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ABSTRACT

Recent data from the Kollins lab (‘Cannabinoid exposure and altered DNA methylation in rat and
human sperm’ Epigenetics 2018; 13: 1208-1221) indicated epigenetic effects of cannabis use on
sperm in man parallel those in rats and showed substantial shifts in both hypo- and hyper-DNA
methylation with the latter predominating. This provides one likely mechanism for the transgenera-
tional transmission of epigenomic instability with sperm as the vector. It therefore contributes
important pathophysiological insights into the probable mechanisms underlying the epidemiology
of prenatal cannabis exposure potentially explaining diverse features of cannabis-related teratology
including effects on the neuraxis, cardiovasculature, immune stimulation, secondary genomic instabil-
ity and carcinogenesis related to both adult and pediatric cancers. The potentially inheritable and
therefore multigenerational nature of these defects needs to be carefully considered in the light of
recent teratological and neurobehavioural trends in diverse jurisdictions such as the USA nationally,
Hawaii, Colorado, Canada, France and Australia, particularly relating to mental retardation, age-related
morbidity and oncogenesis including inheritable cancerogenesis. Increasing demonstrations that the
epigenome can respond directly and in real time and retain memories of environmental exposures of
many kinds implies that the genome-epigenome is much more sensitive to environmental toxicants
than has been generally realized. Issues of long-term multigenerational inheritance amplify these
concerns. Further research particularly on the epigenomic toxicology of many cannabinoids is also
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Introduction

Physiology and pathobiology of the epigenome and
its complex interactions with the genome, metabo-
lome and immunometabolome, and cannabinoid
physiopharmacology represents some of the most
exciting areas of modern biological research. Type
1 and 2 cannabinoid receptors (CB1R and CB2R) are
involved in a host of endogenous processes with
potential therapeutic applications in numerous fields
as diverse as pain, nausea, temperature regulation
and weight control amongst others. Several recent
detailed structural descriptions of the CB1R and
CB2R complexed with high affinity agonists and
antagonists [1,2], and pathways for the bulk biologi-
cal synthesis of cannabinoids [3] open the way to the
rational design of high affinity molecules to differ-
entially modulate these key receptors which are
involved in a host of endogenous processes with

diverse potential therapeutic applications. The use
of exogenous cannabinoid compounds that bind to
CBIR and CB2R may however also produce
unwanted side effects including through modulation
of DNA methylation states.

Within each nucleated cell, 2 m of DNA is nor-
mally stored coiled around four histones known as
a nucleosome. A total of 147 bases of DNA are
wrapped twice around two sets of H2A, H2B, H3
and H4 which together form the histone octamer.
The bases of DNA itself may have a methyl group
(CH;-) attached to them, usually to cytosine-
phosphate-guanine (CpG), which when it occurs in
the region of the gene promoter, blocks the tran-
scription machinery and prevents the gene from
becoming activated. The tails of the four histone
proteins protrude from the central globular core
and normally bind by electrostatic forces to the
coiled DNA. Addition of an acetyl group to these
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histone tails, particularly on H3 and H4, disrupts the
salt bridges opening up the DNA code for active
transcription. Histone tails can also be methylated
or indeed be modified by many groups (mono-, di-
and trimethyl, acetyl, phosphoryl, crotonyl, citrul-
line, ubiquitin and ADP-ribosyl, etc.) which control
gene transcription [4]. DNA is transcribed into RNA
some of which is made into the many proteins from
which our bodies are made. However, much of the
RNA also has purely informatic roles, and short and
long non-coding RNA’s (ncRNA) controls DNA
availability and transcription, RNA processing and
splicing and can form a scaffold upon which layers of
DNA regulation can be built [5,6]. These various
mechanisms, DNA methylation, post-translational
modification of histone tails, nucleosome position-
ing, histone replacement, nuclear positioning and
ncRNA’s form the basis of epigenetic regulation
[7,8] and appear to undergo an ‘epigenetic conversa-
tion’ amongst these different layers [4]. Chromatin
loops are extruded through cohesin rings giving rise
to transcription factories (topologically active
domains) where different regions of the DNA
including proximal promoters and distal enhancers
are brought into close proximity to control tran-
scription either on the same chromosome (in cis)
or sometimes on nearby chromosomes (in trans).
Super-enhancers, enhancer cross-talk, and extensive
3D remodelling of euchromatin looping during
development are also described [9-14].

