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RESEARCH ARTICLE

Fine tuning of the innate and adaptive immune responses by Interleukin-2

Christina Sakellarioua , Luise A. Roserb , Susanne Schiffmannb and Malin Lindstedta 

aDepartment of Immunotechnology, Lund University, Lund, Sweden; bFraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 
Frankfurt am Main, Germany 

ABSTRACT 
Novel immunotherapies for cancer and other diseases aim to trigger the immune system to produce dur-
able responses, while overcoming the immunosuppression that may contribute to disease severity, and in 
parallel considering immunosafety aspects. Interleukin-2 (IL-2) was one of the first cytokines that the FDA 
approved as a cancer-targeting immunotherapy. However, in the past years, IL-2 immunotherapy is not 
actively offered to patients, due to limited efficacy, when compared to other novel immunotherapies, and 
the associated severe adverse events. In order to design improved in vitro and in vivo models, able to pre-
dict the efficacy and safety of novel IL-2 alternatives, it is important to delineate the mechanistic immuno-
logical events triggered by IL-2. Particularly, in this review we will discuss the effects IL-2 has with the 
bridging cell type of the innate and adaptive immune responses, dendritic cells. The pathways involved in 
the regulation of IL-2 by dendritic cells and T-cells in cancer and autoimmune disease will also be explored.
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Introduction

Around 40 years ago, recombinant human Interleukin-2 (IL-2) 
was first used for treating a patient with metastatic melanoma, 
and its T-cell stimulatory capacities led to complete elimination 
of the cancer for some patients (Rosenberg et al. 1985). These 
findings paved the way to an FDA approval for the use of high- 
dose IL-2, called aldesleukin and marketed as ProleukinVR , in 
metastatic renal cell cancer and metastatic melanoma patients in 
1992 and 1998 respectively (Rosenberg 2021).

The use of high dose recombinant human IL-2 was a promising 
candidate for cancer immunotherapy, however the associated toxic-
ities led to the cease of the treatment in the clinic. The IL-2-medi-
ated adverse events observed were associated with toxicities in the 
heart, skin, gastrointestinal tract, lungs, endocrine system, blood, 
kidney and others, and were all related to the route of administra-
tion and dose (Siegel and Puri 1991). Capillary leak syndrome has 
been one of the most challenging associated toxicities, as it leads to 
medical complications (eg. subsequent lung and liver dysfunction) 
and was linked to administration of a high dose aldesleukin. Even 
to date, it poses a limiting factor for the development of safe novel 
IL-2 therapeutics. Experimental studies and medical practices have 
led to the mitigation and relief from some of these toxicities in the 
clinic, however the pathophysiological mechanisms behind these are 
poorly understood. Understanding the processes leading to the 
manifestation of side effects is important; a potential fine-tuning of 
dosage and administration route might augment the efficacy and 
improve safety of new IL-2 treatments. It is crucial though, to 
tweak at the appropriate dose IL-2, as a too high dose will activate 
T-effector- and natural killer (NK)- cells with a simultaneous gener-
ation of toxicities, however a too low dose may favor T-regulatory 
cell bias with a concomitant triggering of other immune cells that 

may additionally lead to a cytokine secretion imbalance (Kehrl et al. 
1988; Fontenot et al. 2005; Barron et al. 2010).

IL-2 is a pleiotropic cytokine, originally discovered as a T 
lymphocyte growth factor (Smith 1988). Effector T-cells are the 
main producers of IL-2, which confers proliferative and cytotoxic 
properties, along with aiding in the development of memory T- 
cells and overall T-cell homeostasis (Nelson 2004; Ross and 
Cantrell 2018). However more immune cell types have been 
identified as sources of IL-2, e.g. dendritic cells (DC), NK cells, 
B-cells and mast cells (Bendickova and Fric 2020). Apart from 
the immune stimulating role of IL-2, the cytokine is also a crit-
ical player in the prevention of autoimmune disorders, as dem-
onstrated in mice deficient in IL-2 or its a- or b- receptors 
(Sadlack et al. 1995; Suzuki et al. 1995).

