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ABSTRACT ARTICLE HISTORY
CB2R are fascinating targets for neuropathic pain and mood disorders because of theirimproved Received 6 June 2023
biological characteristics. Experimental data on 1296 cannabinoid-2 receptor inhibitors with dif- ~ Revised 4 September 2023

ferent structural properties were used to develop a QSAR model following OECD guidelines. This ~ Accepted 26 September 2023

study selected the best-predicted model (80:20 splitting ratio) with fitting parameters, such as
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dation parameters, such as R?ex::0.77; Q2F1:0.7730; Q%F2:0.7730; Q%£3:0.76; CCCeyx::0.87. Following QSAR: GA-MLR:

pharmacophore modeling;
Molecular dynamic
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this, another QSAR model was developed by using a 50:50 split ratio for thetraining and the pre-
diction sets, which were then swapped to evaluate the robustness of the built QSAR model by
the 50:50 ratio, which also gives a deeper understanding of the chemical space. In addition, we
have confirmed the QSAR result with pharmacophore modelling, and supported by molecular
docking, MD simulation, MMGBSA and ADME studies. Thus, this work may enable cannabinoid 2
receptor inhibsitor development.

Introduction appetite and energy levels [2]. This receptor is abun-

dantly expressed in peripheral tissues, and it has been
shown in animal experiments that cannabinoid recep-

Marijuana, also known as Cannabis sativa L., has a long
history of usage both in therapeutic contexts and as

a recreational drug. Cannabinoids are a psychotropic
substance class, including marijuana and its deriva-
tives [1]. G-protein-coupled receptors (GPCRs) like CB1R
and CB2R are subtypes of the cannabinoid receptor
superfamily. CB1R receptors are distributed throughout
the central nervous system (CNS), where they regulate

tor 2 (CB2R) agonists may alleviate inflammatory and
neuropathic pain without causing euphoria [3]. In treat-
ing immune-related diseases such as pain, necrosis,
and osteoporosis, CB2R ligands have demonstrated
encouraging outcomes in clinical studies [2]. It has been
hypothesized that the CB2R also has arole in controlling
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inflammatory and immunological responses. Several
diseases and ailments, including cancer, AIDS, stroke,
pain, obesity, cachexia, and neurodegenerative disor-
ders including multiple sclerosis, Huntington’s chorea,
and Parkinson’s disease, may respond favorably to CB
treatment, as shown by pharmacological studies. In
glaucoma patients, they may also help reduce blood
pressure [4]. Although CB2R is extensively expressed
in immune system tissues such as the spleen, tonsils,
and lymph nodes, its function in these organs remains
unknown. CB2R receptors have been detected in many
different types of cells, including neurons, astrocytes,
cardiomyocytes, and endothelial cells [5].

Numerous research has been conducted on WIN-
55,212-2(WIN 55212-2 is an organic heterotricyclic
compound that is 5-methyl-3-(morpholin-4-ylmethyl)-
2,3-dihydro[1,4]oxazino[2,3,4-hilindole substituted at
position 6 by a 1-naphthylcarbonyl group), the first
CB2R -selective ligand to be reported. The publicly
available results for WIN-55,212-2's binding affinity at
CB1R and CB2R receptors, thus, span a wide range
[1]. Richard Frederick Porter and his colleagues inves-
tigated the pharmacology of three new selective
CB2R ligands that were chemically distinct from one
another. These ligands were CB2R agonists, RO6871304
and RO6871085, as well as a CB2R inverse agonist,
RO6851228 [6]. Researchers found that RO6871304
and RO6871085 bound to the orthosteric location of
CB2R by molecular docking. High-affinity binding to
CB2R and selectivity for CB2R > CB1R were validated
by binding studies and cell signalling tests with both
RO6871304 and RO6871085 behaving as complete ago-
nists in cAMP and B-arrestin assays (ECsgs in the low
nM range) [6]. Since then, various CB2R selective lig-
ands have been developed, including cannabimimetic
indoles like 1-(2,3-dichlorobenzoyl)—2-methyl-3-[2-[1-
morpholinolethyl]—5-methoxy indole (L768242) and 1-
propyl-2-methyl-3-[1-naphthoyllindole (JWH-015) [7].
The selectivity of 146-fold for the CB2R receptor demon-
strates that indole L768242 is highly selective for this
receptor with the Ki value of 14 nM. Among the CB2R
selective 1-deoxy and 1-methoxy-D8 -THC analogs syn-
thesized by the Huffman group (Ki = 677-132 nM
at CB1R and Ki = 3.4-1.0 nM at CB2 R), 1-deoxy3-
(10,10 -dimethyl butyl)-D8 -THC (JWH-133) is one of
the most selective agonists for the CBR 1-methoxy-
3-(10,10-dimethylhexyl)-D8-THC (JWH-229) is another
highly selective ligand with selectivity for the CB2R
of more than 170:1 (Ki = 3134-110 nM at CB1R and
Ki = 18-2 nM at CB2 R) [8].

In toxicology, QSAR models may be found at the
junction of chemistry, statistics, and biology. To design
a new QSAR model, the following elements are essen-
tial: Three elements are necessary to identify and verify
the relationship between the two data sets: (1) a dataset
containing experimental measurements of biological
activity or property for a group of experimentally tested

compounds (the training set); (2) molecular structure
and property data (i.e. the descriptors, or predictors);
and (3) statistical techniques (often referred to as
chemometric techniques) [9]. QSAR, which stands for
“QSAR,” describes the correlation between the bio-
chemical activities of a class of compounds and their
molecular blueprints. Regression or classification mod-
els may be used to find this connection. The discipline
of rational drug-design relies greatly on this method
for predicting the biological activities of novel phar-
macological compounds [10]. There has been a recent
international trend towards using the QSAR approach
by governments in place of costly and time-consuming
animal testing of substances that could be hazardous
[11]. Whether or not QSAR models succeed depends
on the validity of the dataset employed for develop-
ing them. PPB data are inherently heterogeneous due
to the variety of methods used, experimental condi-
tions, and endpoints manipulated. A wide range of com-
puter simulation models exist, each with its own partic-
ular set of inputs and outputs [10]. In silico approaches
may be useful for screening huge quantities of com-
pounds since they are efficient, quick, and inexpen-
sive. Since its framework is enough, synthesis is not
required; just analysis is required. In light of these ben-
efits, we have made an effort in the current study to
develop a QSAR model using a large dataset of com-
pounds reported experimentally to inhibit cannabi-
noid 2 receptor (Ki).

The 3D-QSAR model developed by Robert Gun-
ther and Culliges was based on an array of N-Aryl-
oxadiazolyl-propionamides that are selective for canna
binoid 2 receptor. Their research, however, yielded
no mechanically explicable results [12]. Subsequently,
Giuseppe Floresta and colleagues created two 3D 3D-
QSAR models for predicting these ligands; these models
have now proven to be an indispensable tool for the
drug-design and optimization of CB1R and CB2R lig-
ands [13]. Critical interactions between CB1R and CB2R,
and ligands may be better understood with the use of
three-dimensional maps that depict hydrophobic, elec-
trostatic, and shape-related characteristics. However,
the significance of the discovery that inter-bonding
distance is crucial to cannabinoid-2 receptor inhibi-
tion was minimized. Maria Fichera and coworkers also
performed a 3D-QSAR investigation on the structural
requirements for binding to CB1R and CB2R cannabi-
noid receptors and their selectivity [14]. Despite the
mechanical explanation offered by this work, it may
not explain why hydrophobic and electrostatic atoms
have such differing optimal bonding distances. How-
ever, the use of such QSAR models was severely con-
strained by the use of smaller data sets consisted
of molecules with fewer scaffolds/pharmacophoric
characteristics, hence limiting their usage in opti-
mization to just a select few classes of compounds
[15-17].



When optimizing leads, it's helpful to do a QSAR anal-
ysis based on a more extensive dataset that includes
a variety of scaffolds. Ideally, the larger dataset would
have a good compromise between reasonable predic-
tion ability and mechanistic interpretations. In light of
these observations, we have conducted a QSAR analysis
using a large dataset of 1296 experimentally reported
compounds, and we have analyzed the critical struc-
tural and physicochemical factors for experimentally
reported cannabinoid 2 receptor inhibitors. The pur-
pose of this study is to develop a reliable QSAR model to
identify the most important pharmacophoric feature for
inhibiting cannabinoid type 2 receptors. We then per-
formed molecular docking, MD, and MMGBSA studies
once the QSAR model was developed.

Material and method

Modeling the link between a molecule’s known charac-
teristics (X) and its measured activity (Y) is at the heart of
QSAR analysis. (OECD Principle 2, “unambiguous algo-
rithms”) A model’s algorithm is the link between molec-
ular descriptors of the chemical structure and the bio-
logical activities [9]. In this study, we searched the bind-
ing database to build the dataset for the QSAR analysis.
Because of this, the data may be shown more precisely
(https://www.binding.org/bind/chemsearch, retrieved
on February 2, 2023) [18]. This dataset included 1296
cannabinoid 2 receptor inhibitors with validated Ki val-
ues reported in nM. Bioactivity values were shown as
Ki and span an extremely broad range (0.014-86980
nM) in this data set, making it both chemically and
biologically distinct. Figure 1 shows five most active
and five least active compounds from the dataset
as an example. The experimentally reported Ki val-
ues obtained from binding database were first trans-
lated from nanomolar (nM) units to equivalent molar
unit (M), using the formula pKi = -log Ki. See Table 1
in Supplementary File T1 for the smile’s notation, Ki
and, pKi values (See supplementary File S1 for bind-
ing database id, smiles, Ki, pKi value for 1296 dataset
compounds).

