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RESEARCH ARTICLE

Silver nanoparticle immunomodulatory potential in absence of direct cytotoxicity
in RAW 264.7 macrophages and MPRO 2.1 neutrophils

Nasser B. Alsaleha, Valerie C. Minarchicka, Ryan P. Mendozaa, Bipin Sharmab, Ramakrishna Podilab and
Jared M. Browna

aDepartment of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; bDepartment of Physics and Astronomy, Laboratory of
Nano-biophysics, Clemson University, Clemson, SC, USA

ABSTRACT
Engineered nanomaterials (ENM) are being used in a wide range of consumer products and pharmaceuti-
cals; hence, there is an increasing risk for human exposure and potential adverse outcomes. The immune
system, vital in host defense and protection against environmental agents, is typically initiated and exe-
cuted by innate effector immune cells including macrophages and neutrophils. Previous literature has
reported the immune system as a major target of ENM toxicity; however, there is inconsistency regarding
the immunotoxicity of ENM. This could be attributed to differences in ENM physicochemical properties,
cellular models examined, biocorona formation, etc. Thus, the current study examined the toxicity and
immunomodulatory effects of silver nanoparticles (AgNP), one of the most utilized ENM in consumer and
medical products, in two key innate immune cell models, e.g. RAW 264.7 cells (macrophages) and differ-
entiated MPRO 2.1 cells (promyelocytes/neutrophils). The results showed that despite a generation of
reactive oxygen species, exposure to 20nm citrate-coated AgNP was not associated with major oxidative
damage, inflammatory responses, nor cytotoxicity. Nevertheless, and most importantly, pre-exposure to
the AgNP for 24 h enhanced RAW 264.7 cell phagocytic ability as well as the release of inflammatory
cytokine interleukin-6 in response to lipopolysaccharide (LPS). In MPRO 2.1 cells, AgNP pre-exposure also
resulted in enhanced phagocytic ability; however, these cells manifest reduced cell degranulation (elas-
tase release) and oxidative burst in response to phorbol myristate acetate (PMA). Taken together, these
findings indicated to us that exposure to AgNP, despite not being directly (cyto)toxic to these cells, had
the potential to alter immune cell responses. The findings underscore the import of assessing immune
cell function post-exposure to ENM beyond the standard endpoints such as oxidative stress and cytotox-
icity. In addition, these findings further illustrate the importance of understanding the underlying molecu-
lar mechanisms of ENM-cellular interactions, particularly in the immune system.
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Introduction

The field of nanotechnology has introduced novel applications in
a broad spectrum of disciplines, including materials science,
physics, chemistry, computer science, and biotechnology (Nel
et al. 2006, 2009). Today, engineered nanomaterials (ENM) are
being produced at a large scale and incorporated into a wide
range of consumer products - from electronics to health care
products (Buzea et al. 2007; Vance et al. 2015). The medical field
has also benefited from nanoscience; a number of promising
nanotherapeutics have been developed to significantly improve
resolution and targeting and reductions in the levels of off-target
effects (Ramos et al. 2017). As a result, increased human and
environmental exposure to various ENM is inevitable.

Even with these increases in potential exposures, biological
behaviors and any associated adverse effects of many ENMs are
largely unknown or poorly studied. A main challenge in studying
ENM molecular interactions with mammalian cells is that even a

minor alteration in ENM physicochemical properties (e.g. size,
shape, surface chemistry, biocorona formation, etc.) or experi-
mental conditions (e.g. preparation of ENM, cell culture condi-
tions, animal models, etc.) can lead to a drastic change in ENM
biological behavior (Zhu et al. 2013). Importantly, a growing
body of research has demonstrated that the majority of ENM-
mediated toxicological outcomes involve direct/indirect interac-
tions with the immune system (Dobrovolskaia and McNeil 2007;
Alsaleh and Brown 2018). The immune system is the primary
system in host protection against invading pathogens as well as
environmental toxicants (e.g. ambient air particulate matter, met-
als, pesticides, radiation, etc.). These protections are mediated
through host innate and adaptive immune responses. Notably,
responses of key immune cells including macrophages and neu-
trophils are critical for the initiation of innate immune responses
as well as the development of optimal adaptive immunity (which,
in turn, is key in later recruitment of additional innate effector
immune cells (including monocytes/macrophages and
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neutrophils) to eliminate invading pathogens/toxicants;
Medzhitov and Janeway 1997). As such, modulating the function
of innate effector immune cells as a result of ENM exposures
could lead to detrimental consequences for optimal host immune
responses (Dobrovolskaia and McNeil 2007; Alsaleh and
Brown 2018).