Transgenerational inheritance

Moreover, a variety of studies in animals and several
epidemiological studies in humans show that the
epigenetic code can form a mechanism for inherita-
ble changes across generations from both father and
mother to subsequent generations which do not
involve changes in the genetic code itself. Such epi-
genetic inheritance has been shown clinically for
starvation, obesity, bariatric surgery and for tobacco
and alcohol consumption [7,15-17]. It has also been
demonstrated in rodents for alcohol, cocaine and
opioids, and in rodents’ immune system, nucleus
accumbens and sperm following cannabinoid expo-
sure in the parents [18-23].

If DNA is thought of as the cells’ bioinformatic
‘hardware’ then the epigenome can be considered its
programming ‘software’. The epigenome controls

gene expression and is key to cell differentiation
into different tissue fates [24], different states of
cellular differentiation, to cellular reprogramming
into induced pluripotential stem cell states [25-29],
cancer [30-32], numerous neuropsychiatric diseases
including addiction [4,33-35], immune, metabolic
and brain memory [4,36-39], aging [40], and the
response of the cell to changes in its environment
by way of gene-environment interactions [7,16,19]
including the development of so-called ‘epigenetic
scars’ [4].

Direct epigenomic sensing of the
environment

This powerful informatic system has recently been
shown to have a host of unforeseen capabilities. It
has been shown that histone tails sense oxygen ten-
sion rapidly within 1 h with resulting modification of
gene expression cassettes [41]. Lysine (K) demethy-
lase 5A (KDM5A) is a Jumanji-C domain containing
molecular dioxygenase which is inactivated by
hypoxia in a hypoxia-inducible factor-independent
manner, controls H3K4me3 and H3K36me3 histone
trimethylations and governs the transcriptome
expression several hours after brief hypoxia.
Similarly, KDM6A is also an oxygen sensitive dioxy-
genase and histone demethylase which controls
H3K27me3. Its blockade by hypoxia interferes with
cell differentiation and maintains cells in an undif-
ferentiated state [42]. Since the ten eleven translocase
enzymes and are key demethylators of DNA and are
dioxygenases also sensitive to profound hypoxia, and
since hypoxia exists in most stem cell niches and at
the centre of many tumours, such histone- and
DNA-centred mechanisms are likely to be important
in stem cell, aging, cellular differentiation and cancer
biology.

Epigenomic regulation of tumour
immunometabolome

Similarly, one of the great paradoxes of cancer
biology is the presence within tumours of numer-
ous effector T-cells which are able to expand and
eradicate large metastatic tumours effectively, but
do not do so within clinical cancers. It was recently
shown that this effect is due to the very elevated
nucleocytosolic potassium level within tumour



lymphocytes which stalls metabolism and runs
down acetyl-coenzyme A levels, the main acetyl
donor for histone acetylation and induces a form
of calorie restriction (like starvation) including
autophagy and mitophagy and impairs the normal
mTOR (mammalian target of rapamycin)-
dependent T-cell receptor-mediated activation
response [43]. This program was mediated by
reduced levels of H3K9 and H3K27 acetylation.
Hence, tumour lymphocyte anergy and stemness
were both mediated epigenetically and were shown
to be reversible when the immunometabolic defect
was corrected either genetically or by substrate
supplementation. This work elegantly demon-
strates the close relationship between the meta-
bolic state of cells, cell differentiation state and
starvation response, the control of cell fate by the
epigenetic landscape and disease outcome.