ChemSketch was used to generate the 2D structures
of all 1296 compounds, and the software programs
open babel and open 3D align were used to transform
the 2D structures into 3D structures [19,20]. PyDescrip-
tor, a plugin for PyMOL'’s molecular modeling program,
was then used to calculate the molecular descriptors for
the geometry-optimized structures (See supplementary
File S2 for the calculated molecular descriptor used in
the QSAR model development) [21].

PyDescriptor has a library of more than 40,000 chem-
ical descriptors ranging from 1D to 3D. Data trimming
is crucial when dealing with a large number of molec-
ular descriptors. This was accomplished using Objec-
tive feature selection (OFS) in QSARINS v2.2.4 [21]. The
OFS method resulted in a limited collection of 1314
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distinct molecular descriptors after removing duplicate
and highly correlated ones (|R| > 0.90).

The entire dataset was split into two sets: a train-
ing set of 1037 compounds (80%) used to build a
QSAR model and a prediction set of 259 compounds
(20%) used to completely assess the accuracy and pre-
dictiveness of the developed QSAR models. This was
done using the random splitting function of QSARINS
v2.2.4. For subjective feature selection using the Q%00
fitness parameter (SFS), QSARINS v2.2.4 uses genetic
algorithm-assisted multiple-linear regression (GA-MLR)
[22,23]. Several validation criteria, such as R?, leave-one-
out (Q%,00), and leave-many-out (Q?_vo), are used to
assess the functionality of the developed QSAR mod-
els, which have been previously documented in the
scientific literature. The intercorrelation between the
characterizations might be reduced by using a QUIK
(Q under the influence of K) value of 0.05. To test
the data-fitting hypothesis, correlation coefficients are
computed after 1000 iterations of the Y-axis [24]. A sin-
gle outlier may render a QSAR model less capable of
making precise predictions. A measure of predictabil-
ity is the degree of agreement between the predicted
value and the expected or experimental value. We uti-
lized such compounds in the Williams and In-subria
plots to draw attention to the peculiarity of a very
large residual value in GA-MLR QSAR models. By com-
paring the normal residual value with the predicted
value, we could identify outlier compounds. We used
the Williams plot to direct our database search for com-
pounds with comparable structural properties. We have
established the applicability domain of the developed
QSAR model by combining leverage with the typical
residuals.

The usage of a QSAR model that has undergone
cross-validation, external validation, Y-randomization,
and the applicability domain (Williams’ plot) for test-
ing may be advantageous in future applications in vir-
tual screening, molecular optimization, and decision-
making [25-28] (See Table 6 in Supplementary material
file T1 for Golbraikh and Tropsha Acceptable Model
Criteria). Moreover, the Table S3 of the Supplemen-
tary materials contains the formulae required to com-
pute these descriptive statistics. The QSAR model’s
prospective utility (applicability domain) was also eval-
uated using Williams' plots [29-31]. Effective and val-
idated QSAR modelling was accomplished via use
of genetic functional algorithm and multiple linear
regression. Researchers could make understand the
pharmacophoric aspects that control particular biolog-
ical activity and enable accurate prediction of biolog-
ical activity of newly designed compounds (external)
by applying this model. Accordingly, a state-of-the-art
technique was implemented in which several models
were built using just 20% of the prediction set and 80%
of the training set. Researching the most precise pre-
diction model is now possible. So, we used the original
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Figure 1. Structural representations of the five cannabinoid 2 receptor inhibitors from the current dataset with the highest and

lowest activity.

Table 1. Different molecular descriptors present in Model-A, Model-B, Model-C and their description.

Molecular descriptor

Description

acc_lipo_3Ac
the acceptor atoms
sp2C_aroC_4B
sp3C_ringC_5B
fringNsp3C5B
famdNaroC6B
plaN_don_9B

occurrence of lipophilic atoms with a partial positive charge in the range of +0.2 to —0.2 within 3 Angstrom unit from

occurrence of aromatic carbon atoms within 4 bonds from the sp2-hybridized carbon atoms

Occurence of ring carbon atoms within 5 bonds from the sp3-hybridized carbon atoms

Frequency of occurrence of sp3-hybridized carbon atoms exactly at 5 bonds from the ring nitrogen atoms
Frequency of occurence of aromatic carbon atoms exactly at 6 bonds from the amide nitrogen atoms
occurrence of donor atoms within 9 bonds from the planer nitrogen atoms

training set as our prediction set and tested a QSAR
model with six distinct features

To prevent over- and underfitting, it is essential
to include an adequate number of molecular descrip-
tors in the QSAR model. Therefore, a simple graph-
ical method was used to find the ideal number of
descriptors for the model. When developing a multi-
linear regression (MLR) model, it is common to see a

significant increase in the cross-validated coefficient
of determination for leave-one-out (Q%,00) when vari-
ables (molecular descriptors) are added in sequence
[32,33]. The value of Q%00 then slightly increases after
that. As a result, it was found that the best number of
molecular descriptors for building models was the num-
ber that matched the elevation point [34] as shown in
Figure 2. Six chemical descriptions are represented by
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—e—R2
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Figure 2. Plot of the number of descriptors against leave-one-
out coefficient of determination Q2,0 to identify the optimum
number of descriptors.

the last elevation point in Figure 2. As a consequence,
the heuristic search in the QSAR model employing multi
regression analysis was limited to using just six chemi-
cal descriptors. In addition to employing Q2,00 as the
fitness parameter and the genetic algorithm multilinear
regression (hereafter GA-MLR) method using QSARINS-
2.2.4, a set of molecular descriptors were created using
the genetic algorithm as a feature selection strategy
[22].

Molecular docking analysis

The structure of the cannabinoid 2 receptor protein
bound to the rationally designed AM10257 antagonist
was obtained from the Protein Data Bank (https://www.
rcsb.org/structure/5ZTY) and then loaded into an open-
source molecular editor (Discovery Studio Visualizer 4.0)
[35]. Using a conjugate gradient of energy minimization
method, the UCSF Chimera optimized the structure of
1296 molecules in the dataset.

By accessing the Protein Data Bank’s structural
database (https://www.rcsb.org/structure/5zty; retrie
ved on March 7,2023), we have to retrieve a pdb file for
cannabinoid 2 receptor protein. Pdb 5zty was chosen
because of its higher X-ray resolution (2.8) and com-
plete sequencing. Ramachandran’s plot was generated
to check the protein’s stability before any docking simu-
lations were performed. A docking study was performed
on the optimized protein. The docking pose of the most
active molecule, number 8, is given special attention in
the mechanistic interpretation of QSAR, even though all
1296 compounds were docked. To validate the molec-
ular docking protocol, we have redock the pdb:5zty lig-
and. To conduct the molecular docking study, the NRG
Suite software was used. This open-source programme
(NRG Suite) may be downloaded for free as an extension
for PyMOL (www.pymol.org). FlexAID may be utilized in
docking simulations to pinpoint protein binding sites
and surface cavities [36]. It gathers information on con-
formations using evolutionary techniques. In addition, it
represents ligand and side chain flexibility and covalent
binding. We optimized performance by using a versatile
stiff docking strategy with the following NRGSuite set-
tings by default: Structure of a Ligand. The conformity
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of a ligand is indicated by its assigned reference num-
ber. No restrictions are allowed. A 3D sphere of 5 A
provides binding sites, and the side chains are stiff. In
the NRG suite, the active site is chosen by placing a
sphere with its center in the active site’s center (radius
5 in the current work). All residues within this sphere
are automatically considered flexible by the software.
Ligands’ adaptability is symbolized by a reference num-
ber. There isn't a cap. To shield water molecules, the
HET group envelops them. Van der Wall’s magnetic per-
meability was 1%. A population explosion reproduction
model, a share fitness model, 1,000 generations, 1,000
chromosomes, five TOP complexes, and no informa-
tion on the solvent are employed. Utilizing AM10257, a
well-known cannabinoid 2 receptor inhibitor, as a test
subject, molecular docking was confirmed.

ADMET and drug-likeness evaluation

Potential drugs ought to be safe and have good absorp-
tion, distribution, metabolism, and elimination (ADME)
properties. SwissADME module available in SIB (Swiss
Institute of Bioinformatics) webserver (https://www.sib.
swiss) was used to assess the ADME profile of the five
most active compounds from the QSAR dataset, includ-
ing drug-likeness, partition coefficient, solubility, and
several other parameters [37-40].