Today, one of the most widely used ENM in consumer and
medical products are silver nanoparticles (AgNP; Vance et al.
2015). These are utilized in several applications for many rea-
sons, including their optical and electrical properties; moreover,
AgNP is largely used due to their apparent antimicrobial proper-
ties. Importantly, despite their wide biodistribution and ability to
undergo bioaccumulation, AgNP has been found to be generally
inert or induce minor organ toxicity in rodent models (Kim
et al. 2008; Park et al. 2011a, 2011b). On the other hand, recent
evidence has demonstrated potential immunomodulatory proper-
ties for various AgNP (de Jong et al. 2013; Vandebriel et al.
2014). For instance, it was shown that in vivo exposure of rats to
20 nm AgNP (intravenously, daily for 28 days) led to increased
spleen weight and neutrophil infiltration reduced thymic weights
and natural killer (NK) cell activity, and suppression of T-cell
dependent antibody production. Those findings suggested that
despite a lack of direct tissue or system toxicity, chronic expos-
ure to certain AgNP could be associated with adverse
health outcomes.

Previous in vitro research has demonstrated direct cytotoxicity
of ENM (including some AgNP) on several immune cell models
(Yang et al. 2012; Hamilton et al. 2014; Aldossari et al. 2015; Liz
et al. 2015; Alsaleh et al. 2016; Vallieres et al. 2016; Muller et al.
2018). Furthermore, emerging evidence has suggested potential
immunomodulatory properties of metal and metal-oxide ENM at
sub-cytotoxic concentrations which do not result in reduced cell
viability (Comfort et al. 2011; Andersson-Willman et al. 2012;
Seydoux et al. 2014). Nevertheless, due to differences in AgNP
physicochemical properties, choices of cellular models, variations
in toxicological/immunological endpoints examined, comparisons
between previous studies are almost impossible. Indeed, despite
efforts, this has been a challenge in the basic assessment of
AgNP safety (Bonner et al. 2013; Xia et al. 2013).

Accordingly, this study investigated cellular responses to
AgNP in two key innate effector immune cell models, i.e. a
macrophage model (RAW 264.7 cells) and a promyelocyte/neu-
trophil model (MPRO 2.1 cells). Specifically, the studies here
assessed direct cellular toxicities in response to 20 nm AgNP;
endpoints evaluated in the cell lines included viability, AgNP
uptake, reactive oxygen species (ROS) generation, oxidative
stress, and inflammatory responses. These studies also investi-
gated potential changes in cellular function and activation to
known immunological stimulants (i.e. 24 h post-exposure to the
test AgNP).

Materials and methods

Nanoparticle characterization

Hydrodynamic size (nm), zeta (f) potential (mV), and polydis-
persity index (PDI) were measured for 20 nm BioPureTM citrate-
coated AgNP (NanoComposix, San Diego, CA) using a Zetasizer
(Malvern, Westborough, MA) in DI water (nanoparticle vehicle)
and cell culture media (Table 1). Transmission electron micros-
copy (TEM) was used to confirm the size and shape of AgNP
(Supplementary Figure S1).

Cell culture

RAW 264.7 cell line (TIB-71TM) and MPRO 2.1 cell line, Clone
2.1 (CRL-11422TM) were purchased from American Type
Culture Collection (ATCC, Manassas, VA). Cells were cultured
at 37 �C under 5% carbon dioxide (CO2) following standard
aseptic techniques. RAW 264.7 cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS), 100U penicillin/ml, and 100lg strepto-
mycin/ml. MPRO 2.1 cell line were cultured in Iscove’s Modified
Dulbecco’s Medium (IMDM) supplemented with 20% heat-inac-
tivated horse serum as well as 4mM L-glutamine, 100U penicil-
lin/ml, 100lg streptomycin/ml, and 10 ng murine granulocyte-
macrophage colony stimulating factor (GM-CSF)/ml. All culture
reagents were purchased from Gibco (Waltham, MA).

Differentiation of MPRO 2.1 cells

MPRO 2.1 cells were differentiated into neutrophils by treatment
with all-trans retinoic acid (ATRA; Sigma, St. Louis, MO) as pre-
viously described (Gaines et al. 2005). In brief, cells were seeded
into 24-well cell culture plates and media was supplemented with
ATRA (10lM; replaced fresh every day for three consecutive
days). To confirm cell differentiation, cells were harvested and
transferred to slides using a Cytospin 4 system (ThermoFisher
Scientific, Waltham, MA) and then stained using HEMA3VR stain
(similar to Wright-Giemsa stain; Sigma). Cells were then eval-
uated using an Olympus BX43 (Olympus America Inc., Center
Valley, PA) at 40X magnification (Supplementary Figure S2(A)).
Cell differentiation was also quantified by measuring the surface
expression of CD11b (Supplementary Figure S2(B)) using a BD
Accuri C6 flow cytometer (BD Biosciences, San Jose, CA) and
associated software. In all cases, a minimum of 10,000 events/
sample was acquired.