Metabolomic supply of epigenetic substrate

Several studies similarly link the supply of meta-
bolic intermediates required as inputs by the epi-
genetic machinery to epigenetic state and
downstream gene control. Indeed, the well-
known supplementation of staple foods by folic
acid is believed to act because of the central role
played by this vitamin in the methyl cycle and the
supply of single carbon units to the methylation
machinery for DNA and histones. A moments
reflection shows that expression of the DNA of
the mitochondria and the DNA of the nucleus
need to be tightly coordinated to supply the cor-
rect number of subunits for the complex machi-
neries of the mitochondrion including electron
transport. This mitonuclear balance acts at several
levels including RNA transfer, metabolic substrate
(acetyl-coenzyme A, nicotinamide mononucleo-
tide) transfer and the control of the epigenetic
regulators PARP (polyadenosineribosyl polymer-
ase) and Sirtl (a major histone deacetylase) [44].

Cannabinoid signalling impacts mitochondria

As noted above the identification of CBIR and
CB2R on the plasma membrane has been a major
milestone in cellular cannabinoid physiology. It is
less well known that CBIR’s also exist on the
mitochondrial outer membrane, and that the
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inner and outer leaflet of the mitochondria,
together with the intermembrane space host the
same cannabinoid transduction machinery as the
plasmalemma [45-47]. Neuronal mitochondrial
CBI1R’s have been implicated in memory and sev-
eral critical neural processes [48-50]. Hence, the
well-substantiated findings that diverse cannabi-
noids generally suppress mitochondrial activity
(in neurons, lung, liver and sperm), lower the
mitochondrial transmembrane potential and inter-
fere with oxidative phosphorylation [51-53] carry
major epigenetic implications not only for mito-
nuclear balance and trafficking including the mito-
chondrial stress response, but also for the supply
of the requisite metabolic intermediates in terms
of acetyl-coenzyme A which is an absolute require-
ment for histone acetylation and normal gene
activation.

Histone serotonylation and dopaminylation

Serotonin, which has long been implicated in mood
dysregulation and drug addiction was recently
shown to act as a novel post-translational modifica-
tion of the tail of H3 at lysine 4 via serotonylation
where it increases the binding of the transcription
machinery and allows correct cell differentiation
[54,55]. It is likely that dopamine will soon be simi-
larly implicated [54,55].

Epigenomics in cancer

Almost accompanying the modern bioinformatic
explosion of knowledge related to the sequencing
of the human genome has been a parallel increase
in knowledge of the complexities and intricacies of
epigenomic regulation. Nowhere is this more evident
than in cancer. Indeed, it has become apparent that
there are numerous forms of cross-talk, interaction
and cross-regulation between the genome and the
epigenome and the two are in fact highly inter-
related. This is of particular relevance to chromoso-
mal integrity and cancerogenic mechanisms. Several
mechanisms have been described for such interac-
tions including alterations of DNA methylation,
altered cytosine hydroxymethylation [56], alteration
of TERT function which is a key catalytic component
of the telomerase enzyme which protects chromo-
some ends [57] and altered architecture of enhancers
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and their looping interactions with promoters which
control gene expression [12,58,59]. Indeed, pharma-
cological modulation of the bromodomain ‘readers’
of epigenomic information has become a very excit-
ing area within modern cancer therapeutic research
[12,59-68], and forms an area into which large phar-
maceutical companies are presently investing
several billion dollars [69,70].