Molecular Dynamics Simulation (MD-Simulation)

Using a dock complex for the cannabinoid 2 receptor
protein (PDB ID: 5ZTY) and compound 8, MD simula-
tions were run in triplicate on a Desmond 2020.1 from
Schrodinger, LLC. To ensure that each MD run had con-
sistent findings, several samples were obtained at the
same times. The OPLS-1005 force field is combined with
an explicit solvent model with SPC water molecules in
this setup [41]. To finish off the charge neutralization
process, Na + ions were introduced. Physiological con-
ditions were simulated by adding 0.15 M NaCl solutions
system building. For the first 100 ns of retraining, an
NVT ensemble has to acclimatize to the 8 combinations
of protein and ligand. Following that, a 12-ns equili-
bration and reduction run was performed by an NPT
ensemble. The Nose—Hoover chain coupling approach
was used to build the NPT ensemble in all simulations,
which were run at 27 °C, 1.0 ps relaxation time, and 1
bar pressure. A 2fs time step was chosen by consen-
sus [42]. Pressure was kept steady using the barostat
technique, with a relaxation time constant of 2 ps [43].
Particle mesh Ewald technique was used to simulate
long-range electrostatic interactions with a radius of 9A
for the Coulomb interaction [44]. The bonded forces
for each trajectory were determined with the help of
the RESPA integrator and a time step size of 2 fs. Mul-
tiple metrics, such as the number of hydrogen bonds
(H-bonds), the root mean square deviation (RMSD), and
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the root mean square fluctuation (RMSF), were used
to assess the reliability of the MD simulations. For a
drug receptor complex, we used Geo measures version
0.872 to calculate the free energy landscape of protein
folding [45]. Using the MD trajectory, we visualized the
root-mean-square-deviation (RMSD) and radius of gyra-
tion (Rg) energy profiles of folding in three dimensions
using the Geo measurements function of the matplotlib
Python package [46].

Molecular mechanics generalized born and surface
area (Mmgbsa) calculations

MD simulations of cannabinoid 2 receptor complexed
with compound 8 were used to determine the binding
free energy (Gbind) of the docked complexes. The gen-
eralized Born surface area (MM-GBSA) module in molec-
ular mechanics is responsible for the current gold stan-
dard in sweeping. 2017-04-04. Schrodinger Suite, LLC,,
New York, New York. Using the VSGB solvent model and
rotamer search methods, the binding free energy was
determined with the help of the OPLS 1005 force field.
The trajectories were recorded after the MD run at 10 ns
intervals. The binding free energy was calculated using
Equation 1:

AGbind = Gcomplex — (Gprotein + Gligand)

Where, AGbind = binding free energy, Gcomplex =
free energy of the complex, Gprotein = free energy of
the target protein, and Gligand = free energy of the
ligand.

Alterations to the MMGBSA result in trajectories that
occurred after the dynamic phase were also studied.

Results

The purpose of this study was to develop a GA-MLR
model that has robust interpretive methods and high
predictive quality, as mentioned in the introduction.
During the course of our investigation, we have uncov-
ered some structural peculiarities. Here is the descrip-
tor's meaning, the measured and predicted pKi value,
and the statistical parameters used to validate the
recently developed six-parameter model (See Table 1).
Creating QSAR models is the emphasis of this effort. Our
earlier work [47] describes how we utilized a randomly-
divided dataset to build model B using MLR (Multilinear
regression) models, and then tested those models on a
separate dataset (the prediction set). By switching the
training and prediction sets in model C, we were able to
generate new multi-model ensembles and verify on the
prediction set (which was previously the training set).
In order to get the most out of the data and eliminate
bias, we divided it down the middle. We've also created
mode A, where the data set is split 80/20. (See Supple-
mentary File S4 for the developed QSAR model A, B and
Q). In addition, the dataset splitting in model B & C was

50:50 to capture the maximum information and avoid
any bias [47,48].

Model-A (80% training set (260 compounds) and
20% prediction/test set (1036 compounds))

pKi = 4.949 (+ 0.099) + 2.813 (£ 0.235) * acc_lipo_
3Ac+0.438 (+ 0.024) * sp2C_aroC_4B+0.186 (L
0.009) * sp3C_ringC_5B + 0.636 (& 0.049) x fringNsp
3C5B + —0.505 (£ 0.027) * famdNaroC6B + —0.8 (+
0.056) * plaN_don_9B.

Model-B (50% training set (648 compounds) and
50% prediction/test set (648 compounds))

pKi = 4.971 (£ 0.125) + 2.765 (£ 0.291) * acc_lipo_
3Ac+0.427 (£0.03) x sp2C_aroC_4B + 0.182(+0.011)
* Sp3C_ringC_5B + 0.632 (£ 0.061) « fringNsp3C5B +
—0.492 (£ 0.034) x famdNaroC6B + —0.783 (4 0.069) *
plaN_don_9B +

Model-C (50% training set (648 compounds) and
50% prediction/test set(648 compounds)). In Model
C, the training and prediction sets were swapped
with each other. The dataset from model B was shifted
from prediction to training set and training to predic-
tion set in this model.

pKi = 4.988 (+ 0.128) + 2.905 (£ 0.27) * acc_lipo_
3Ac+0.443 (£ 0.031) *x sp2C_aroC_4B +0.187 (+
0.012) * sp3C_ringC_5B + 0.636 (+ 0.065) * fringNsp
3C5B + —0.518 (£ 0.036) x famdNaroC6B + —0.834 (+
0.075) * plaN_don_9B +

Statistical parameters associated with model-A

R?:0.7842, R? 44j:0.7829, R>-R? 44: 0.0013, LOF: 0.2898,
Kyx: 0.2869, Delta K: 0.0247, RMSE;: 0.5321, MAE:
0.4461, RSS¢: 293.6196, CCCtr: 0.8790, s: 0.5339, F:
623.6488, Q%o: 0.7812, R?-Q%0: 0.0030, RMSE.y:
0.5358, MAE,,: 0.4491, PRESS.,: 297.6891, CCC,,: 0.8773,
Q%mo: 0.7809, R%ys: 0.0059, Q?Yscr:—0.0077, RMSE
AVyser: 1.1419, RMSEgxt: 0.5532, MAEext: 0.4781, PRESSext:
79.2655, R?¢xt: 0.7738, Q?-£1: 0.7737,Q%-£2: 0.7730,Q%-3:
0.7667,CCC ¢4t 0.8748.

Statistical parameters associated with model-B

R?:0.7833, R? 44 0.7812, R?-R? 44: 0.0020, LOF: 0.2892,
Kyx: 0.2811, Delta K: 0.0377, RMSE;: 0.5278, MAEy,:
0.4427, RSS4:180.5247, CC(C4:0.878, s: 0.5307, F:386.
0805. Q%/p0: 0.7786, R?-Q%00: 0.0047, RMSE,,: 0.5335,
MAE.,: 0.4476, PRESS.,:184.4442, CCC,,: 0.8758, Q*/yo0:
0.7779, R%yser: 0.0093, Q%yser: —0.0125, RMSE AVyse:
1.1284, RMSEcy:: 0.5468, MAEey: 0.4609, PRESSex::
193.7477, R?ext: 0.7799, Q*-£1: 0.7812, Q*-£: 0.7772, Q?-
F3:0.7674, CCCex:0.8715.

Statistical parameters associated with model-C

R?:0.7851, R? 44 0.7831, R?-R? 44;: 0.0020, LOF: 0.3057,
Kxx:0.2890, Delta K:0.0234, MSE;,: 0.5427, MAE;,: 0.4593,
RSSt: 191.4231, CCCyr: 0.8796, s: 0.5456, F: 391.4146,
Q%100: 0.7802, R2-Q2)50: 0.0049, RMSE,,: 0.5488, MAEy:
0.4644, PRESS,:195.7845, CCC,,: 0.8768, Q*/y0: 0.7794,
R%yscr:0.0090, Q%yse: —0.0127, RMSE AVysq:1.1652,
RMSEeyxt: 0.5318, MAE oxt: 0.4475, PRESS ox: 182.7116,
R ext: 0.7781, Q%-£1: 0.7794, Q%-»: 0.7748, Q%-¢3: 0.7936,
CCCex:0.8783.
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Figure 3. Different graphs related to model-A (A) Experimental vs Predicted pKi values (the solid line represent the regression line);
(B) Residual Plot for experimental vs residuals; (C) Williams's plot for applicability domain (the vertical solid line represents hx = 0.020
and horizontal dashed lines represent the upper and lower boundaries for applicability domain); (D) In-Subira plot for the applicability

domain analysis.

High values for a wide variety of statistical param-
eters, such as the coefficient of determination, the
adjusted coefficient of determination(R?ad}), the cross-
validated coefficient of determination for leave-one-out
(Q2,00), the external coefficient of determination (RZex),
the number of replicates (Q?-Fn), the concordance cor-
relation coefficient (CCCex), etc., show that models A, B,
and C are statistically robust. As a result, model-A, B and
Care capable of accurate extrapolation, has no false cor-
relations, and fulfils established thresholds for its most
crucial parameters. Using William’s plot, we looked into
the range of validity of the model’s predictions. As such,
it does all that the OECD recommends for a useful QSAR
model. Figure 3, Figure 4 and Figure 5 depicts a number
of model-A, -B, and -C framework graphs.