Cell viability

Cell viability was assessed using an 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTS) assay kit (Promega,
Madison, WI), according to manufacturer instructions. In brief,
cells were seeded into 96-well cell culture plates and grown to
80% confluency. At that point, the cells were exposed to the
AgNP (at 6.25, 12.5, 25, 50, or 100lg/ml) for 1, 6, 12, or 24 h
(for each dose). Each dose/time was examined in triplicate. After
a given time period, plates were centrifuged at 300 � g for 5min
and media was removed and replaced with phenol red-free
DMEM/F12 HyClone media (GE, Pittsburgh, PA). Thereafter,
MTS reagent was added to each well and the plates were incu-
bated at 37 �C for 20min until color development. The plates
were then centrifuged at 300 x g for 5min and supernatants
from each were collected and transferred to new 96-well plates.
Absorbance in each well was then measured at 490 nm in a
Synergy HT system (BioTek, Winooski, VT). Cells that were
treated with hydrogen peroxide (H2O2; 10mM) for 60min was
used as a positive control.

Table 1. Characterization of test AgNP in DI water and cell culture media.

Vehicle Hydrodynamic size (nm) Zeta potential (mV) PDI

DI Water 30.08 ± 0.29 �35.03 ± 1.65 0.27 ± 0.02
DMEM 277.27 ± 0.01 �10.97 ± 0.50 0.21 ± 0.01
IMDM 283.57 ± 0.01 �16.27 ± 0.47 0.20 ± 0.01
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Nanoparticle uptake by cells

AgNP uptake was measured by inductively coupled plasma mass
spectrometry (ICP-MS) as described previously (Aldossari et al.
2015). In brief, cells were seeded into 24-well culture plates and
grown to 80% confluency. A concentration of 50 lg/ml was uti-
lized for most subsequent experiments because it was not associ-
ated with reduced viability and is more relevant to previous
literature than would be the higher doses examined in the viabil-
ity studies. Following five washes with ice-cold phosphate-buf-
fered saline (PBS, pH 7.4) to remove any suspended AgNP that
had not been internalized by cells, the cells were pelleted by cen-
trifugation (600 x g, 2min). The resultant final pellet was dis-
solved in 1ml 2% HNO3 and AgNP uptake was then quantified
using an X Series II ICP-MS system (ThermoFisher Scientific).
An internal standard containing lithium (Li), yttrium (Y,) and
indium (In) was used throughout. All metals were detected at a
level of 0.05 ppb resolution.

Formation of ROS

Reactive species formation in the cells was measured using
dichlorofluores cin diacetate (H2DCFDA;ThermoFisher Scientific)
staining followed by flow cytometry. In brief, cells were cells were
seeded into 24-well culture plates and grown to 80% confluency.
At that point, the cells were exposed to the AgNP (at 50lg/ml)
for 0.25, 0.5, 1, 2, 6, or 24 h. At each timepoint, cells were then
washed with PBS and covered with PBS containing 5mM
H2DCFDA. The cells were then incubated at 37 �C for 30min
(protected from light). The cells were then harvested and
total fluorescence was measured using the BD Accuri C6
flow cytometer.

Quantification of cell protein and lipid oxidation

Protein expression was assessed by Western blot as previously
described in Alsaleh et al. (2016). In brief, cells were seeded into
12-well culture plates and grown to 80% confluency. The cells
were then exposed to 6.25, 12.5, 25, or 50 lg AgNP/ml for 24 h.
Parallel cultures were treated with 25 mm 4-HNE (Cayman, Ann
Arbor, MI) for 1 h (positive control). Following harvest and
washings with ice-cold PBS, cell pellets were lysed on ice for
45min with ice-cold Tris-HCl based lysis buffer containing 1%
sodium dodecyl sulfate (SDS), protease (1:100), and phosphatase
inhibitors (1:100). Resulting lysates were briefly sonicated and
then centrifuged at 15, 000 x g at 4 �C for 10min; final superna-
tants were collected and protein content was determined using
the Bradford method. Aliquots of cell proteins (20mg) were
removed, boiled for 5min in 5% b-mercaptoethanol-containing
4X Laemmli sample buffer, and loaded into SDS polyacrylamide
gels for separation. After resolution, the proteins were electro-
blotted onto nitrocellulose membranes (overnight, 10V, 4 �C).
All membranes were blocked with 5% bovine serum albumin
(BSA) in Tween 20-containing TBS (TBS-T) for 1 h before being
incubated overnight at 4 �C in a solution of 5% BSA/TBS-T con-
taining a 1:1000 dilution of primary mouse anti-4-hydroxy-none-
nal monoclonal antibody (4-HNE; R&D Systems, Minneapolis,
MN). After repeated washing with TBS-T, the membranes were
probed with horseradish peroxidase (HRP)-linked secondary
anti-mouse IgG antibody (in 5% BSA/TBS-T) for 1 h at room
temperature. The membranes were then washed and developed
for signal presence using an enhanced chemiluminescence (ECL)
substrate (ThermoFisher Scientific) and a ChemiDoc Imaging

System (Bio-Rad, Hercules, CA). Relative densities (relative to
b-actin housekeeping protein) were quantified using system-asso-
ciated ImageLab Software.