Among the cells that orchestrate the immune system, DC 
play a pivotal role in bridging the innate and the adaptive 
immune response against invading pathogenic organisms. In this 
review, we will explore the IL-2 and DC interplay, following 
through on the initial discoveries that DCs induce IL-2 produc-
tion by T-cells, which trigger a downstream array of helper func-
tions (Inaba et al. 1983), and the observation that DC also 
secrete IL-2 in response to bacterial stimulation (Granucci et al. 
2001). Moreover, the use of IL-2 within the cancer immunother-
apy scope is discussed, with the aim of clarifying its synergistic- 
to-DC effects in the cancer microenvironment.

IL-2 Regulation of the T cell:DC axis

Cellular source of IL-2
IL-2 is a 15.5 kDa cytokine with T-cell modulating capacities in 
the thymus and in periphery (Ross and Cantrell 2018). Its 
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various effects and functions in the thymus, periphery and gut 
are depicted in Figure 1. IL-2 is an important player in the pro-
liferation of naïve T-cells and maturation of T-regulatory (Treg) 
cells in the thymus; however, it is still unclear which cellular 
component (B-cells, T-cells, or DC) secretes IL-2 in that context. 
In an ex vivo thymic slice model, antigen-bearing cells, DC, were 
shown to be the main IL-2 secreting cells, promoting the Treg 
cell development in an antigen-specific manner (Weist et al. 
2015). In a separate in vivo study, it was observed that T-cells, 
and not DC or B-cells, are the main producers of IL-2, support-
ing the development and homeostasis of Treg cells in the thymus 
(Owen et al. 2018).

In periphery, effector T-cells are the main IL-2-secreting cells, 
acting in an autocrine manner, enhancing their proliferation and 
differentiation (Kalia and Sarkar 2018). In steady state resting 
conditions, with CD4þ T-cells, and to a lesser extent CD8þ T- 
cells, are the dominant producers of IL-2 (Boyman and Sprent 
2012). Nevertheless, in vivo experiments and gene expression 
analyses revealed that Treg cell homeostasis is subject to paracrine 
IL-2 signaling, where a suppression of IL-2 production and an 
enhanced CD25 (IL-2Ra) expression result in Treg cell self- 
renewal and enhanced metabolic activity (Fontenot et al. 2005). 
Further, an in vitro syngeneic coculture model of primary human 
mature DC (mDC) loaded with antigen, and T-cells, revealed 
that directional IL-2 release at the immunological synapse has 
the ability to enhance T-cell proliferation, in an antigen-depend-
ent manner, via binding of the IL-2 released by T-cells, and of 
the CD25 expressed by mDCs (Wuest et al. 2011).

Evidently, studies in different tissues and organs have 
prompted the question as to whether the IL-2 cellular source 

varies according to the microenvironment. In the gut mucosa, 
tolerance is maintained via Treg cells and the endogenous IL-2 
production by conventional T-cells (Hsu et al. 2018). However, it 
is also reported that mucosal CD103þ DC drive the induction of 
Treg cells, dependent on the presence of IL-2 in vitro (Coombes 
et al. 2007).

Mechanisms involved in the IL-2 regulation by DCs
DC bridge the innate and adaptive immune system, due to their 
ability to recognize and internalize infectious agents and inflam-
matory products. They process peptides and display them on 
their surface in the context of the Major Histocompatibility 
Complex (MHC), migrate to lymphoid organs, the spleen and 
the lymph nodes, and present the MHC-peptide complex to 
naïve T-cells which will become activated in an antigen-specific 
manner (Banchereau and Steinman 1998; Morel and Butterfield 
2015). DC were initially discovered by Ralf Steinman in 1973 
(Steinman and Cohn 1973), and their function has been further 
explored in the past 25 years (Banchereau and Steinman 1998). 
DC employ pattern recognition receptors (PRRs) to recognize 
the foreign antigens, which then trigger signal transduction path-
ways and activation of various transcription factors, one of them 
being the Nuclear Factor of Activated T-cells (NFAT) (Zanoni 
et al. 2009). Mouse DC stimulation with lipopolysaccharides 
(LPS) induces NFAT translocation via CD14, which is critical for 
the apoptosis of terminally differentiated DC, self-tolerance and 
prevention of autoimmunity (Chen et al. 2006; Zanoni et al. 
2009). Gene expression analysis of murine DC in response to 
Gram negative bacteria, identified IL-2 as one of the gene prod-
ucts regulated by NFAT in DC (Granucci et al. 2001). Under 

