD severity 
in the severity model’s probability output, including cap-
nograms that were unpaired with spirometry. These 
unpaired capnograms were designated the severity given 
by the patient’s median percentage predicted FEV1 
measurement.

Discussion

Model robustness

For the diagnostic task, the best performing model over the 
five unseen outer-loop test sets was the support vector 
machine (SVM), with a class-balanced AUROC of 
0.811 ± 0·022 and positive predictive value (PPV) of 
0·834 ± 0·015. The robustness of the diagnostic models was 
demonstrated through the similar performances of all three 
algorithms, showing a strong signal in the data itself; the 
small difference between training set and testing set diag-
nostic accuracy (0.819 vs 0.809 for logistic regression, for 
example); and the low variability of performance across dif-
ferent test sets, showing the model’s generalisability to a true 
clinical scenario. See supplementary material for more 
details.

Table 4. Diagnostic accuracy and standard deviation across test-sets for the 
most prevalent COPD comorbidities. Comorbid COPD patients who had bronchi-
ectasis/hf/long COviD/pneumonia and other lung conditions were placed in 
the COPD and other(s) category.

num. patients accuracy

COPD and asthma 51 0·771 ± 0·095
COPD, asthma and Other(s) 29 0·663 ± 0·127
COPD and bronchiectasis 10 0·679 ± 0·464
COPD and long COviD 8 0·830 ± 0·208
COPD and heart failure 5 0·971 ± 0·025
COPD and Pneumonia 3 0·865 ± 0·393
COPD and Other(s) 13 0·626 ± 0·416
all Comorbid COPD 119 0.736 ± 0·092

Figure 5. average weighted feature importance by capnogram waveform 
region, where weighted features were calculated as the magnitude of the prod-
uct of the standardised feature value and the feature importance. (A) shows an 
example for a non-COPD waveform, and (B) shows an example for a COPD 
waveform.

Figure 4. Diagnostic performance on the full test set and the highly confident regions only.

https://doi.org/10.1080/15412555.2024.2321379
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Interpretability and waveform features driving learning

The identified features (Figure 5) contributing most to the 
logistic regression model’s decision were from the α angle 
region, which characterises the rate at which gas from the 
upper airways (CO2-poor) gives way to mixed alveolar gas 
from the lower airways (CO2-rich). A larger α angle corre-
sponds to greater airway resistance, likely due to an 
obstructed bronchospastic airway or alveolar damage associ-
ated with emphysema. The most important features driving 

learning in both the diagnostic and severity models were 
identified to be features describing the geometry of the 
breath, such as angles, gradients, curvatures, and coefficients 
of non-linear fits to various capnographic phases. Features 
describing absolute values, such as the values of CO2 at var-
ious points on the breath and the durations of various cap-
nographic phases, performed poorly by contrast.

Figure 6 shows the average waveforms across the entire 
diagnostic dataset for healthy, asthma and COPD subjects. 
The largest difference between the COPD waveform and 

Figure 6. Capnogram waveforms averaged across all healthy, asthma and COPD subjects in the dataset and normalised to equal width and height.

Figure 7. boxplot showing the distribution of each GOlD stage in the severity model’s probability output.
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Figure 9. Capnogram waveforms averaged across all patients of each severity in the dataset and normalised to equal width and height.

both non-COPD waveforms can be seen in the alpha angle 
region, where the COPD waveform exhibits a more ‘shark-fin’ 
like appearance. This is a shape characterised by a large α 
angle and more slanted expiratory plateau. The shark-fin 
type waveform is known to arise both from differences in 
alveolar compliance causing different time constants of gas 
movement from the alveoli to the sensor, and from bron-
chial obstruction. The changes in compliance arise because 
of the airway remodelling that occurs in COPD. This 
changes the rate of transition of gas from alveoli to anatom-
ical dead space (i.e. the expiratory upstroke). This physiolog-
ical trait of COPD and its resulting effect on the alpha angle 
and expiratory upstroke explains why the models were 
driven primarily by features describing waveform geometry, 
as opposed to absolute values such as end-tidal CO2 or 
exhalation duration. Asthma exhibits a waveform that falls 
in between healthy and COPD subjects, with a larger alpha 
angle than healthy subjects but tighter curvature in the alpha 
angle region than in COPD. In much of the literature using 

low-resolution capnometers, asthmatic obstruction has been 
equally associated with the more rounded ‘shark-fin’ [18]. 
We hypothesise that N-TidalTM can more accurately show 
differences between asthma and COPD capnograms due to 
its fast and accurate sampling, which is especially important 
in resolving differences between conditions in fast transition 
regions such as the alpha angle.