For detection of oxidized proteins, an OxiSelectTM protein
carbonyl immunoblot kit (Cell BioLabs, San Diego, CA) was
employed and manufacturer instructions were followed. In brief,
each blotted membrane (containing 20 mg protein lysate/spot)
was equilibrated in TBS containing 20% methanol for 5min and
then washed in 2N HCl for 5min. Membranes were then deriv-
atized for 5min with dinitrophenylhydrazine (DNPH; a 1X
working solution in 2N HCl (prepared from 10X kit stock)),
then washed three times in 2N HCl, followed by five washes in
50% methanol-TBS. The membranes were then blocked in 5%
nonfat milk in PBS and incubated with kit-provided antibodies
as described above.

Quantification of gene expression

Gene expression was measured based on the amplification of
mRNA transcripts using real-time PCR (Applied Biosystems
StepOnePlus, ThermoFisher Scientific). In brief, cells were seeded
into 24-well culture plates and grown to 80% confluency, after
which they were exposed to AgNP at the indicated concentra-
tions and for the noted times. At each timepoint, the plated were
centrifuged and well supernatants were discarded. The remaining
cell pellets were treated with TRI Reagent (Sigma) and then total
RNA was isolated using a Direct-20LTM RNA MiniPrep kit
(Zymo Research, Irvine, CA). RNA concentration and quality
were assessed using a Nano-Drop 2000 system (ThermoFisher
Scientific). Sample mRNA was then reverse transcribed into
cDNA using an iScriptTM cDNA Synthesis kit (Bio-Rad) and a
thermocycler (Eppendorf, Hauppauge, NY). Real-time PCR was
performed using a ssoAdvancedTM Universal SYBR Green
Supermix (Bio-Rad) and QuantiTect primer sets (Qiagen,
Germantown, MD). Gene expression was quantified using the
DDCT method, relative to a housekeeping gene (GAPDH).

Quantification of cytokine release by enzyme-linked
immunosorbent assay (ELISA)

Cytokine release was measured using a DuoSetVR ELISA
Development System (R&D Systems, Minneapolis, MN), follow-
ing manufacturer instructions. In brief, cells were seeded into
24-well culture plates and grown to 80% confluency, after which
they were exposed to AgNP (50 mg/ml) for 24 h, LPS alone (1 ng/
ml; Type O55:B5 from Escherichia coli, Sigma) for 24 h, or AgNP
(50 mg/ml) for 24 h followed by LPS (1 ng/ml) for 24 h. At the
end of each period, culture supernatants were collected and cyto-
kine content measured after incubating aliquots of each super-
natant in capture antibody-coated 96-well plates for 2 h at room
temperature. All samples were analyzed in triplicate. Plates were
then washed with ice-cold PBS-T (0.05%) and then incubated
with a kit-provided HRP-conjugated detection antibody for 2 h
at room temperature. After incubation and gently washing to
remove unbound antibody, kit 3,3’,5,5’-tetramethylbenzidine
(TMB) substrate solution was added to each well and the plate
held at room temperature until color development. Reactions
were stopped by the addition of 50ml 2 N H2SO4 to each well
and absorbance was then measured at 405 nm in the Synergy HT
system. Serial dilutions of standards were used to permit
extrapolation of the content of each cytokine in each
supernatant.
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Measurement of glutathione (GSH) levels

Total intracellular GSH (combination of all GSHþGSSG pre-
sent) levels in the cells were assessed using HPLC as described in
Jones and Liang (2009). In brief, cells were plated and after
reaching 80% confluency, exposed to AgNP (50lg/ml) for 24 h.
After washing with ice-cold PBS, cells were re-suspended in
500ll of a solution of 5% perchloric acid, 0.2M boric acid, and
10 lM c-glutamyl glutamate (internal standard; Acros Organics;
Geel, Belgium). Each sample was briefly sonicated and centri-
fuged at 15, 000 x g for 2min at 4 �C. An aliquot (300ll) of the
resulting supernatant was transferred to an Eppendorf tube and
treated with 60 ll of 9.3mg/ml iodoacetic acid (pH kept in range
of 8.8–9.2) and the sample was then derivatized by the addition
of 300ml of a 20mg dansyl chloride/ml solution and incubation
at room temperature overnight. After the aqueous and organic
layers were separated using chloroform, materials from the top
layer underwent high-performance liquid chromatography
(HPLC) analysis over a Supelcosil (LC-NH2 25-cm x 4.6-mm,
5lm i.d.) column in an Agilent 1200 series system (Agilent,
Santa Clara, CA). Total levels of GSH were calculated relative to
an internal standard (c-glutamyl glutamate) and expressed in
terms of mM GSH present. GSH levels were calculated relative to
total protein content (measured by Bradford method) in corre-
sponding samples.