Gamete cannabinoid epigenomics - Murphy
et. al

In this powerful context, the masterful epigenetic
work from the Kollins laboratory of Murphy and
colleagues was situated [71]. These workers studied
12 control men who self-reported no psychoactive
drug use in the last 6 months, and 12 subjects who
reported more than weekly use of cannabis only,
with all results confirmed by urine toxicology and
ultra performance liquid chromatography/tandem
mass spectrometry and enzyme immunoassay. In
parallel two groups of 9-week-old male rats were
administered solvent or 2 mg/kg THC by gastric
lavage for 12 days prior to sacrifice and the epididy-
mis was harvested. Sperm were assayed by the ‘swim
out’ method where sperm swam out into normal
saline bath solution. Cannabis exposed men had
lower sperm counts, and it was found that there
was differential sperm DNA methylation at 6,640
CpG sites including at 3,979 CpG islands in gene
promoters where methylation was changed by more
than 10% (which is alot). Significant changes were in
both the hypomethylation and hypermethylation
direction were noted with the changes in the hypo-
methylation group being more marked across the
genome and at gene promoters. Pathways in cancer
(including the BRAF, PRCACA, APC2 PIK3R2,
LAMAI1, LAMBI, AKTI and FGF genes), hippo
pathways (which are also important in cancer and
in embryonic body pattern formation), the MAP
kinase pathway (also involved in growth and cancer),
AMPA, NMDA and kainate glutamate receptor sub-
units, and the Wnt genes 3A, 5A, 94, 10A (involved
in cancer and in body patterning and morphogensis)
were found to be particularly affected. A dose-
response effect was demonstrated at 183 CpG sites
on 177 genes including the PTGIR gene which
encodes the prostacyclin (a powerful vasodilator
and antithrombotic agent) receptor which was

down-regulated. Twenty-three genes involved in
platelet activation and 21 genes involved in gluta-
mate metabolism were also modulated. LAMBI,
whose gene product laminin B has been implicated
in progeria and is increasingly implicated in genetic
ageing pathways through its role in nuclear position-
ing of chromatin and the maintenance of hetero-
chromatin  (including female X-chromosome
inactivation) in an inactive state inside the nuclear
membrane, and its role in establishing integrity of
the nuclear envelope, was also identified [72]. Results
in the rats closely paralleled those found in humans.
Fifty-five genes were found to overlap between
altered sperm methylation patterns and a previous
study of brain Nuclear Accumbens DNA methyla-
tion in prenatally cannaboid exposed rats which
showing increased heroin self-administration,
a highly statistically significant result. These results
support the hypothesis that the transgenerational
transmission of defects following pre-conceptual
exposure to cannabis found in the immune system
and limbic system of the brain including increased
tendency for drug use in later life in rodents [18,19]
may be transmitted through alterations in the DNA
methylation of the male germ line. More work is
clearly needed in this area with exhaustive epige-
netic, transcriptomic and genomic characterization
of these results with larger sample sizes and in other
species.

Cannabis - cancer links

Mechanistically these results have very far-
reaching implications indeed and appear to
account for much of the epidemiologically docu-
mented associations of cannabis use. Cannabis has
been associated with cancer of the mouth and
throat, lung, bladder, leukaemia, larynx, prostate
and cervix [73] and in four out of four studies with
testicular teratomas [74-77] with a relative risk of
three in meta-analysis [78]. Cannabis has also been
implicated with increased rates of the childhood
cancers acute lymphocytic leukaemia, acute mye-
loid leukaemia, acute myelomonocytic leukaemia,
neuroblastoma and rhabdomyosarcoma [73].
These are believed to be due to inheritable
genetic or epigenetic problems from the parents
[79,80], albeit the mechanism of such transmission
was not understood in the pre-epigenomic era.



Results of Murphy and colleagues [71] may poten-
tially explain mechanistically much of the epide-
miologically documented morbidity that has in the
past been associated with cannabis use. As noted,
cannabis contains the same tars as tobacco and
also several known genotoxic compounds, and is
also immunoactive. Such actions imply several
mechanisms by which cannabis may be implicated
in carcinogenic mechanisms.

That cannabis is associated with heritable pae-
diatric cancers where the parents themselves do
not harbour such tumours is suggestive evidence
that non-genetic and likely epigenetic mechanisms
are involved in the childhood cancers which are
observed. Detailed delineation of such putative
pathways will require further research.

Cannabis has also been shown to be associated
with increased rates of gastroschisis in seven of
seven studies to examine this association [81-87].
This pathology, where the bowels of the neonate
protrude through the abdominal wall usually to the
right of the umbilicus, is believed to be due to
a disruption of blood flow to the forming abdom-
inal wall. If cannabinoid exposure powerfully acti-
vates platelets through multiple mechanisms and
disrupts major vasodilator systems such as the pros-
tacyclin receptor then such a pathway could well
damage the tiny blood vessels of the developing
foetus and account for the development of gastro-
schisis. Cannabis use in adults has been linked with
both myocardial infarction and stroke possibly by
similar mechanisms [48,88]. It has been shown else-
where that cannabis use can also stimulate inflam-
mation and be proinflammatory [89].