For severity determination, the high correlation of 0.71 
between the model’s probability output and the current 
standard for spirometric severity determination, percentage 
predicted FEV1, indicates the physiological plausibility of 
the severity index in describing the progression of COPD 
pathology.

Figure 9 shows the average waveforms for each COPD sever-
ity. It is observed that the more severe forms of COPD exhibit 
an even stronger ‘shark-fin’ like shape. Notably, the average 
waveforms of GOLD 1 and GOLD 2 waveforms are extremely 
similar, with greater distinction between GOLD 2/GOLD 3, and 
GOLD 3/GOLD 4 waveforms. This similarity is reflected in the 

Figure 8. average waveforms, where (A) and (B) are two GOlD 1 examples with the corresponding confidences and (C) and (D) show two GOlD 2 examples 
with the corresponding confidences. (A) and (C) are examples with low prediction confidence for their severity and (B) and (D) are examples with high prediction 
confidence for their severity.
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probability distributions of the mild and moderate severity 
groups (Figure 7), which overlap more than severe and very 
severe patients do. One possible cause for the conflation of the 
two severities in our dataset is that GOLD 1 COPD in partic-
ular is heavily underdiagnosed using the current standard [7], 
and rates of misdiagnosis are also high. Therefore, misdiag-
nosed GOLD 1 patients in the dataset who actually had a dif-
ferent obstructive lung condition could have distorted the 
resultant average waveform, and the patients who do truly have 
GOLD 1 COPD were likely to be on the more severe end.

There is a subset of mild COPD patients who exhibit a 
“shark-fin” like waveform that resembles more severe COPD 
- such as example B in Figure 8. It is becoming more widely 
accepted that percentage predicted FEV1 alone does not 
effectively represent the functional impairment experienced 
by individual patients [19], a fact that catalysed the intro-
duction of GOLD’s ABCD and ABE systems of severity 
classification. It is therefore possible that high-resolution 
capnography is able to identify a severity signal in COPD 
that correlates more closely to clinical outcomes. This 
hypothesis would explain why GOLD 1 waveforms with 
“shark-fin” shapes, such as example B in Figure 8, were 
given a capnographic severity index that was higher than 
most GOLD 2 and many GOLD 3 participants. To verify 
this hypothesis, further analysis would be required to exam-
ine the clinical outcomes of patients who are given a higher 
severity index than their GOLD status would suggest.

Diagnostic performance and model bias

Tidal breathing capnography has previously been used to 
good effect for the differentiation of COPD from healthy 
and congestive heart failure subjects [12–14]. However, to 

the authors’ best knowledge, there has been no work from 
outside this research group on the use of tidal breathing 
capnography to differentiate COPD from a variety of 
‘non-COPD’ conditions that could present with a similar set 
of clinical symptoms to COPD.

The classification performance for commonly presenting 
disease groups with suspicion of COPD and all COPD 
severities on the diagnostic task can be found in Table 3. 
The performance of various categories of comorbid COPD 
patients can be found in Table 4. A previous study by Talker 
et  al. [15] found that the highest performing cohorts had 
capnograms at the extremities of a square-shaped healthy 
waveform with smaller α angle and flatter expiratory plateau, 
or highly shark-fin-like waveforms with larger α angle and 
steeper expiratory plateau for COPD. These cohorts perform 
similarly well in this analysis, with the Healthy, GOLD 3 and 
GOLD 4 groups all scoring at or above approximately 90% 
in classification accuracy. While GOLD 2 COPD also per-
formed well (0.815), the GOLD 1 COPD cohort performed 
significantly worse (0.616). Mean pack years for the misclas-
sified and correctly classified GOLD 1 patients were 14.4 
and 27.3 years respectively (Mann–Whitney U = 16152, 
p = 1 × 10−13, two-tailed), which could suggest that the rate of 
mislabelling in the misclassified cohort was much higher.

Other factors that may have contributed to this result 
include the high prevalence of confounding comorbidities 
in this group (25/47 GOLD 1 patients) and that the COPD 
signal is weaker in GOLD 1 patients and therefore more 
easily confused with other conditions. A lower performance 
than expected was also seen in the smaller COPD group 
that did not have spirometry from which severity could be 
inferred. Several factors may have contributed to this poorer 
performance. First, this cohort had the highest prevalence 
of comorbidities among all of the disease/severity groups 

Figure 10. scatterplot of severity model output probability against percentage predicted fev1 from paired spirometry data. each point represents a single paired 
capnogram. the correlation coefficient was -0.71.
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(31/55 patients), which could have confounded classifica-
tion. Second, the lack of spirometry data from these patients 
means that it cannot be definitely concluded that these 
patients were diagnosed with the aid of spirometry. This 
significantly increases the likelihood of noise in the disease 
labels for this cohort and could therefore explain lower 
diagnostic performance.