Cell phagocytosis

Cell phagocytic activity was measured based on the uptake of
latex beads coated with fluorophore-labeled rabbit IgG, according
to manufacturer instructions (Cayman, Ann Arbor, MI). In brief,
cells were plated in a 24-well dishes and grown until reaching
80% confluency; at that point, the medium was removed, and
cells were then exposed to 50mg AgNP/ml for 24 h. After this,
the cells were washed and treated with latex bead-containing
fresh culture media that delivered particles at a ratio of 100:1
cell. The cells were incubated at 37 �C for 4 h, then gently
washed with PBS before being collected by centrifugation and
resuspension in PBS. Cells were gated to exclude any debris or
dead cells; 10,000 events/sample were measured for total fluores-
cence using the BD AccuriTM C6 a flow cytometer.

Neutrophil degranulation

Neutrophil degranulation, based on the release of elastase into
culture supernatants, was assessed using another DuoSet ELISA
Development System (R&D Systems, Inc., Minneapolis, MN). In
brief, cells were plated in 24-well dishes and grown until reach-
ing 80% confluency; at that point, the medium was removed and
the cells were then exposed to 50mg AgNP/ml medium for 24 h.
After this period, the cells were washed with fresh media and the
media containing 1mg/ml phorbol myristate acetate (PMA,
Cayman) or medium only (for basal activity measurements) was
then added to the cells. After 1 h, culture well supernatants were
collected and neutrophil elastase was then quantified in the same
manner as described in the section “Quantification of cytokine
release by ELISA”.

Neutrophil oxidative burst

Neutrophil respiratory burst was assessed based on oxidation of
the fluorescent dihydrorhodamine 123 probe (DHR 123;
Cayman) as previously described (Sarantis and Gray-Owen

2012). In brief, MPRO 2.1 cells were plated in 24-well dishes and
grown until reaching 80% confluency; at that point, the medium
was removed and the cells were then exposed to 50mg AgNP/ml
for 24 h. Later the cells were then washed with calcium (Ca2þ)-
free Hanks balanced salt solution (HBSS) and re-suspended in
DHR 123 (10lM)-containing HBSS (with Ca2þ) for 15min at
37 �C, protected from any light. The cells were then treated with
1 lg PMA/ml (or medium for basal activity measures) for 15min
at 37 �C, again protected from any light. Cells were then col-
lected, centrifuged/washed, and then the total fluorescence was
measured in the BD AccuriTM C6 flow cytometer. Cells were
gated to remove any debris or dead cells; 10, 000 events
were counted.

Statistical analysis

Data are presented as mean ± standard error of mean (SEM). A
one-way or two-way analysis of variance (ANOVA) with
Bonferroni post-hoc testing was utilized to test for significant dif-
ferences between multiple treatment groups. A Student’s t-test
was used where applicable to test for significant differences
between two treatment groups. A p value <0.05 was considered
statistically significant. Prism 5 software (GraphPad Inc., San
Diego, CA) was used for all data analysis and generation of
graphs. When values are presented as “relative to control”, this
indicates these values were calculated relative to the “mean value
of control biological replicates”.

Results

Cell viability following exposure to silver
nanoparticles (AgNP)

To assess cell viability following exposure to the AgNP, cells
were exposed to a range of AgNP concentrations (6.25–100lg/
ml) and for multiple timepoints (1, 6, 12, or 24 h). Cell viability
was based on the formation of formazan by mitochondrial dehy-
drogenases (MTS assay). The data showed that exposure to the
AgNP was not associated with reduced viability even at high
concentrations of the AgNP and over long exposure periods
(Figure 1). In fact, at high concentrations and long exposure
times, there was an enhanced MTS reduction that was more
prominent in the MPRO 2.1 cells (Figure 1).

Cellular uptake of AgNP

Assessing the uptake of AgNP by professional phagocytic cell
type such as macrophages is key to better understanding ENM
cell membrane vs. intracellular interactions. As expected, the
results here showed there was significant uptake of AgNP by
the RAW 264.7 cells 24 h post-exposure to 50 lg AgNP/ml
(Figure 2). However, the data demonstrated that exposure of the
MPRO 2.1 cells to the AgNP (50 lg/ml) was associated with a
minimal level of uptake.