Table 2 lists Model-A, B and C's six distinguishing fea-
tures. In all the three developed QSAR models, raising
the value of four of the six descriptors (acc_lipo_3Ac,
sp2C_aroC_4B, sp3C_ringC_5B, and fringNsp3C5B) is
associated with an increase in bioactivity. In contrast,
the remaining two (famdNaroC6B and plaN_don_9B)
have a negative coefficient. Each molecular descrip-
tor, a quantitative representation of structural proper-
ties, is associated with many pharmacophoric variables
that control the inhibitory profile. Not a single struc-
tural characteristic can be used to describe or char-
acterize the final biological activity (Ki) of a molecule.
The biological activity, Ki, etc,, is the consequence of
an interplay between several structural features and
additional, as-yet-unknown factors. Some properties
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Figure 4. Different graphs related to model-B (A) Experimental vs Predicted pKi values (the solid line represent the regression
line); (B) Residual Plot for experimental vs residuals; (C) Williams's plot for applicability domain (the vertical solid line represents
hx = 0.0320 and horizontal dashed lines represent the upper and lower boundaries for applicability domain); (D) In-Subira plot for

the applicability domain analysis.

aid in the desired pharmacological effect, while oth-
ers inhibit it. Two or more pharmacophoric groups may
work together to provide a greater biological effect (a
phenomenon called “Pharmacophore synergism”).

Correlation matrix

The inter-correlation coefficient cutoff in the existing
QSAR model is set at 0.95 to minimize overfitting. Table
2,3 and 4 in Supplementary File T1 shows that there is
no correlation among any of the descriptors used in the
current QSAR model.

Applicability Domain analysis

We assessed the generated QSAR model’s applicabil-
ity domain with regards to the whole 1296-sample
dataset. In the Williams plot and in-subria plot, total

Table 2. Depiction of the Docking Score and RMSD values for
pdb:5zty ligand and the top 10 most active compounds.

Affinity Docking
S. No. score (Kcal/mol) RMSDin A
Pdb:5zty ligand —8.96 1.39
1 —7.60 1.34
2 —8.04 1.22
3 —8.83 1.81
4 —8.35 1.34
5 —9.52 1.40
6 —7.96 3.71
7 —9.07 3.82
8 —6.83 0.72
9 —7.93 1.88
10 —7.60 2.84

of 1296 compounds, it was found that about 30 com-
pounds fall outside the applicability domain, and were
indicated as outliers. The overall HAT i/i hx = 0.03200
value for leverage was found to be rather low (Figure
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Figure 5. Different graphs related to model-C (A) Experimental vs Predicted pKi values (the solid line represent the regression
line); (B) Residual Plot for experimental vs residuals; (C) Williams's plot for applicability domain (the vertical solid line represents
hx = 0.0320 and horizontal dashed lines represent the upper and lower boundaries for applicability domain); (D) In-Subira plot for

the applicability domain analysis.

3D and Figure 4D). Based on the findings, just a small
percentage (2%) of the compounds in the present
dataset fall outside of the applicable range (applicability
domain). Therefore, the created QSAR model is accurate
in its predictions and reliable in terms of its domain of
applicability.

Molecular docking analysis

The molecular docking study was performed on the
1296 dataset compounds and the docking score for
the pdb 5zty and the top 10 most active compounds
are presented in Table 2. For the validation of molec-
ular docking protocol, we have performed redocking
of pdb:5zty ligand into the cannabinoid 2 receptor
binding pocket. The docking score for entire 1296 com-
pounds are given in Supplementary material File S5.

In CB2R receptor, helices | through VIl form the 7TM
bundle of CB2R, while helix Vlll is an intracellular amphi-
pathic helix. The CB2R receptor’s extracellular loop and
helices | through VI are mostly contacted hydropho-
bically and aromatically by the pdb:5zty ligand. The
central pyrazole ring established pi-pi-T shaped con-
tact with Phe183 and carbon hydrogen bond His95
residues of helices Il, lll, and VII. Later, the His95 and
Phe94 residues of helices Il and Il made pi-alkyl and alkyl
hydrophobicinteractions with the 4-methyl substituent
of the pyrazole ring. To add further, the N-pyrazole sub-
stituted 5-hydroxypentyl exhibited a Pi-hydrogen bond
donor contact with Ser285 residue through its hydroxy
group and one alkyl hydrophobic contact with Phe281
residue. Another terminal containing an adamantane
ring entered into six hydrophobic alkyl and Pi-alkyl
contacts with the Phe94, Ile110, Val113, and Phe106
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residues that are a part of helices Il and lll, in addi-
tion to the terminal 5-phenyl substituent making two
hydrophobic contacts with Lys287 and Ala282 residues.

Discussion

Mechanistic interpretation of molecular descriptor
and molecular docking analysis

acc_lipo_3Ac indicate the sum of partial charges of
lipophilic atoms within 3 A.U. from acceptor atoms.
In the QSAR model that was built, this descriptor
received a positive coefficient, which meant that its
value grew and the cannabinoid receptor inhibitory
impact also did. Use of a novel chemical descriptor,
such as flipoacc3B (frequency of occurrence of acceptor
atom exactly at 3 bonds from the lipophilic atoms), sig-
nificantly improves the statistical performance (R:0.96)
of the developed QSAR model. Binding affinity seems
to be controlled simply by increasing the number of
lipophilic atoms like carbon atoms. The optimal com-
bination comprises an acceptor that is precisely three
bonds away from lipophilic atoms, resulting in the max-
imum feasible amount of inhibition of cannabinoid 2
receptor protein. Moreover, the optimal bonding dis-
tance between an acceptor and a lipophilic atom is
three bonds, as shown by recent research; this is espe-
cially crucial for maximizing the cannabinoid recep-
tor inhibitory effect. This molecular descriptor can be
demonstrated by comparing Compound 2 to Com-
pound 255. This finding is supported by further pairs of
compounds, including the following: 16 with 382, 597
with 1208, 1540 with 1583, 1804 with 2162, 219 with
304, 320 with 373, 382 with 383, and 483 with 537.

It is essential to note that the compound with the
best activity profile had partial charges that were closer
to zero (acc_lipo_3Ac). On the other hand, it was dis-
covered that the molecule had a negative value for the
molecular descriptor. The molecular pair 39 (Ki: 0.036
nM, pKi:10.44M, acc_lipo_3Ac:0.030) and 931 (Ki:15 nM,
pKi: 7.58 M, acc_lipo_3Ac: —0.061) provide credence
to this discovery (See Figure 6). This observation addi-
tionally showed that positively charged lipophilicatoms
have a greater impact on the inhibition of cannabinoid
2 receptor inhibitory activity. Conforming to the phar-
macophore model, a lipophilic atom is located precisely
three bonds away from the acceptor atoms in the most
active molecule, number 8. Thus, QSAR and pharma-
cophore modeling produced identical outcomes.

CB2R is gaining attention as a potential therapy for
neuroinflammation, neurodegenerative diseases, neu-
ropathic pain, and inflammatory and inflammatory
pain. Recent studies have shown that CB2R antagonists
may reduce renal fibrosis [49] and that they may delay
tumour growth [50] as potential treatments for fibrotic
illnesses and cancer. Consistent with previous reports,
compound 8 adopts an orthostatic conformation in

(] (8] o A
8, Ki:0.089nM, pKi:10.04Macc_lipo 3Ac:0.009 255, Ki:1.4 nM, pKi:8.67 M,ace_lipo 3Ac:0.0

Q o =2

o%0
; O

F

Figure 6. Depiction of the molecular descriptor acc_lipo_3Ac
for the compounds 8 and 255 only. Presentation of the 2D
interaction with CB2R and pharmacophore model for the
compound 8.

the cannabinoid 2 receptor binding pocket due to
the abundance of electrons in binding pocket. In a
molecular docking investigation, the active component,
Compound 8, had a docking score of —7.60 kcal/mol
(RMSD:1.40 A), and binds to a cannabinoid 2 receptor
protein via hydrophobic and aromatic contacts involv-
ing ECL2 residues and helices I, lll, V, and V.

Additionally, through its central 1,2-dihydroquino
line ring, compound 2 forms five hydrophobic connec-
tions with Phe87, Phe183, and Val113. The dihydro-
quinoline ring extends very little towards the third and
fifth helices. Two hydrophobic contacts were observed
between the terminal phenyl ring and His95 and
Ala282 in helices Il and Ill. Four hydrophobic contacts
were established between Trp194, Phel117, Cys288,
and Val261 by the 7-methoxy and 8-propoxy moieties,
which were aligned loosely with helices Ill and V. Sim-
ilarly, to the pdb:5zty ligand, compound 8 was shown
to have a favorable interaction with the CB2R protein
in the docking investigation. The lipophilic atom was
found to interact with both aromatic and hydropho-
bic groups in compound 8, supporting its importance
in the QSAR. As a consequence, the outcomes of the
molecular docking experiments support the QSAR and
pharmacophore modeling findings.