Epigenomics of foetal alcohol syndrome

Indeed, foetal alcohol syndrome disorder (FASD) is
said to be mediated in part by the CBIR [90-92], to
be epigenetically mediated [93-96], and to comprise
amongst other features small heads, microcephaly,
impaired visuospatial coordination and to be com-
monly associated with ventricular septal defect and
atrial septal defect [97] all of which have been
described in association with prenatal cannabis
exposure [83,98-101]. However, the facial features
of FASD are not described in the congenital cannabis
literature.
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Cannabis and congenital anomalies

Indeed, one Hawaiian statewide epidemiological
report found elevated rates of 21 congenital defects
in prenatally cannabis exposed infants [83]. Whilst
this paper is unique in the literature it helps explain
much about the presently reported patterns of con-
genital anomalies across USA in relation to atrial
septal defect, Downs’ syndrome, Trisomy 18, ventri-
cular septal defect, limb reduction defects, anotia,
gastroschisis [102] and autism [103], all of which
crude rates are more common in states with liberal
cannabis policies. Similar morbidity patterns were
observed in Canada with crude rates of all congenital
defects, gastroschisis, total cardiovascular defects
and orofacial clefts [104] more common in areas
with higher cannabis use [105]. The Colorado birth
defects registry has also reported a three-fold
increase in the crude (unadjusted) rate of atrial septal
defects 2000-2014 spanning the period of cannabis
legalization together with increases of 30% or more
over the same period in crude rates of total cardio-
vascular defects, ventricular septal defects, Down’s
syndrome and anencephaly [106]. This is highly sig-
nificant as atrial septal defect has only been found to
be linked with cannabis in the Hawaiian study, sug-
gesting that our list of cannabis-related defects is as
yet incomplete. As mentioned above the putative
link between atrial septal defect and cannabis use
has also been found in the generality of states across
the USA [102]. It should also be noted that according
to a major nationally representative recurrent survey
the use of all other drugs in Colorado fell during this
period, making cannabis the most likely pharmaco-
logical suspect for the surge in congenital anomalies
[107-109].

These findings are also consistent with data
arising from France, wherein three separate
regions which have permitted cannabis to be
used as feed for the dairy industry calves are
born without legs, and an increase in the rate of
phocomelia (no arms) in human infants has simi-
larly been observed. In the French northeast
region of Ain which is adjacent to Switzerland,
the crude rate of phocomelia is said to be elevated
58 times above background [110,111], whilst in
nearby Switzerland which has not permitted can-
nabis to be used as a feed crop no such anomalies
are observed.
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Neuroteratogenesis and beyond

The above comments in relation to epigenetic
modulation of the glutamate system have been
shown in recent studies to be related to many
neuropsychiatric disorders. However, the recent
demonstration at least in insects that glutamate
could also act as a key morphogen in body pat-
terning processes and major organ formation may
have much wider implications well beyond the
neuraxis [112].

Cannabis and epigenetic ageing

The finding of overall DNA hypomethylation by
Murphy’s group [71] carries particular significance
especially in the context of disordered lamin
B metabolism. Chronic inflammation is known to
be a major risk factor for carcinogenesis in humans
in many organs including the skin, oropharynx,
bronchi, lungs, oesophagus, stomach, pancreas,
liver, biliary tree, colon, bladder and prostate [113-
116]. Inflammatory conditions are invariably
strongly pro-oxidative and damage to DNA is not
unusual. Because CpGs in gene promoters are more
often largely unmethylated and therefore exposed
the guanine in these positions is a common target
for oxidative damage. Oxo-guanine is strongly muta-
genic. This form of DNA damage recruits the main-
tenance DNA methyltransferase DNMT1 from the
gene body to the gene promoter. There DNMT1
recruits Sirtl, a histone deacetylase which tends to
epigenetically silence gene expression, and also
EZH2 part of the polycomb repressive complexes 2
and 4 which epigenetically silences gene expression
and tends to spread the silencing of chromatin.
Hence, one of the end results of this form of oxida-
tive DNA damage is to move the DNA methylation
from the gene bodies to the gene promoters, thereby
hypermethylating the promoters [117], the CpG
Island Methylator Phenotype (CIMP) and hypo-
methylating the gene bodies and intergenic regions
[118]. By this epigenetic means chronic inflamma-
tion and tobacco smoke have been shown to induce
widespread epigenomic field change right across tis-
sues such as colon, bronchi or bone marrow
[116,119,120]. Furthermore, this mechanism moves
gene expression from the control of histone modifi-
cation to DNA methylation which tends to be more