Notably, the classification accuracies of the asthma group 
(0.839) and the COPD & asthma comorbidity group (0.771) 
were both high, suggesting the model can effectively identify 
the COPD component in asthma-COPD overlap and distin-
guish it from pure asthma. While performance in classifying 
comorbid patients with COPD & Heart Failure was extremely 
high (0.971), performance in classifying pure Heart Failure 
as non-COPD was significantly lower (0.661). It is possible 
that a portion of cases labelled as pure Heart Failure were 
the result of undiagnosed COPD, which can cause right-sided 
heart failure by inducing pulmonary hypertension through 
low blood oxygen levels [20]. The mean pack years of 16.2 
in the pure Heart Failure group, significantly higher than the 
mean of 6.3 in the non-COPD cohort overall, corrobo-
rates this.

Reassuringly, there was no significant association between 
prediction accuracy and demographic features including age, 
birth sex, and body mass index (BMI) through non-parametric 
statistical testing (see supplementary material), indicating 
that there is no systematic bias in model performance with 
respect to demographic data collected on the studies. Further 
analysis to investigate the effect of BMI on COPD prediction 
probability and capnographic features of obstruction rein-
forced the earlier finding that it does not have a significant 
effect on COPD classification (see supplementary material). 
The weak correlation found between obstructive features and 
BMI in participants with COPD may support previous 
research postulating the so-called ‘obesity paradox’. This phe-
nomenon refers to the clinical finding that BMI correlates 
positively with pulmonary function [21], and that low BMI 
is a risk factor for accelerated lung function decline, whilst 
high BMI has a protective effect in COPD patients [22]. 
However, a larger sample of patients with a high BMI would 
be required to more accurately investigate this signal in 
obstructive features captured on the N-TidalTM.

Potential clinical applications

When presented with the capnogram of a new patient, the 
diagnostic model presented above outputs a probability of 
COPD. Rather than relying on individual clinicians to inter-
pret what is a novel, AI-derived diagnostic output, it could 
be clinically useful to create categories of model confidence 
(Figure 4). For instance, those above a probability threshold 
of COPD of 0.8 could be said to be in a ‘highly likely’ cat-
egory since the PPV associated with this group is 0.93 - 
patients within this group could potentially be immediately 
diagnosed with COPD and appropriate treatment initiated. 
Conversely, patients with a probability of under 0.2 could be 
said to be in a ‘highly unlikely’ category with an NPV of 
0.89. Patients in this group could be said to have had COPD 

‘ruled out’ and therefore alternative explanations for their 
presenting symptoms could be sought. Since the N-TidalTM 
device relies on 75 s of normal tidal breathing, this categori-
sation could be achieved at the point of care, in primary care.

Furthermore, the ability to rapidly identify those likely to 
have severe or very severe disease could ensure these patients 
receive prompt, intensive support (such as pulmonary reha-
bilitation or timely escalation of therapy as appropriate). The 
continuous severity index offered by N-TidalTM could also 
offer an alternative method to monitor disease progression. 
At a time when healthcare services even in high income 
countries can struggle to provide sufficient quality-assured 
spirometry to meet the clinical need, N-TidalTM could alle-
viate the demand for further lung function testing for COPD 
for a significant portion of patients. Widespread use would 
be contingent on a sufficient evidence base to warrant inclu-
sion in clinical guidelines. In middle and low income set-
tings where quality assured spirometry is likely to remain 
out of reach of the majority of the population, N-TidalTM 
could also be a potential solution.

Limitations and further scope for work

The analysis presented in this study has a number of limita-
tions. First, simpler machine learning models were used in 
keeping with the National Health Service Artificial 
Intelligence recommendations regarding algorithmic explain-
ability [23]. This limitation will likely be exacerbated as the 
size of high-resolution capnography datasets increase and 
more opportunities to explore more complex fits to the 
data arise.