ROS formation and oxidative damage following exposure
to AgNP

Due to their large surface to volume ratio, ENM including AgNP
are typically associated with the generation of ROS in cellular
systems (Fu et al. 2014). The data here indicated that exposure
to the AgNP (at 50 lg/ml) triggered ROS generation in both cell
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types. Specifically, in RAW 264.7 cells, while there was limited
ROS generation at the early timepoints (i.e. within 1 h), a burst
in ROS production was observed at the late timepoints - peaking
at 6 h and subsiding by 24 h of exposure (Figure 3(A)). In
MPRO 2.1 cells, a similar pattern of ROS generation was
observed that also peaked at 6 h (Figure 3(B)).

To examine whether exposure to the AgNP would result in
activation of cell anti-oxidant responses or lead to oxidative
stress, gene expression of enzymes involved in cell anti-oxidant
systems (i.e. glutathione peroxidase-1 (GPx1) and catalase-1
(Cat1)) as well as levels of total glutathione (GSHþGSSG) were
assessed following exposure to the AgNP for 24 h. The data
revealed no major changes in GPx1 and Cat-1 gene expression
following the exposure in both cell lines (Supplementary Figure
S3). However, intracellular GSH levels were reduced in RAW
264.7 cells following exposure to the AgNP; there was no impact

on GSH levels in the MPRO 2.1 cells (Figure 3(C)). To assess
macromolecular oxidation (including lipid peroxidation and pro-
tein oxidation) following exposure to the AgNP for 24 h (so as
to exclude any irreversible oxidative damage secondary to ROS
generation and depletion of GSH), formation of 4-hydroxynone-
nal (4-HNE; marker of lipid peroxidation) and protein carbonyl
derivatives (based on derivatization of carbonyls with dinitrophe-
nylhydrazine, DNPH) as a marker of protein oxidation was
assessed. Our data showed that exposure to AgNP (6.25–50 lg/
ml) for 24 h was neither associated with increases in the inci-
dence of lipid peroxidation (Figure 3(D)) or protein oxidation
(Supplementary Figure S4). Collectively, the current results indi-
cated that exposure to AgNP in the range of 6.25–50 lg/ml for
up to 24 h could reduce cellular total GSH levels after ingestion
of the particles, but this loss of GSH was not associated with
major oxidative damage or cellular toxicity in either cell line.

Inflammatory response following exposure to silver
nanoparticles

Synthesis and release of cytokines/chemokines by immune cells
are key during immune responses. Despite the lack of any overt
significant cytotoxicity in the test cell lines due to the AgNP, the
current study still sought to assess whether the exposure was
potentially associated with an induced inflammatory response.
The results showed that exposure to the AgNP for up to 6 h was
not associated with up-regulation of tumor necrosis factora
(TNFa) or interleukin-6 (IL-6) mRNA expression levels in either
cell line (Figure 4), indicating an absence of a major pro-inflam-
matory response induced in response to this specific
AgNP exposure.

Cell function following exposure to silver nanoparticles

Since AgNP exposure here was associated with neither major cel-
lular toxicity nor inflammatory responses and because previous
literature demonstrated potential immunomodulatory effects of
AgNP in the absence of major toxicities, the current study then
sought to assess if pre-exposure to the AgNP could influence
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normal cellular function or activation by known stimuli.
Specifically, cell phagocytic activity as well as activation of RAW
264.7 and MPRO 2.1 cells, in response to respectively LPS or
PMA, following exposure to the AgNP (50 lg/ml) for 24 h.

The results showed that pre-exposure of RAW 264.7 cells to
the test AgNP resulted in enhanced cell phagocytic ability
(Figure 5(A)). Further, the pre-exposure enhanced IL-6 - but not
TNFa – release in response to an LPS challenge (1 ng/ml; Figure
5(B)). In MPRO 2.1 cells, pre-exposure resulted in increased
(albeit to a lesser extent than in RAW 264.7 cells) phagocytic
ability (Figure 6(A)). Measures of oxidative burst (NADPH-oxi-
dase) and degranulation of primary granules (based on elastase
release) in response to PMA (1lg/ml) showed that pre-exposure
to the AgNP (50lg/ml) for 24 h resulted in reduced cell oxida-
tive burst (Figure 6(B)) and degranulation in response to PMA
(at 15 and 60min, respectively, Figure 6(C)).

Discussion

Advances in the nanosciences over the past several decades have
led to engineering nanomaterials with extremely precise physico-
chemical properties (e.g. size, shape, surface coating, solubility,
electrical conductivity, etc.) and novel applications across mul-
tiple industries including healthcare, food and medicine. A surge

in the use of nano-enabled materials in consumer and medical
products in day-to-day life has undoubtedly resulted in increased
human exposure to ENM (Vance et al. 2015). Therefore, address-
ing the human safety of ENM - particularly those that are com-
monly utilized including silver nanoparticles (AgNPs) - is of
critical importance. Although there have been previous efforts
that assessed the safety of commonly utilized ENM, including
specific programs and consortiums by the National Institute of
Environmental Health Sciences (NIEHS) as an example, incon-
sistency and inter-laboratory variability remains a grand chal-
lenge (Bonner et al. 2013; Schug et al. 2013; Xia et al. 2013. The
current study investigated basic cellular responses to AgNP
exposure including generation of ROS, oxidative stress, inflam-
matory response, and function in two key innate effector
immune cell models, RAW 264.7 macrophages and all-trans
retinoic acid (ATRA)-differentiated MPRO 2.1 promyelocyte/
neutrophils. Overall, the findings described in this study demon-
strated that exposure to AgNP has the potential to influence
basic innate immune cell responses in the absence of direct
cytotoxicity.