fixed and less plastic than histone alterations. Such
findings are consistent with a previous demonstra-
tion of accelerated ageing in cannabis exposed clin-
ical populations [121].

Epigenomic control of mobile transposable
genetic elements

Reducing the global level of DNA methylation also
has the effect of reducing the control of mobile
transposable repeat elements in the genome [122].
Forty-two per cent of the human genome has been
shown to be comprised of these mobile elements of
various varieties. Long Interspersed Repeat Elements
(LINE-1) are believed to be retroviral repeat ele-
ments which long ago became incorporated in the
genome and are able when expressed to induce their
own reverse transcription back into the genome via
endogenous reverse transcriptases [122]. For this
reason, they are also called ‘jumping genes.’
Because they become randomly incorporated into
the genome after reverse transcription their activity
is very damaging to genetic integrity. Whilst retro-
transposon mobility is normally controlled by three
mechanisms these defences can be overcome in
advanced cellular senescence. The presence of dou-
ble-stranded DNA (dsDNA) in the cytoplasm is
strongly stimulating for the immune system and
stimulates a type-1 interferon proinflammatory
response, which further exacerbates the cycle and
directly drives the Senescence Associated Secretory
Phenotype (SASP) of advanced senescence and the
‘inflamm-aging’ which is well described in advanced
age [123-125]. Accelerated ageing in patients
exposed clinically to cannabis has previously been
described using a well validated metric of arterial
stiffness [126]. Whilst neither Murphy [71] nor
Watson [20] found evidence following cannabinoid
exposure for altered methylation of repeat elements
the presence of chronic inflammation in the context
of widespread preneoplastic change and documen-
ted neoplasia suggest that this newly described age-
ing mechanism might well merit further
investigation.

These changes are likely exacerbated by several
classical descriptions that cannabinoids reduce the
overall level of histone protein synthesis [127-
129]. Since the overall length of DNA does not
change this is likely to further open up the genome



to dysregulated transcription. Severe morphologi-
cal abnormalities of human and rodent sperm
have been reported [127,130-132].

Cannabinoids and oocytes

Similarly classical descriptions exist of grossly dis-
rupted mitoses, particularly in oocytes [133],
which are said to be seriously deficient in DNA
repair machinery [134-136]. Morishima reported
as long ago as 1984, evidence of nuclear blebs and
bridges due to deranged meiotic divisions in can-
nabinoid-exposed rodent oocytes [133]. Similar
blebs and bridges have been reported by others
[128,129,137]. It has since been shown that these
nuclear blebs represent areas of weakness of the
nuclear membrane which are often disrupted spil-
ling their contents into the cytoplasm [72]. They
are also a sign of nuclear ageing.

Cannabinoids and micronuclei

Cannabis has long been known to test positive in
the micronuclear assay due to interference with
the function of the mitotic spindle [138-140].
This is a major cause of chromosomal disruption
and downstream severe genetic damage in surviv-
ing cells [141,142], has previously been linked with
teratogenesis and carcinogenesis, and which is also
potently proinflammatory by releasing dsDNA
into the cytoplasm and stimulating cGAS-STING
(Cyclic GMP-AMP synthase - STimulator of
INterferon Gamma) signalling and downstream
innate immune pathways [143-146]. Cytoplasmic
dsDNA has also been shown to be an important
factor driving the lethal process of cancer metas-
tasis [147].