Second, ground-truth labels could only be obtained using 
current diagnostic pathways, known to have their shortcom-
ings and inaccuracies. This is especially true for the less 
severe COPD patients that were included in this paper, 
whose rate of misdiagnosis is likely higher than GOLD 3 
and 4 COPD patients. In addition, the GOLD severity labels 
used for this analysis were not provided by clinicians, but 
were inferred solely from percentage predicted FEV1 read-
ings of patients with a diagnosis of COPD. In reality, other 
factors such as number of exacerbations per year, general 
respiratory symptoms and smoking history would likely also 
be taken into account when determining an overall impres-
sion of severity. For example, exacerbation frequency and 
symptom burden forms an integral part of GOLD’s ABE 
severity assessment tool. It is therefore possible that a mis-
classification or anomalous severity model output probability 
of a participant from one of the models presented in this 
article could be caused by mislabelling or misdiagnosis, par-
ticularly when considering the GOLD 1 COPD cohort.

The present investigation was purely focused on investi-
gating the possible use of fast-response capnography alone 
to determine the presence or absence of COPD and, where 
present, establish its severity. It therefore did not factor 
symptoms, imaging data, smoking history or exacerbation 
frequency into the diagnosis or severity determination mod-
els (except for obtaining disease labels for training the mod-
els, according to the current diagnostic standard). It is 

https://doi.org/10.1080/15412555.2024.2321379
https://doi.org/10.1080/15412555.2024.2321379
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possible that the inclusion of this data alongside capnogra-
phy could improve general diagnostic performance as well as 
classification of worse-performing conditions such as GOLD 
1 COPD and heart failure. Recent work has promoted the 
inclusion of imaging as well as symptoms, environmental 
exposure and spirometry in the definition of COPD [24]. 
Inclusion of this data could also allow the severity determi-
nation method to give a more holistic picture of COPD 
severity, increasing its ability to predict exacerbation and 
mortality,. Future longitudinal studies using the N-TidalTM 
device will collect more detailed symptom, exacerbation, 
smoking and CT imaging data, which may allow these 
improvements to be made in diagnosis and severity 
determination.

The number of patients used to evaluate the diagnostic 
performance of comorbid patients (Table 4) is small, and 
further testing is required to strengthen these findings. The 
small sample size of the severity determination cohort and 
resultant removal of comorbid patients is another limitation, 
and, alongside the probably significant rate of GOLD 1 mis-
classification, decreases certainty on the model’s practicabil-
ity. It will be possible to build on this work by collecting 
capnography data from more COPD patients, alongside 
severity labels that have been provided by clinicians based 
on spirometry that has been contextualised by the rest of the 
patient’s clinical history and CT scans. This will enhance 
label accuracy. Further evidence will be gathered using an 
improved labelling method to investigate the effectiveness of 
capnography as an indicator of severity and predictor of 
deterioration in COPD patients – this will help determine if 
it can be used more widely used to assist in pharmacological 
and non-pharmacological treatment decisions.

Furthermore, it is possible that the variety of disease data 
collected over the five studies and volunteer healthy cohort 
may fail to cover the full heterogeneity of lung conditions 
that would be encountered in a real-world clinical setting, 
limiting generalisability.

Investigating patients who exhibit spirometric patterns 
(such as preserved ratio impaired spirometry, PRISm) that 
may predispose patients to later COPD diagnosis or higher 
mortality, would be an interesting avenue to explore. While 
the present investigation did not include any healthy partic-
ipants who exhibited PRISm, planned studies will explore 
whether high-resolution capnography can detect a signal in 
patients with this spirometric pattern.

Finally, the widespread use of N-TidalTM in a real-world 
setting depends on its ability to offer health economic ben-
efit in comparison to existing diagnostic practice. This data 
will be collected in subsequent work looking at the deploy-
ment of N-TidalTM in diagnostic pathways.

Regardless, the proposed methods managed to distinguish 
on capnography alone (without supplementary data such as 
smoking history), between participants with COPD and 
those with a range of plausible differential diagnoses for 
common symptoms of COPD (including healthy volunteers), 
demonstrating its potential clinical benefit.

In summary, we demonstrate that the N-TidalTM 
fast-response capnometer and cloud analytics pipeline can 
perform real-time geometric waveform analysis and 

machine-learning-based classification to diagnose all severi-
ties of COPD. In contrast to commonly used ‘black box’ 
machine learning methodologies, a set of interpretable meth-
ods were used that can provide traceability for machine 
diagnosis back to individual geometric features of the pCO2 
waveform and their associated physiological properties sug-
gestive of obstructive airways disease. In addition, the prob-
ability output of a separate machine learning model could be 
used as an alternative severity index for COPD using the 
N-TidalTM device, with the interpretability of the imple-
mented machine learning techniques providing a picture of 
COPD patients’ capnographic progression from GOLD 1 
through GOLD 4.
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