The mononuclear phagocytic system (MPS; also known as the
reticuloendothelial system, RES) plays a crucial role in the clear-
ance of ENM (Gustafson et al. 2015). The MPS consists primar-
ily of tissue-resident macrophages found mainly in the liver and
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spleen but also in other secondary lymphatic organs. Therefore,
macrophages have been the most widely utilized in vitro model
to study the toxicity of AgNPs; however, there have been major
inconsistencies between previous reports regarding the type and
magnitude of activation and/or toxicity (Carlson et al. 2008; Yen
et al. 2009; Park et al. 2010; 2011a; Shavandi et al. 2011; Hayashi
et al. 2012; Lim et al. 2012; Arai et al. 2015; Giovanni et al.
2015). Nevertheless, emerging evidence indicates that the toxicity
of AgNPs in macrophages is potentially driven by ROS gener-
ation leading to oxidative damage and activation of inflammatory
responses eventually resulting in cell death (Yen et al. 2009; Park
et al. 2010; Park et al. 2011a).

In the study here, exposure to AgNP for 24 h was not associ-
ated with reduced RAW 264.7 cell viability even at high concen-
trations and despite a large uptake of the nanoparticles in the
24h exposure period. Such lack of cell death following exposure,
when compared to outcomes in previous studies, could be attrib-
uted to a number of reasons including preparation of the AgNP
(e.g. use of basic physiological buffer vs. cell culture media, pres-
ence of serum vs. reduced serum or serum-free, type of serum,
etc.), AgNP physicochemical properties (e.g. size, shape, surface
functionalization, etc.), cell density, cell-particle ratio, and even
sensitivity of the cell model (Teeguarden et al. 2007; Kong et al.
2011; Albanese et al. 2012; Kettler et al. 2014). Indeed, such var-
iations in experimental conditions have been shown to drastically
influence AgNP biological (toxicological) behaviors (Nel et al.
2006; Shvedova et al. 2010; Gatoo et al. 2014). Similarly,

exposure to AgNP here was not associated with reduced cell via-
bility of the MPRO 2.1 cells. These results suggested to us that
exposure to the AgNP in serum-supplemented media was not
associated with major cytotoxicity in key cell models associated
with innate immunity.

Due to their large surface to volume ratio, ENM have been
previously shown to generate ROS in most cellular models
(Fu et al. 2014). In fact, this represents the current paradigm for
ENM-induced cellular toxicities (Manke et al. 2013). Evidence
from several immune cell models has indicated that exposure to
AgNP triggers a burst of ROS formation that leads to cellular
oxidative stress, macromolecular damage, and even cell death
(Lappas 2015). It is noteworthy that physicochemical properties
of AgNP (e.g. size, shape, surface coating, and charge, etc.), as
well as experimental conditions (e.g. presence of serum in cell
culture media), are critical factors in AgNP-induced ROS gener-
ation and subsequent toxicity. In the present study, exposure to
the AgNP resulted in increases in ROS generation in RAW 264.7
cells that were more prominent with increasing lengths of expos-
ure, suggesting a particle internalization-driven mechanism of
ROS generation (Droge 2002). Generation of ROS was also
observed in the MPRO 2.1 cells. Despite reductions in RAW
264.7 cell total glutathione levels due to the 24h exposure to the
AgNP, there was a lack of cellular oxidative damage in both cell
types. Such results indicated to us that such ROS generation
was not overwhelming the cells anti-oxidant systems or at least
up to and through 24 h of exposure (Apel and Hirt 2004).
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This suggested to us that exposure to AgNP involved a transient
ROS generation that was not related to subsequent major oxida-
tive damage/cell toxicity.

Due to their novel physicochemical properties and in contrast
to micron-size particles, ENM cross biological barriers and have
wide biodistribution and tissue accumulation. Many distal sites
(e.g. liver, spleen, kidneys, lungs, brain, testes, etc.) are impacted
as a result of drainage through lymphatics (Manolova et al. 2008;
Kettiger et al. 2013). With such a wide distribution in a body,
there is a concern for not only ENM-mediated interactions with
blood cells and the endothelium but also potential direct interac-
tions with tissue-resident immune cells, including macrophages.
Optimal function of tissue-resident innate effector immune cells
is of critical importance to the overall function of the immune
system (Kumar et al. 2011; Wernersson and Pejler 2014).