Cannabis and wnt signalling

The findings of Murphy in relation to Wnt signalling
are also of great interest [71]. It has been found by
several investigators that prenatal cannabis exposure
is related to encephalocoele or anencephaly
[83,148,149]. Non-canonical Wnt signalling has
been shown to control the closure of the anterior
neuropore [150] providing a mechanistic underpin-
ning for this fascinating finding. Wnt signalling has
also been implicated in cancer development in
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numerous studies [151-154] and in controlling
limb development [155] which have been previously
linked with cannabis exposure (as noted above).

Cannabis and autism

It was recently demonstrated that the rising use of
cannabis parallels the rising incidence of autism in
50 of 51 US states and territories including
Washington D.C., and that cannabis legalization
was associated with increased rates of autism in
legal states [108,109]. Several cannabinoids in addi-
tion to A9-tetrahydrocannabinol (THC) were impli-
cated in such actions including cannabidiol,
cannabinol, cannabichromene, cannabigerol and tet-
rahydrocannabivarin. A rich literature demonstrates
the impacts of epigenomics on brain development
and its involvement in autistic spectrum disorders
[156-161]. Whether cannabis is acting by epigenetic
or other routes including those outlined above
remains to be demonstrated. Further research is
indicated.

Cannabidiol and other cannabinoids

These findings raise the larger issue of the extent to
which the described changes reflect the involvement
of THC as compared to other cannabinoids in the
more general genotoxicity and epigenotoxicity of
both oral (edible) and inhaled (smoked) cannabis.
THC, cannabidiol, cannabidivarin, and cannabinol
have previously been shown to be genotoxic to chro-
mosomes and associated with micronucleus devel-
opment [162,163]. American cannabis has been
selectively bred for its THC content and the ratio of
THC to cannabidiol (CBD) was noted to have
increased from 14:1 to 80:1 1998-2018 [71].
However in more recent times, cannabidiol is being
widely used across the USA for numerous (nonme-
dical) recommendations.

Cannabidiol is known to inhibit mitochondrial
oxidative phosphorylation including calcium
metabolism [47,164-171] which is known to have
a negative effect on genome maintenance and is
believed to secondarily restrict the supply of acetyl
and other groups for epigenetic modifications.
Cannabidiol is known to act via CB1R’s particu-
larly at higher doses [166,172-179]. Cannabidiol
acts via PPARY (Peroxisome Proliferator Activator
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Receptor) [180-187] which is a nuclear receptor
which is implicated in various physiological and
pathological states including adipogenesis, obesity,
diabetes, atherogenesis, neurodegenerative disease,
fertility and cancer [188]. In a human skin cell
culture experiment, cannabidiol was shown to act
via CBIR’s as a transcriptional repressor by
increasing the level of global DNA methylation
by enhancing the expression of the maintenance
DNA methylase DNMT1 which in turn suppressed
the expression of skin differentiation genes and
returned the cells to a less differentiated state
[179]. One notes, importantly, that this DNA
hypermethylation paralleled exactly the changes
reported by Murphy for THC hypermethylation
[71]. The de-differentiation reported or implied
in both studies is clearly a more proliferative and
proto-oncogenic state. Hence, while more research
is clearly required to carefully delineate the epige-
netic actions of cannabidiol, its activity at CBIR’s,
its mitochondrial inhibitory action, its implication
of PPARYy and particularly its THC-like induction
of epigenetic and cellular de-differentiation,
together with its implication in chromosomal frag-
mentation and micronucleus induction would sug-
gest that caution is prudent whilst the results of
further research are awaited.