The molecular descriptor sp?C_aroC_4B points out
the, occurrence of number of sp2 hybridized carbon
atom within 4 bonds from the aromatic carbon atoms.
Adding more of these combinationsinto the model may
increase the Ki value since the aforementioned molecu-
lar descriptor has a positive coefficient in the proposed
model (R?: 0.006). This descriptior highlights the sig-
nificance of aromatic and sp? hybridized carbon. By
comparing the compound 45 with 216 (See Figure 7),
this may be observed. Interestingly, Carbon in both
locations infers a lipophilic character which is crucial
for cannabinoid receptor inhibition. Thus, increase in
the number of such aromatic carbon atoms and car-
bon atoms that have undergone sp? hybridization are
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Figure 7. Presentation of molecular descriptor sp2C_aroC_4B for the compounds; 45 and 216. Depiction 2D interaction and

Pharmacophore model for the compound 45.

essential for cannabinoid 2 receptor inhibition. When
the molecular descriptor spZC_aroC_4B has been sub-
stituted with a comparable molecular descriptor such as
faroCsp?C3B (frequency of occurrence of sp? hybridized
carbon atom exactly at 3 bonds from the aromatic car-
bon atom), the developed QSAR model’s statistical per-
formance (R:0.78) slightly decreases.

The statistical performance (R:0.92) of the proposed
QSAR model has also been greatly enhanced by the
replacing the molecular descriptor sp?C_aroC_4B with
spZC_aroC_9B (presence of aromatic carbon atom
within 9 bonds from the sp2 hybridized carbon atoms).
The findings demonstrate that increasing the bond-
ing distance between sp?C and aroC to 5 or 6 greatly
increases the inhibitory effects on cannabinoid 2 recep-
tor. Additionally, the statistical performance suffers
meaningfully (R:0.76) when the molecular descriptor
sp2C_aroC_4B is altered to ringC_sp?C_1B (presence of
sp? hybridized carbon atom within 1 bond from the
ring carbon atom). This observation reveals that the
improved cannabinoid 2 receptor inhibition requires
aromatic ring carbon atoms in addition to bonding dis-
tances higher than 4 bonds.

There are 150 of these active compounds in the
dataset, and they all have pKi values between 10.85
and 8.03 M and a high value of the chemical descrip-
tor spZC_aroC_4B (between 4 and 6). This may explain
why certain quinoline derivatives have better Ki values.
Nashaat Turkman and coworkers described a variety of
quinoline derivatives, underlining the role of the aro-
matic ring in the dramatic enhancement of quinoline’s
inhibitory effect on cannabinoid receptor. Cannabinoid
receptor inhibitory activity is largely determined by the
substitution at the C-8 position of the aromatic quino-
line ring [1]. QSAR data are presented in the form of
a molecular descriptor, spZC_aroC_4B, which captured
the same aromatic carbon atom as well as the C-8 atom

located within 4 bonds from the sp2 hybridized car-
bon atom, thus supporting the reported findings. We
have also built a pharmacophore model for molecule
45 in which aromatic carbon atom from the QSAR
model is modelled as a hydrophobic pharmacophore,
while C-4 carbon atom, which is four bonds distant
from the aromatic carbon in the 1,2-dihydroquinoline
ring, were shown as a hydrophobic pharmacophore.
Thus, revealing the congruence between the observa-
tion obtained by the QSAR and pharmacophore mod-
els. Additionally, the compound 45 performed well in
molecular docking studies, with a docking score of
—7.97 kcal/mol (RMSD:1.77A). The primary modes of
interaction between compound 45 and cannabinoid
receptor were hydrophobic and hydrogen bonding
interactions. Two hydrophobic contacts with Phe91 and
His95 residues, pointing towards helices Il and Il of
the cannabinoids 2 receptor protein, were formed by
the 1,2-dihydroquinoline ring in compound 45, which
includes an aromatic carbon atom and is sp? hybridized.
The observation of molecular docking studies matches
with the QSAR investigation.

The molecular descriptor sp3C_ringC_5B represent
the occurrence of number of sp3 hybridized carbon
atoms within 5 bonds from the ring carbon atoms. In
the developed QSAR model, this chemical descriptor
has a positive coefficient of R%:0.01, suggesting that
increased numbers of it may be used to boost the
cannabinoid receptor inhibitory impact. The difference
in bioactivity profile of the compounds 50 and 255 sup-
port this recent finding. Compound 50 has eight and
compound 255 has seven of these ring carbon atoms,
hence an increase of only one carbon atom increases
the Ki value. This may explain why the compounds
50 and 255 has two distinct Ki values (See Figure 8).
Addition of mere single carbon atom may increase the
cannabinoid 2 receptor inhibitory effect. To elaborate,
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Figure 8. Depiction of the molecular descriptor sp3C_ringC_5B for the compounds 50 and 255 only (Black dot indicates sp3
hybridized carbon atoms). Presentation of 2D and 3D interactions of compound 50 with the cannabinoid receptor. The pharma-
cophore model for the compound 50 (blue-donor, red-acceptor and green hydrophobic)

the cannabinoid receptor inhibitory efficacy is increased
by around 11 times if the value of the molecular descrip-
tor sp3C_ringC_SB for molecule 255 is raised from 7 to
8. Substituting the sp3C_ringC_SB molecular descriptor
with the corresponding H_ringC_6B molecular descrip-
tor (presence of ring carbon atom within 6 bonds from
the hydrogen atoms) somewhat improves the statis-
tical result (R:0.86). Supporting this, hydrogen atoms
are more effective in increasing the activity of cannabi-
noid 2 receptor inhibitors than sp3 hybridized carbon.
The finding also implies that future structural designs
should have fewer sp3 hybridized carbon atoms since
they increase the steric bulk whereas hydrogen, the
lightest element, decreases it.

An ethylene linker is 100 times more effective than
a methylene linker in joining an amide bond to a
phenyl ring, based on studies conducted by Nashaat
Turkman and colleagues. An increase in lipophilicity
might explain this observed difference. Since both fea-
tures such as an ethylene linkage captured as an sp3
hybridized carbon atom with fewer than five bonds
from the ring carbon atom, QSAR results are acceptable
with the reported literature [1].

Compound 50 is found to be buried inside the
cannabinoid receptor binding pocket, with a dock-
ing score of —8.74 kcal/mol and a root-mean-square
deviation (RMSD) of just 2.14A. Compound 50 mim-
icked the pdb ligand’'s conformation by binding to
identical residues (Phe281, Phe183, etc.). The dihy-
droquinoline ring formed three hydrophobic pi-pi T-
shaped contacts with the Phe87 and Phe 183 amino acid
residues. The 6-pentyl group interacted hydrophobi-
cally with amino acid residues PHE94, Lys109, Phe106,
Val103, and Phe281 through alkyl and pi-alkyl inter-
actions. Hydrophobic pi-pi T-shaped contact is made

by the dihydroquinoline ring with the Phe87 and
Phe183 amino acid residues, and the ring carbon
atoms described in the chemical description sp3C_
ringC_5B correspond to the dihydroquinoline ring. In
addition, a pi-pi T-shaped hydrophobic interaction was
observed at the 6-substituted pentyl moiety. There-
fore, the QSAR-identified pharmacophoric features play
an active role in interactions with the cannabinoid
receptor. Moreover, the results of molecular dock-
ing studies are consistent with those of QSAR ana-
lyzes. QSAR modeling of the compounds’ pharma-
cophores reveals some intriguing insights about the
pharmacophoric characteristic of the compounds. In
pharmacophore modeling, the carbon atoms at the
terminal of the fluorinated phenyl ring and the C-2
and C-3 sp> hybridized carbon atoms of the pentyl
substituent displayed hydrophobic features. Since the
cannabinoid receptor interactions also involved the
same features, thus QSAR results ideally agree with
the pharmacophore modeling and molecular docking
studies.

fringNsp3C5B signify the frequency of occurrence
of sp3 hybridized carbon atoms exactly at 5 bonds
from the ring nitrogen atoms. Increasing this molec-
ular descriptor value results in more cannabis inhibi-
tion due to its positive coefficient in the derived QSAR
model (R2:0.05). Compounds 16 and 909 are useful for
illustrating this finding. Compound 16 contains three
sp3 hybridized carbon atoms, precisely positioned 5
bonds from the ring nitrogen atom, while compound
909 has just one. This could draw attention to the dif-
ferences in bioactivity between compounds 16 and 909
(See Figure 9). To this end, it may be beneficial to
increase the cannabis inhibitory efficacy by including a
sp> hybridized carbon atom, such as a CH3 moiety.
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Figure 9. Depiction of the molecular descriptor fringNsp3C5B for the compounds 16 and 909 (Black dot indicates sp3 hybridized
carbon atoms). Depiction of 2D and 3D interactions of compound 16 with cannabinoid 2 receptor.

The Ki value for molecule 909 may be increased by
1.93 units (an 85-fold increase in cannabinoid 2 receptor
inhibitory efficacy) if the molecular descriptor value is
raised from 1 to 3.