Figure 1. Cellular source and functions of IL-2 in the thymus, periphery, and gut. In the thymus, (a) DCs bearing antigen secrete IL-2, which drives the development 
of Treg cells, but also (b) T-cells are shown to promote the Treg cell development and homeostasis. In periphery, (a) T effector cells act in an autocrine manner, pro-
ducing IL-2, and thus regulating their proliferation and differentiation. Further, (b) Treg cell homeostasis is maintained due to IL-2 paracrine signaling, where IL-2 sup-
pression and elevated CD25 expression enhance the Treg cell self-renewal and metabolic activity. Lastly, (c) mature DC, bearing antigen, release IL-2 that enhances T 
cell proliferation. In the gut, (a) endogenous IL-2 by conventional T-cells maintains tolerance, but also it has been shown that (b) CD103þ DC are able to induce the 
development of Treg cells, via IL-2 secretion. This figure was created with Biorender.com.
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resting conditions, NFAT remains phosphorylated in the DC 
cytoplasm. Upon PRR trigger, calcium (Ca2þ) flux activates calci-
neurin, a serine/threonine phosphatase, to dephosphorylate 
NFAT, which will translocate to the nucleus (Zaslavsky et al. 
2013) and promote IL-2 transcription and release (Zanoni et al. 
2009; Zelante et al. 2012).

In the immunological synapse of DC and T-cells, IL-2 is rec-
ognized by CD25 on the surface of DC and presented in trans to 
T-cells (Wuest et al. 2011). In vitro and in vivo studies in mice 
confirmed that stimulating DCs with LPS, other bacteria or 
zymosan, but not inflammatory cytokines, also induces the pro-
duction of IL-2 by DCs, which are capable of priming naïve T- 
cells in response. Other DC subtypes, epidermal Langerhans 
cells, CD8aþ and CD8a- splenic DC, were also able to confer the 
same property (Granucci et al. 2003). In vitro, human monocyte- 
derived DC (moDC) were found to secrete IL-2, upon differenti-
ation with IL-15 and with a T-cell contact via CD40L (Feau 
et al. 2005). Thus, although in mouse models a microbial stimu-
lation can alone activate DC to secrete IL-2, in human in vitro 
models, DC-derived IL-2 is T-cell-dependent.

The regulation of the anti-microbial response by DC and the 
dependence on IL-2 was further highlighted in an in vivo study 
by Goodridge et al. (Goodridge et al. 2007), where zymosan- 
induced gene expression via Dectin-1 was demonstrated to trig-
ger NFAT activation and a concomitant IL-2 production.

Dectin-1, a C-type lectin receptor, plays a pivotal role in the 
recognition of zymosan and other pathogenic fungi and yeast by 
DC, and the receptor belongs to the family of type II transmem-
brane proteins, with a characteristic immunoreceptor tyrosine- 
based activation motif (ITAM) found on its cytoplasmic tail. 
ITAM regulates activation and signaling to the B cell receptor 
and T cell receptor (Schorey and Lawrence 2008). Upon DC acti-
vation, the ITAM’s Tyr residues are phosphorylated by the Src 
family kinases- Syk and Zap70, which initiate the signaling cas-
cade. Inhibition of Syk prevents zymosan-stimulated DC to pro-
duce IL-2 as shown by in vivo Syk blockade experiments (Rogers 
et al. 2005; Slack et al. 2007) underling its importance in Dectin- 
1 signaling. Based on the above, it is suggested that IL-2 regula-
tion by DC occurs via the NFAT and Src kinases.