Other cannabinoid receptors and notch
signalling

The above discussion is intended to be indicative
and suggestive rather than exhaustive as the can-
nabinoids’ pharmacological effects are very pleio-
tropic, partly because CB1R’s, CB2R’s - and six
other cannabinoid sensing receptors [189]- are
widely distributed across most tissues. One notes
that the mechanisms described above do not
obviously account for very important finding that
in both Colorado [106,107] and Canada [190-192]
increasing rates of cannabis use were associated
with higher rates of total congenital cardiovascular
disease. One observes that in both cases the cited
rise in rates refers to an elevation of crude rates
unadjusted for other covariates. This finding is
important for several reasons not the least of
which is that cardiovascular disease is the com-
monest class of congenital disorders. It may be
that this action is related to the effects of

cannabinoids binding high-density endovascular
CBI1R’s from early in foetal life [193] and interact-
ing with the notch signalling system [194-196].
Notch is a key morphogen involved in the pattern-
ing particularly of the brain, heart, vasculature and
haemopoietic systems [197] and also in many can-
cers. Notch signalling both acts upon the epigen-
ome and is acted upon by the epigenome both in
benign  (atherosclerotic and haemopoietic)
[198,199] and cancerous (ovarian, biliary, colonic,
leukaemic) diseases [200-204]. Clearly in view of
their salience, the interactions between cannabi-
noids and both notch and Wnt signalling path-
ways constitute fertile areas for ongoing research.

Conclusion

In short the timely paper by Murphy and collea-
gues [71] nicely fills the gap between extant studies
documenting that pre-conception exposure to can-
nabis is related to widespread changes in epige-
netic regulation of the immune and central
nervous systems and confirms that male germ
cells are a key vector of this inheritance and has
given new gravity to epidemiological data on the
downstream teratological manifestations of prena-
tal cannabinoid exposure. The reasonably close
parallels in findings between rats and man confirm
the usefulness of this experimental model. Since
guinea pigs and white rabbits are known to form
the most predictive preclinical models for human
teratogenicity studies [205,206] it would be pru-
dent to investigate how epigenomic results in these
species compared to those identified in man and
rodents. Finally the considerable and significant
clinical teratogenicity of cannabis, including its
very substantial neurobehavioural teratogenicity
imply that such studies need to be prioritized by
the research community and the research resour-
cing community alike, particularly if the alarming
findings of recent European experience in terms of
cannabinoids allowed in the food chain is not to be
repeated elsewhere. Indeed, the recent passage of
the nearly $USDItrillion USA Farm Act which
encourages hemp to be widely grown for general
use together with the advent in some US cafés of
‘hempburgers’ and ‘cannabis cookies’ would
appear to have ushered in just such an era.
Hemp oil has recently been marketed in



Australian supermarkets completely unsupervised.
Meanwhile, the rapidly accumulating and stellar
discoveries relating to the pathobiology of the epi-
genome and its remarkable bioinformatical secrets
continue to be of general medical and community
importance. In some areas, particularly relating to
the epigenotoxicology of the non-THC cannabi-
noids, further research is clearly indicated, espe-
cially in view of the widespread use and relatively
innocuous reputation of cannabis derivates includ-
ing particularly cannabidiol.

Such issues suggest that in the pharmacologi-
cally exciting era of the development of novel
intelligently designed cannabinoids intended for
human therapeutics, considerations of genomic
and epigenomic toxicity including mutagenicity,
teratogenicity, carcinogenicity, pro-ageing and
heritable multigenerational effects warrant special
caution and attention prior to the widespread
exposure of whole populations either to phytocan-
nabinoids or to their synthetic derivatives. Equally,
the possibility of locus-specific epigenetic medica-
tion development as modifiers of the epigenetic
reading, writing and erasing machinery suggests
that very exciting developments are also beginning
in this area [4].

Author Note

While this paper was in review our paper examining the
epidemiological pattern and trends of Colorado birth
defects of 2000-2014 and entitled “Cannabis Teratology
Explains Current Patterns of Coloradan Congenital
Defects: The Contribution of Increased Cannabinoid
Exposure to Rising Teratological Trends” was accepted by
the journal Clinical Pediatrics. It provides further details
and confirmation on some of the issues discussed in the
present paper. It also contains a detailed ecological inves-
tigation of the role of cannabidiol at the epidemiological
level which confirms and extends the mechanistic observa-
tions and the quantitative remarks relating to the epide-
miology of birth defects in Colorado made in the present
manuscript. The interested reader may also wish to consult
this resource.
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