Although the majority of work in evaluating ENM-induced
immunomodulation has focused on assessing direct cytotoxicity
to immune cells and pro-inflammatory responses, any absence of
such manifestations does not necessarily indicate a lack of
adverse cellular responses among immune cells. Indeed, the abil-
ity of cells to respond properly to environmental stressors
(pathogens, particulates, radiation, etc.) following exposure to
ENM is of critical importance. Most importantly, emerging lit-
erature has demonstrated the potential of ENM (including metal
and metal-oxide nanoparticles) to alter innate immune cell func-
tions (covering activation and/or suppression) at sub-cytotoxic
concentrations (Comfort et al. 2011; Andersson-Willman et al.
2012; Seydoux et al. 2014). Furthermore, it has been shown in in
vivo settings that exposure to AgNP influences immune cell
functions in response to immunologic stimuli (de Jong et al.
2013; Vandebriel et al. 2014). For instance, AgNP exposure of
rats resulted in suppression of their natural killer cell activities
and altered ex vivo cytokine/chemokine release in response to
Concanavalin A (ConA)- and lipopolysaccharide (LPS)-mediated
activation of their spleen cells.

Although the data from the current study showed a lack of
direct cellular toxicity in response to AgNP exposure, the possi-
bility of modulating normal cell function and responses to
known immunological stimulation cannot be outright excluded.
To gain some insights into whether AgNPs could modulate
immune function, the cells were exposed to the test AgNP for
24 h and then assessed for key functions in response to known
immunologic stimuli. Interestingly, the results here showed that
exposure to AgNP resulted in enhanced cell phagocytic ability in
both cell lines. Similar findings have been shown in THP-1 cells
(human monocytic line) in response to an exposure to a number
of metal oxides nanoparticles (DeLoid et al. 2016). However, it
has also been reported in bone marrow-derived macrophages
that pre-exposure to amorphous silica and super-paramagnetic
iron oxide nanoparticles (SPION) for 24 h led to reduced phago-
cytic abilities of the exposed cells. The current study also showed
that exposure to AgNPs might be associated with the modulation
of inflammatory responses in RAW 264.7 cells subsequently
treated with LPS. Modulation of responses to LPS was previously
noted in macrophages following pre-exposure to amorphous sil-
ica and SPIONs for 24 h (Kodali et al. 2013).

Although pre-exposure to the AgNP enhanced the phagocytic
ability of MPRO 2.1 cells, it resulted in a reduction of PMA-
induced cell degranulation of primary granules as well as of the
cellular oxidative burst. To our knowledge, this is the first report
to show the potential of AgNP to modulate neutrophil functions/
responses to a known immunological stimulant without exerting
direct (cyto)toxicity. A few earlier reports investigated multiple

endpoints of toxicity (e.g. release of pro-inflammatory cytokines,
neutrophil extracellular traps, cell death, etc.) in response to
AgNP exposure in primary neutrophils (Poirier et al. 2014, 2016;
Soares et al. 2016). However, those studies never attempted to
study the consequences of exposure to sub-(cyto)toxic concentra-
tions of the AgNPs. Interestingly, a recent report assessed the
influence of AgNP on different neutrophil subpopulations iso-
lated from healthy volunteers (Fraser et al. 2018). The study
found that exposure to AgNP was neither associated with clas-
sical pro-inflammatory responses nor direct cell toxicity as previ-
ously reported by others. However, this study did show that the
exposure resulted in the maturation of immature neutrophils and
activation of mature neutrophils. As was the case in the present
study, such findings provided further evidence of AgNP immu-
nomodulatory properties in the absence of major cellular
cytotoxicities.

Conclusion

Emerging evidence demonstrates the potential immunomodula-
tory properties of metal and metal oxide ENM (Alsaleh and
Brown 2018). Furthermore, and in accordance with the current
findings, such evidence indicates that exposure to ENM of the
same composition and physicochemical properties may result in
activation or suppression of cellular pathways and functions
(Kodali et al. 2013; DeLoid et al. 2016). Although the exact
molecular mechanisms are still lacking, one report suggested a
potential mechanism through interaction with the scavenger
receptor type A (SR-A) (Kodali et al. 2013). In addition, it has
been shown that internalization of ENM resulted in reprogram-
ming of genes involved in multiple cellular processes, including
cell differentiation, adhesion, inflammation, and immune
responses (Kodali et al. 2013). Therefore, understanding ENM-
immune cell interactions at the molecular level – beyond direct
cellular toxicity - is of crucial importance for the future develop-
ment of ENM in nanomedicine. By this, investigators might util-
ize a safety-by-design approach and thereby exploit ENM
properties toward desired clinical outcomes, including immune
suppression in graft transplantation, immune activation in cancer
therapy, etc. (Dobrovolskaia et al. 2016).
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