The biological role of DC-derived IL-2
Taking into consideration the effects that IL-2 has on the DC 
secretory milieu, it is intriguing to explore the systemic effects 
that it may also regulate in response to disease. A study by 
Mencarelli et al. investigated the role of IL-2, produced by differ-
ent myeloid cell populations, in the intestine. They identified 
CD103þ DCs as the main IL-2 producers in the murine colon, 
unlike CD64þ F4/80± macrophages. Further, mice deficient in 
calcineurin or IL-2 expression in CD11cþ cells showed a severe 
intestinal inflammation with a decreased Treg cell number and a 
dysregulated CD4þ T-cell function (Mencarelli et al. 2018). 
When comparing mice deficient in IL-2 expression in CD4þ T- 
cells (IL-2CD4) or CD11cþ cells (IL-2CD11c) and IL-2 knockout 
(IL-2KO) mice, they observed severe anemia, splenomegaly, aber-
rant proliferation of T-cells, with a decreased Treg cell number 
and loss of B-cells in the IL-2CD4 and IL-2KO, indicative of the 
role IL-2 has in maintaining peripheral immune homeostasis. IL- 
2CD11c mice exhibited an increased transmural infiltration of 
mononuclear cells. However, in the intestinal microenvironment, 
IL-2CD11c showed a higher susceptibility to colitis, with an 
increased CD4þ T-cell population secreting IFNc and IL-17, and 
a lower Treg cell population (Mencarelli et al. 2018). 

Additionally, they identified two signaling pathways involved in 
the overall IL-2 production by DC: the calcineurin-NFAT path-
way and the TRAF6-NFjB. The first was identified as the major 
contributor in the induction of Treg cell homeostasis in the gut, 
whereas TRAF6-deficient DC in mice were responsible for a 
reduced inflammatory cytokine secretion by DCs and a 
T¼helper 2 (TH2)—cell mediated enteritis, due to partial loss of 
IL-2 expression (Mencarelli et al. 2018). These observations are 
in agreement with an earlier study where mice with TRAF-6 
deleted from DC, also presented a TH2-mediated eosinophilic 
enteritis, with a downregulated Treg cell proliferation and activity 
in the intestine (Han et al. 2013). The importance of DC-pro-
duced IL-2 in the Treg cell homeostasis in the gut was confirmed 
when these mice were injected with exogenous IL-2 and the Treg 
cell population and function were restored (Han et al. 2013).

Consistent with the finding that CD103þ DC are the main 
IL-2-producing cells in the gut, a separate in vivo study con-
firmed that the same population is responsible for the highest 
IL-2 production in the lung following Aspergillus fumigatus 
infection (Zelante et al. 2015). Additionally, mice deficient of IL- 
2 in CD11cþ DC, produced significantly higher levels of IL-17 
and IL-23 compared to wild-type mice, driving the TH17 patho-
logic response and presenting a lower survival rate (Zelante et al. 
2015).

A separate study however, identified Type 3 innate lymphoid 
cells (ILC3) as the highest secreting IL-2 cells in the small intes-
tine which consequently regulate the Treg cell homeostasis in the 
gut (Zhou et al. 2019). Dysregulation of the IL-2 production by 
ILC3s, contributed to higher inflammation of the intestine and 
Crohn’s disease (Zhou et al. 2019).

Cyclosporine A is a calcineurin inhibitor, used as an 
immunosuppressant in transplantation to prevent graft vs host 
disease (GVHD) and in a range of other immune-mediated dis-
eases. Cyclosporine A blocks the NFAT-directed transcription in 
T-cells (Flanagan et al. 1991), and its use post- transplantation 
has been associated with increased rates of fungal infections, pre-
dominantly Aspergillus infections. In recent years studies have 
shown that the inhibition of the calcineurin/NFAT signaling 
plays a pivotal role in the control of the myeloid-related immune 
response, as it is considered a risk factor for the manifestation of 
fungal infections post-transplantation (Seyedmousavi and Davis 
2017). The use of Cyclosporine A has been shown to inhibit the 
secretion of IL-2 by DC, which leads to decreased ability of DCs 
to activate naïve T-cells, which in turn may explain the allograft 
acceptance in transplantation (Sauma et al. 2003).