Compound 16, also known by its synthesized name
SR-144528, was purportedly designed to be selective
for the cannabinoid receptor type 2 (CB2R) [51]. By
switching out the benzyl moiety for a phenyl one, Elena
Cichero and Culliges demonstrated that SR144528 may
antagonize CB2R, and they also highlighted the impor-
tance of the amide function having a bulky hydrophobic
group in describing the compound’s effect. A cyclo-
hexene ring with a methylene bridge in the para posi-
tion connects the amide and pyrazole rings in the
bulky group, which has a sp> hybridized carbon atom
precisely five bonds distant from the ring nitrogen
(pyrazole) atoms. In the refined docking solution for
SR144528, the nitrogen atom in position 2 of the pyra-
zole moiety executed Hydrogen bonding interactions
with the T118 and S165 side chains, while the carbonyl
oxygen forms Hydrogen bonding interactions with the
S165 and S161 side chains. Since the nitrogen atom
in the pyrazole ring is precisely five bonds away from
the carbon atom that has undergone sp> hybridiza-
tion, which is the same nitrogen atom that was cap-
tured by the molecular descriptor fringNsp3C5B. The
4-chloro, 3-methyl-phenyl at position 5 of the pyrazole
ring anchored with L167 and L195 and formed van der

Waals contacts with Y190 and W194. Similar methyl
groups were also detected by the QSAR model, however
this time they were identified as sp> hybridized carbon
atoms. The residues such as; 1110, P168, and L169 of the
hydrophobic CB2R cavity were pointed towards benzyl
group at the pyrazole moiety position 1 in the com-
pound. The norbornane section, however, was exposed
to L160, V164, F197, and F202 [52]. The observation
demonstrates that the pharmacophoric characteristics,
such as the ring nitrogen and the sp3 hybridized car-
bon atom, recorded in the QSAR model were also found
to be involved in the reported molecular docking inter-
actions of SR-144528. Thus, the QSAR findings are in
complete agreement with the reported findings.

The goal of the molecular docking experiment was
to identify the structural motif responsible for com-
pound 16’s binding and orientation. Compound 16
had a docking score of —8.83 kcal/mol (RMSD:1.81A)
and interacted with the cannabinoid receptor mostly
via hydrophobic interaction. Phe281, Phe182, Phe117,
Thr114, Cys288, Val261, Leu262, Met265, and Trp194
all interact hydrophobically with the sp3 hybridized
carbon atomes. Selectivity for the cannabinoid 2 recep-
tor is claimed to be influenced by the Phe91 and
Phe183 residues [53]. Compound 16 has a captivating
hydrophobic contact between the Phe281 residue and
its sp3 hybridized carbon atoms, which are 5 bonds
from the ring carbon atom (similar to a pyrazole ring).
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F 1284 ,Ki: 2617 nM, pKi:7.131 M,
famdNaroC6B:1
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Figure 10. Presentation of the molecular descriptor famdNaroC6B for the molecule 1283 and 176 only.

According to QSAR results, the structural features iden-
tified in several studies have a significant influence in
choosing the cannabinoid 2 receptor. Therefore, the
QSAR results agree with the molecular docking studies
and reported findings.

The molecular descriptor famdNaroC6B indicates
the frequency of occurrence of aromatic carbon atoms
exactly at 6 bonds from the amide nitrogen atoms. In
the developed QSAR model, this parameter exhibits
a negative coefficient, indicating that increasing its
value may reduce the cannabinoid receptor inhibitory
behaviour. Comparison of compounds 1284 and 176
support this observation. Compound 1284 has one
such aromatic carbon atom exactly 6 bonds from the
amide nitrogen atom, while 1284 is devoid of this
identical aromatic carbon atom. As a result, this may
explain why compound 176 has a higher Ki value than
compound 1284. An idea to improve the bioactivity
profile (Ki) of compound 1284 is to shorten the dis-
tance between the amide-substituted phenyl ring and
the fluorine-substituted aromatic ring, as seen in com-
pound 176, where the similar aromatic carbon atom is
located 5 bonds from the amide nitrogen atom. Thus,
based on this observation, a better bioactivity profile
can be achieved by enhancing the bonding distance
between the aromatic carbon and the amide nitrogen
(See Figure 10).

The pKi value for molecule 1284 would increase by
1.79 units (about 61-fold) if the molecular descriptor
were changed from 1 to 0 (by shortening the bonding
gap between two phenyl rings from 6 to 5).

To emphasize the impact of amide substitution on
cannabinoid receptor inhibitory activity and selectivity
profile, Simone Bertini and Cilligeas published a vari-
ety of biphenyl carboxamide derivatives. Dataset com-
pound 176 was synthesized as cis and trans isomers of
4-methyl cyclohexyl carboxamide were further isolated.
Interestingly, Substitutions on the amide nitrogen, such

as cycloheptyl and 4-methyl cyclohexyl, were shown
to significantly alter the cannabis inhibition, with the
cycloheptyl substitution exhibiting more potent inhibi-
tion and higher inhibition selectivity [54]. Thus, QSAR
results are consistent with the published data since
the identical nitrogen atom was shown to be a donor
feature.

The molecular descriptor plaN_don_9B represents
the occurrence of donor atoms within 9 bonds from
the planer nitrogen atoms/ The pKi value is correlated
with this descriptor at an R? of 0.02. Increasing this
descriptor’s value decreases the pKi for cannabinoid 2
receptor, since its coefficient is negative in the QSAR
model. The comparison between compound 118 and
compound 161 support this finding. Compound 118 has
a planer nitrogen atom but no donor feature, hence its
Ki value is greater than that of compound 161, which
has a donor atom located within 9 bonds away from the
planer nitrogen. This may explain why compounds 118
and 161 have different bioactivity profiles. Additionally,
a methyl substituent on the nitrogen ring likely nullifies
the donor characteristic seen in molecule 118, which
showed evidence of amine nitrogen between its phenyl
ring and sulphonyl group. Subsequently, compounds
118 and 161’s pharmacophore models supported this
conclusion (See Figure 11).

Based on the pharmacophore model, the nitrogen
atom in position 5 of the benzimidazole moiety in
compound 118 acts as an acceptor, whereas the same
nitrogen atom in compound 161 acts as a donor.
This indicates agreement between QSAR and pharma-
cophore modelling outcomes. Therefore, it is recom-
mended that the methyl substituent on the nitrogen
ring be maintained in future drug-design and struc-
tural optimization in order to maximize cannabinoid
2 receptor inhibition. Subsequently, comparison of
some more molecular pair also support this obser-
vation; 16(Ki:0.24 nM, pKi:9.55M, plaN_don_9B:1) and
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Figure 11. Presentation of the molecular descriptor plaN_don_9B for the compounds 118 and 161 only.

34 (Ki:0.37, pKi:10.85, plaN_don_9B:0), 392(Ki:2.78 nM,

pKi:8.38 M, plaN_don_9B:0) and 697(Ki:7.4 nM, pKi:7.88M,

plaN_don_9B:1),412(Ki:2.9nM, pKi:8.35M,
plaN_don_9B:1) and 751(Ki:8.7nM, pKi:7.80 M, plaN_
don_9B:2). There are 130 compounds with descriptor
values between 1-3 in the full dataset and another 40
with descriptor values of 0 or 1. These results provide
credence to the hypothesis that lowering the molecu-
lar descriptor value increases its cannabinoid 2 receptor
inhibitory activity.

ADMET and drug-likeness evaluation

The SwissADME database contains information on a
compound’s pharmacokinetics, toxicology, and other
important aspects of its medicinal chemistry. There are
two physicochemical parameters that are given sig-
nificant weightage: the partition coefficient and the
solubility. The consensus log Py is the average of
the five methods’ predictions [37,38]. All of the five
compounds have LogP values between 3.7 and 6.1,
as predicted. All five of these compounds have the
required characteristics to be considered as drug like
candidates, despite the fact that a compound’s LogP
value does not necessarily correlate to a specific ADME
characteristic [39,55]. On the other hand, three distinct
methods were used to predict solubility, each yield-
ing a LogS value. Although the results varied signifi-
cantly amongst techniques, it was generally expected
that the top five active compounds would be the sol-
uble, moderately and poorly water-soluble. In con-
trast to the other approaches [40,56,57], which are
based on the whole molecular topology, the SILICOS-IT
(http://silicos-it.be.s3-website-eu-west-1.amazonaws.

com/software/filter-it/1.0.2/filter-it.html)method uses a
fragment-based approach in its LogS calculation.

ADME modeling revealed that the analog com-
pounds possess a number of advantageous ADME prop-
erties. Based on the ratio of WlogP to tPSA [58], it was
predicted that all of the compounds have adequate
absorption in the GIT, with the exception of compound
5, which exhibited poor Gl absorption, and compound
4, which penetrates the blood-brain barrier. It is note-
worthy to mention that the nitrogen-containing ring
in compound 4 contains a methyl substituent on the
nitrogen ring; thus, this may be the reason for com-
pound 4's brain penetration. Compound 5 is the only
one of the five that shows a predisposition to func-
tion as a P-gp substrate, which is rather interesting.
P-glycoprotein is an essential xenobiotic transporter
that is overexpressed in cancers that are resistant to
several types of treatment [59]. This data suggests
that scaffolds 1-3 (compounds 1-3) may be useful as
cannabinoid 2 receptor antagonists. The possibility of a
CYP450-mediated biotransformation may also be pre-
dicted using SwissADME. Compounds 2, 4, and 5 would
interact with CYP1A2 isoforms, and the results demon-
strated that the vast majority of compounds interact
with at least one of the five isoforms. In addition, it’s pos-
sible that compound 5 has no interactions with CYP2D6
or CYP3A4 isoforms. In addition, it was found that iso-
forms 1A2 and 2C19 would be the primary targets of
the majority of the compounds, whereas compounds
1-4 interacted with isoform 3A4 with the exception of
compound 5.