The interplay of DCs with IL-2 in anti-tumor response
IL-2 was one of the first cytokine immunotherapies that the 
FDA approved for the treatment of cancer, with durable anti- 
tumor responses in metastatic melanoma and metastatic renal 
cell carcinoma. The exact interplay of IL-2 with DCs in media-
ting the anti-tumor immune response is still being under investi-
gation, however some proposed DC- other immune cell 
interactions upon IL-2 administration are explored (Figure 2). 
Immunotherapy with IL-2 promotes the expansion of conven-
tional DC (cDC) in the spleens and lymph nodes of wild-type 
mice (Raeber et al. 2020). In vivo mechanistic studies in humans 
and mice injected with IL-2, identified three growth factors - 
FMS-like tyrosine kinase 3 ligand (FLT3L), colony-stimulating 
factor 2 (CSF-2) and tumor necrosis factor (TNF) - which upon 
production by ILCs, NK cells and T-cells, stimulate expansion of 
a specific subset of Type 1 cDC (cDC1) (BATF3þ IRF8þ
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CD103þ cDC1), that regulates anti-tumoral responses by CD8þ
T-cells. A concomitant increase in Type 2 cDC (cDC2) is also 
observed, which in turn primes the CD4þ T-cell anti-tumoral 
response (Raeber et al. 2020).cDC1 in humans and mice are spe-
cializing in cross-presentation of tumor antigens to CD8þ T- 
cells, thus enhancing the antigen-specific anti-tumor immune 
response (Noubade et al. 2019). A high cDC1 infiltration at the 
tumor microenvironment (TME) is considered a good prognostic 
factor in cancer (Broz et al. 2014; Spranger et al. 2017; Barry 
et al. 2018).

Apart from their interaction with T-cells, cDC1 also interact 
with NK cells and the crosstalk between them is bidirectional. 
cDC1 can be recruited in the TME by NK cells, via the chemo-
kines CCL5 and XCL1 (B€ottcher et al. 2018), and mature DC 
produce among other cytokines, IL-2, that aids NK cell produc-
tion of IFNc, TNFa, or GM-CSF which also promote DC matur-
ation (Gerosa et al. 2002).

The importance of DC-derived IL-2 in the NK cell-mediated 
anti-tumoral response was highlighted by Granucci et al. 
(Granucci et al. 2004), in a melanoma mouse model with lung 
metastases. It was observed that priming NK cells with bacter-
ially activated DCs which produce IL-2, is required for the NK 
cell production of IFNc and the subsequent tumor lysis. Priming 
NK cells with DCs that were deficient of IL-2, led to an 

increased lung metastasis growth rate, when compared to pri-
ming of NK cells with wild-type DC. Thus, it was concluded that 
NK cell cytotoxicity is elicited in an IL-2 dependent manner, 
where bacterially induced DC are the main IL-2 cell providers 
(Granucci et al. 2004).

Immunotherapy with IL-2 and a parallel DC vaccination has 
also been explored in the context of cancer (Wang et al. 2020). 
Although IL-2 does not directly enhance the DC-vaccine-stimu-
lated anti-tumoral effects, it may circumvent immunosuppressive 
factors (eg. Treg cells) in the TME that may curtail the efficacy of 
such vaccines and offer a synergistic anti-tumoral effect.

Treg cells promote an immunosuppressive TME by downregu-
lating DC-therapy induced immune cell populations like CD8þ
or CD4þ T-cells, through the secretion of immunosuppressive 
cytokines (eg. TGFb or IL-10) or via inhibitory receptor-ligand 
interactions (e.g., Programmed cell death-1 and its ligand) 
(Tanaka and Sakaguchi 2017). Considering that DC-derived IL-2 
may aid Treg cell homeostasis in an organ-specific context as 
mentioned earlier, a successful DC-targeted immunotherapy 
would entail the use of additional agents that downregulate the 
immunosuppressive Treg cell population in the TME and pro-
mote T-cell functions. The latter was investigated in metastatic 
melanoma patients who were treated with autologous DC pulsed 
with tumor-specific peptides, combined with IL-2, 