In the first stages of drug discovery and develop-
ment, drug-likeness is a crucial criterion for evaluating
potential drug candidates. This metric may be thought
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Table 3. Depiction of the average value from replicate runs
of MD simulation parameters such as; RMSD, RMSF, and ROG
(Radius of gyration).

MD parameter R1 R2 R3 Average
RMSD 228 2.14 2.01 2.063
RMSF 12 11 10 10.94
ROG 23.37 21.58 27.05 24.57

of as a means to connect the physicochemical proper-
ties of a substance to its biopharmaceutical properties
in the human body, particularly its impact on bioavail-
ability when administered orally [60]. Compounds 3 are
likely drug-like candidate if the webserver's application
of five widely-used drug-likeness criteria [37] is taken
into account. In addition, the compounds were eval-
uated using ABS criteria [61], and every one of them
scored a 0.55. This criterion relies on the probability
value of a molecule having an optimal bioavailability
and permeability profile, where a value of 0.55 signi-
fies the obedience of Lipinski rule of five [62] and 55%
chance of rat bioavailability value greater than 10%.
(See supplementary file S6 for various ADME features).

Molecular dynamics and simulation analysis

Cannabinoid 2 receptor protein (PDB ID: 5ZTY) was
bound to compound 8 in a molecular dynamics (MD)
study to examine the complex’s stability and conver-
gence (See Table 3). It was established that the con-
formation was stable by comparing the RMSD values
at intervals of 100 ns throughout the simulation. The
RMSD quantifies the usual scatter of a sample of atoms
relative to some standard. Every single moment cap-
tured along the path is successful. The RMSD for frame
X is:

N
1
2 (7€) = rilten)?

i=1

RMSDX =

where N is the total number of atoms in the selection,
tref is the reference time, and t is the current time (typi-
cally the first frame is used as the reference, hence time
t = 0 is used for this expression). frame x, where r’ is
the position of the chosen atoms at time tx relative to
the reference frame. Each next frame in the simulation is
generated using the same method [63]. Throughout the
protein chain, root-mean-square fluctuation (RMSF) can
be used to characterize localized changes. The RMSF for
residue | am:

-
1
RMSF; = | - ; < (F(1)) — Fi(trer)? >

The square distance between the residue’s atoms
is determined by taking an average, as shown by the
brackets. where T is the time in the trajectory from
which the RMSF was calculated, tref is the reference

time, and ri is the location of the residue. The atomic
positions in residue | are given by r', which is then over-
laid on the reference. Desmond'’s simulated travel paths
were analyzed. Using MD trajectory analysis, we deter-
mined the root mean square deviation (RMSD), root
mean square fluctuation (RMSF), and protein-ligand
interactions. Visualization of time-dependent variation
in protein root-mean-square-deviation (RMSD) values is
provided (left Y-axis). Once all protein frames have been
superimposed on the backbone of the reference frame,
the RMSD is computed by selecting individual atoms to
compare.

The root mean square deviation (RMSD) between the
C-backbone of compound 2 and cannabinoid 2 recep-
tor (PDB Id: 5ZTY) is 1.95. This may be seen in Figure
12A. RMSD graphs before and after simulation reveal
the stability of the compound 8-bound cannabinoid 2
receptor (PDB I.D.: 5ZTY) complex. This stability sug-
gests that the high stability of this complex is due to
strong ligand binding. It is also possible to quantify the
compactness of the protein based on its radius of gyra-
tion. In Figure 12C, we can see that the Rg values for
the protein-ligand complexin its compact compound 8
bound states are 23,21, and 27, respectively (See Table 5
in Supplementary File T1). Overall quality analysis using
RMSD and Rg demonstrated that Compound 8 signifi-
cantly influenced the stability of the protein targets via
contacts formed deep within the binding cavities.

Then, using a time function of 100 ns, we found
that a few residues in the combination of compound 8
and cannabinoid 2 receptor exhibited large root mean
square fluctuations (RMSF). In the RMSF image, the por-
tions of the protein that saw the largest amount of fast
change during the simulation were shown as peaks.
Secondary protein structures, such as alpha helices and
beta strands, are often more stable than loop por-
tions, despite the unstructured protein core’s greater
flexibility.

Most of the peaking residues, according to MD tra-
jectories, are found in loop regions. Figure 12B shows
that residues R1, R2, and R3 at the binding site have very
low RMSF values, indicating that the ligand is tightly
bound to the protein. Figure 12 displays the outcomes
of three separate simulations conducted using IKKB
and their respective results. Despite the fact that there
are still some wavering peaks, as shown in Figure 12,
the complex has levelled off. In this particular instance,
the values of RMSF are just right for stabilizing the
protein-ligand combination. The RMSF plots demon-
strated that there was a discernible rise in the amount
of structural variation in proteins between the residue
index of 60 and 80.

Based on MD trajectories, it seems that most of the
peaking residues are found in the loop areas. Figure
12B shows that residues R1, R2, and R3 at the binding
site have very low RMSF values, indicating that the lig-
and is tightly bound to the protein. During the first
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Figure 12. A. MD simulation trajectory analysis of RMSD of compound 8 bound with 5zty, 100 ns time frame in triplicate displayed:
R1 (replicate 1) RMSD plot of compound 8 bound cannabinoid 2 receptor (PDB I.D: 5zty) (navy blue); R2 (replicate 2) RMSD plot of
compound 8 bound cannabinoid 2 receptor (PDB I.D: 5zty)(peacock green); R3 (replicate 2) RMSD plot of compound 8 bound cannabi-
noid 2 receptor (PDB I.D: 5zty)(ash color); B. RMSF analysis of compound 8 bound cannabinoid 2 receptor (PDB I.D.: 5zty). R1 (replicate
1) H-bond plot of compound 8 bound cannabinoid 2 receptor (Green). R2 (replicate 2) compound 8 bound cannabinoid 2 receptor
(PDB 1.D.: 5zty) (dark grey). R2 (replicate 2) compound 8 bound cannabinoid 2 receptor (PDB I.D.: 5zty) H-bond plot of compound 8
bound cannabinoid 2 receptor (dark red); R3 (replicate 3) compound 8 bound cannabinoid 2 receptor (PDB I.D.: 5zty); C.R1 (replicate
1) ROG plot of compound 8 bound cannabinoid 2 receptor (PDB .D.: 5zty) (light pink); R2 (replicate 2) ROG plot of compound 8 bound
cannabinoid 2 receptor (PDB I.D.: 5zty) (parrot green); R3 (replicate 3) ROG plot of compound 8 bound cannabinoid 2 receptor (PDB
I.D.: 5zty) (peacock gold); H-bond plot of compound 8 bound cannabinoid 2 receptor (chocolate color); D.R1 (replicate 1) RMSF plot of
compound 8 bound cannabinoid 2 receptor (PDB I.D.: 5zty) (olive red); R2 (replicate 2) RMSF plot of compound 8 bound cannabinoid
2 receptor (PDB I.D.: 5zty) (cream); R3 (replicate 3) RMSF plot of compound 8 bound cannabinoid 2 receptor (PDB I.D.: 5zty) (peacock
pale peacock green).

Time in ns

one hundred nanoseconds of the tri-replicate MD sim-
ulations of compound 8 with cannabinoid 2 receptor,
hydrogen bonds formed (Figure 12D; R1, R2, and R3).
After simulating cannabinoid 2 receptor protein (PDB
I.D.: 5ZTY) for 100 ns, as shown in Figure 12D, the

docking pattern of two hydrogen bond development
was verified by analyzing a large number of hydrogen
plots. Several hydrogen bonds (Figure 12, D; R1, R2,
and R3) were formed between cannabinoid 2 receptor
and compound 8 during the simulation, increasing their
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affinity for one another. The “Simulation Interactions
Diagram” that can be found in Maestro (see Figure 12)
displays the many subtypes of each interaction type. At
each and every stage of the progression, the stacked bar
charts have the same appearance. As a result of the fact
that the same ligand may have several binding inter-
actions with the same protein residue, it is possible to
get values that are more than 1.0. MD trajectories sug-
gest that loop regions are home to many of the residues
with the highest peaking values. Long-term ligand bind-
ing to the protein is indicated by low RMSF values at
the binding site residues. (Figure 12C R1, R2, and R3).
Figure F1 in Supplementary File T1 material demon-
strates that the complex has returned to its original
state despite the presence of some shifting peaks. These
RMSF values ensure that the protein-ligand combina-
tion is stabilized to the greatest possible extent. As can
be seen in the RMSF plots, there was a significant rise in
the amount of protein structural diversity between the
residue index of 60 and 80.