Figure 2. Proposed interactions between DC and other immune cells in the TME, following IL-2 immunotherapy. Upon IL-2 administration, T-effector cells, ILCs and 
NK cells expand the cDC1 population in the tumor microenvironment, through the increased production of FLT3L, CSF-2 and TNF. Subsequently, cDC1-mediated IL-2 
secretion aids the NK cell production of IFNc, TNFa and GM-CSF. In this bi-directional crosstalk, NK cells further recruit cDC1 cells which lead to a concomitant 
increase in the cDC2 population, leading to an anti-tumoral priming of cytotoxic CD8þ T-cells and CD4þ T-cells respectively. A combinatorial treatment with IL-2 and 
for example anti-CD40 or all-trans retinoic acid, has shown that DC are able to promote a Treg cell homeostasis in the TME, following DC-derived IL-2 secretion, and 
an inhibition of suppressive cell populations like MDSC, further augmenting the anti-tumoral immune response. This figure was created with Biorender.com.
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cyclophosphamide and a COX-2 inhibitor, in a phase II clinical 
trial. Although this combinatorial regimen deemed safe and well 
tolerated by patients, with a median overall survival rate of 
9.4 months, the Treg cell population was not decreased despite 
the use of cyclophosphamide, a chemotherapeutic immunosup-
pressive drug (Ellebaek et al. 2012). Conversely, in another study 
with 17 advanced melanoma patients, a significant reduction of 
Treg cells was observed in patients with partial response or stable 
disease, following pretreatment with Temozolomide, and a 
tumor-lysate DC therapy combined with IL-2 (Ridolfi et al. 
2013). The enigma remains as to whether the Treg cell reduction 
relates to the treatment alone, or if it also has a clinical relevance 
in terms of treatment efficacy and patient survival. A Phase I/II 
clinical trial in ovarian cancer patients, who were vaccinated 
with autologous moDC supplemented with IL-2, resulted in a 4- 
year survival rate for the complete responders (50%). A subse-
quent decreased Treg cell proportion in the periphery was also 
observed, however it was inconclusive whether this result corre-
lated with the clinical response to treatment and survival rate 
(Baek et al. 2015).

Another cell population in the TME presenting an immuno-
suppressive activity are the myeloid-derived suppressor cells 
(MDSC) (Kumar et al. 2016; Umansky et al. 2016). They are 
bone marrow-derived and considered antigen-naïve cells, unable 
to differentiate to DC or macrophages, due to the inhibiting pro-
file they present. They are divided into two groups, based on 
their morphology and phenotype. Polymorphonuclear MDSC 
(PMN-MDSC) resemble neutrophils, whereas monocytic MDSC 
(M-MDSC) resemble monocytes (Kumar et al. 2016). Their high 
abundance in the circulation or the TME has been associated 
with a higher tumor burden and poor prognosis in a range of 
cancers (Wang et al. 2013; Zhang et al. 2013; Jiang et al. 2015). 
A successful IL-2 immunotherapy would also target the MDSC’ 
tumorigenic effects and efforts toward this have also been 
reported. In renal cell carcinoma, a combinatorial therapy of IL- 
2 with all-trans retinoic acid, was able to modulate the DC func-
tion and antigen-specific immune response by downregulating 
the MDSC frequency in the TME (Mirza et al. 2006). In another 
renal adenocarcinoma mouse model, treatment with anti-CD40 
and IL-2 induced an anti-tumoral immune response as indicated 
by the IFNc-mediated recruitment of tumor-infiltrating leuko-
cytes in the TME and a downregulated Treg and MDSC fre-
quency (Weiss et al. 2009). This effect was achieved via FAS- 
mediated apoptosis (Weiss et al. 2014).

Conclusion and perspectives
IL-2 is an immune -stimulatory and -regulatory cytokine with 
a wide range of effects on innate and adaptive immune cells, 
dependent on the biological context. It was originally pro-
posed as a T-cell growth cytokine, however, it is now clear 
that IL-2 affects many other cell types dependent on the dis-
ease context.

Harnessing the mechanistic interactions that occur between 
IL-2, DCs and T-cells are of high value in cancer therapy, where 
IL-2 can induce DC expansion with a cumulative anti-tumoral 
effect of T-cells and circumvent immunosuppressive factors in 
the TME. However, in transplantation, IL-2 blockade may favor 
the allograft acceptance. On these grounds, it is important to 
delineate the interactions that occur between IL-2 and immune 
cells in a specific disease context, prior to translating novel IL-2 
alternatives in the clinic. Underpinning the events that lead to a 
successful immunomodulatory drug, would allow for the future 

design of safer and more efficacious immunotherapies. Moreover, 
it is critical to limit the adverse side effects related to the IL-2 
treatment. This requires a very fine-tuning of the dose and the 
route of administration of novel IL-2 therapies. A better under-
standing of the pathophysiological mechanisms behind the adverse 
toxicities occurring upon IL-2 therapy may aid in the optimal dose 
selection and the prediction or prevention of related toxicities. 
Ultimately, we may come up with insights that will assist in future 
IL-2-, and other cytokine therapies and improve the selection crite-
ria of patients who will benefit from such treatments.
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