During the course of the 100ns simulation, protein-
ligand interactions were examined, and compound 8
was shown to bind with the cannabinoid 2 receptor. The
previous graph provided context for the types of inter-
actions exhibited here, allowing us to categorize and
organize these connections. It was shown that there are
three unique types of contacts (or interactions) between
cannabinoid 2 receptor proteins and compound 8.
These three types of contacts include hydrophobic
interactions, water bridges, and hydrogen bonds. The
presence of hydrophobic linkages was shown to be
an overwhelming majority among these interactions.
Among the cannabinoid 2 receptor protein’s amino
acids, Val86 (80%), Leu181 (> 80%), and Phe91 (50%),
were shown to have the most hydrophobic interactions
with compound 8. As a result, hydrophobic interactions
are crucial for the stability of the drug-receptor com-
plex. After further investigation, it was found that com-
pound 8 had three hydrogen bonding interactions with
Phe87 (> 30%) and Val113 (10%). It was also shown that
Phe87 (in 10% of instances), Phe117 (in 5% of cases), and
Ala282 (in more than 10% of cases) produce correlations
with water bridges. This meant that the ligand remained
stable for the whole 100 ns simulation with the help of
hydrogen bonds and water bridge interactions.

Molecular docking investigations and MD mod-
elling confirmed that compound 8 interacted with the
cannabinoid 2 receptor protein via hydrogen bond-
ing, a water bridge, and hydrophobic interactions. This
demonstrated that the drug-receptor complex was sta-
ble during the whole simulated time period of 100 ns.
During the simulation, the protein’s SSE, along with its
alpha helices and beta strands, are analyzed. Figure F1
Cin Supplementary File T1 display a scatter plot depict-
ing the distribution of secondary structural elements
(SSEs) over the whole protein structure. A chart is
constructed using the residue index. The top graphs

represent the average SSE composition over all frames
of the trajectory throughout the simulation, while the
bottom graphs illustrate the dynamic changes in SSE
assignment for each residue over time. However, the
charts depict the SSE as a whole. During the simulation,
secondary structural elements (SSE) may be tracked in
real time.

There's a histogram depicting the SSE distribution
inside a protein structure as a function of residue index
over on the left. It indicates the SSE make-up at each
frame of the trajectory, as well as the SSE assignment
for each residue. They may be seen at every stage of
the journey. The results of the MD simulations showed
that the stability of the drug-receptor complex, as pre-
dicted by the molecular docking studies, was main-
tained throughout the whole simulation time of 100
ns. Chemical 8 was discovered to form hydrophobic
interactions with the cannabinoid 2 receptor protein in
addition to hydrogen bonds and a water bridge.

As the simulation progresses, any shifts in the tor-
sion’s conformation will be shown in the dial (or radial)
charts (See Figure F2 in Supplementary File T1). The
time evolution of the simulation is shown as a radial
graphic with the origin in its centre. Dial charts exhibit
a lot of information at once, but bar graphs can give
you an overview of the problem quickly. They stand as
a sample of the probability density of the torsion data
and as a representation of that density. The potential
energy of a rotatable bond, expressed in kcal/mol, will
also be shown on the graph if torsional potential data
is also provided. As a function of potential, molecular
kinetic energy is shown along the Y-axis (the left side
of the graph). The conformational stress that a ligand is
under while attached to a protein may be better under-
stood by analyzing both the ligand’s histogram and its
torsional potential.

Cannabinoid 2 receptor in compound 8 bound states
shifted positionally from the original 0 ns structure after
100 ns of simulation time, as shown by a step-by-step
trajectory analysis. (See Figure F3 in Supplementary
File T1). It has been demonstrated that the structural
angular movement that happens in the terminal frame
(100 ns) is critical for Compound 8’s conformational
stability and convergence.

Molecular mechanics generalized born and surface
area (Mmgbsal) calculations

Protein-ligand binding energies are often calculated
using the MMGBSA method. The impact of extra non-
bonded interaction energies on the estimated bind-
ing free energy of the protein-compound 8 complex is
shown in Table 4. The binding energy between cannabi-
noid 2 receptor and compound 8 is —77.86 kcal/mol.
AGbind is controlled by non-covalent interactions
such Coulomb, Covalent, Hbond, Lipo, SolvGB, and
vdW. Most of the average binding energy was given



Table 4. Binding energy calculation of compound 8 with
cannabinoid 2 receptor protein and non-bonded interaction
energies from MMGBSA trajectories.

Energies (kcal/mol)x 5ZTY + Comp-8

AGbind —77.86 £5.36
AGbindLipo —31.69+1.60
AGbindvdW 35424243
AGbindCoulomb —8.52+6.18
AGbindHbond —0.159+0.271
AGbindSolvGB 23.25+4.29
AGbindCovalent 254 +227

by the AGbindLipo energies (—31.69 kcal/mol), with
smaller contributions from the GbindCoulomb ener-
gies (8.52 kcal/mol) and the AGbindHbond ener-
gies (—0.159 kcal/mol). Interestingly, none of the
three binding energies; AGbindvdW (35.42 kcal/mol),
AGbindSolvGB (23.25 kcal/mol), and AGbindCovalent
(2.54 kcal/mol) contributed to the total Gbind. Cannabi-
noid 2 receptor interacted with compound 8 primarily
via GbindLipo, GbindCoulomb, and GbindHbond ener-
gies, as shown. Upon closer inspection of the simu-
lated data, it becomes clear that compound 8 interacted
with the cannabinoid 2 receptor protein in more than
18 hydrophobic interactions. According to the results
of molecular docking investigations, the GbindLipo
energy plays a crucial role in determining the stability
of the complex formed by compound 8 and cannabi-
noid 2 receptor protein. Compound 8 and cannabinoid
2 receptor formed a hydrogen bond with a Gbind-
Hbond (—0.159 kcal/mol), which is consistent with the
MMGBSA findings. Binding energy was calculated using
docking experiments, and MM-GBSA simulations con-
firmed this value.

By making the binding pocket and residues more
accessible, these conformational changes enhance the
binding energy and stability. Curiously, between the
first frame (0 ns) and the final frame (100 ns) of the MMG-
BSA trial, compound 8 shifted its binding posture for
best fitting in the cannabinoid 2 receptor protein. (See
Figure F4 in Supplementary File T1).

AGbind = Gcomplex - (Gprotein + Gligand)

Where AGbind = binding free energy, Gcomplex =
free energy of the complex, Gprotein = free energy of
the target protein, and Gligand = free energy of the
ligand.

Conclusion

In this work, a robust QSAR model has been devel-
oped to learn more about the pharmacophoric factors
involved in cannabinoid 2 receptor inhibition. Crucial
pharmacophoric elements that influence cannabinoid
2 receptor inhibitory activity were identified using a
GA-MLR QSAR model with fitting parameters including
R2:0.78, and F:623.6, internal validation parameters
including Q%100:0.78, CCC.,: 0.87, and external val-
idation parameters including RZex:0.77, Q%F1:0.7730,
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Q%F2:0.7730, Q*F3:0.76, and CCCex;:0.87. CB2R is a key tar-
get for therapeutic immunological intervention, hence
its development as a ligand is the subject of intense
study. Since the cannabis 2 inhibitory action is con-
nected to a number of numerous chemical structures,
it is critical to understand its powerful but mostly invis-
ible pharmacophoric features such as; saturation with
sp2 hybridized carbon and aromatic carbon, the pres-
ence of sp3 hybridized carbon atoms and ring carbon
atoms, and a specific combination of sp3 hybridized
carbon atoms and the ring nitrogen atom. The QSAR
analysis was then confirmed by pharmacophore mod-
elling, which demonstrated that carbon atoms in aro-
matic and sp2 rings exhibit hydrophobic properties. The
ring nitrogen atom and the sp3 hybridized carbon atom
recorded by the QSAR model were verified by published
molecular docking data of SR-144528. Accordingly, the
QSAR study relies on the molecular docking analy-
sis as the molecular descriptor; sp3C_ ringC_5B corre-
sponds to the dihydroquinoline ring, and the same ring
makes a hydrophobic pi-pi T-shaped interaction with
Phe87 and Phe183 amino acid residues. Using parame-
ters including root-mean-square deviation, root-mean-
square fluctuation, a radius of gyration, and hydrogen
bonding, study using molecular dynamic simulations
showed that the drug-receptor complex remained sta-
ble throughout the 100 ns simulation. Hydrophobic
interactions were shown to be crucial in keeping the
drug-receptor complex stable in computational stud-
ies. The MMGBSA research results backed up the find-
ings from QSAR, molecular docking, and MD simulation
studies by demonstrating that the GbindLipo energies
(—31.69 kcal/mol) were the most important contribu-
tors to the average binding energy of the ligand. In addi-
tion, most compounds likely have a solid physicochemi-
cal profile along with a variety of other ADMET features,
most notably concerning their interaction with P-gp.
This study was fruitful because it collected and reported
unique pharmacophoric properties that may be utilized
in designing future cannabinoid 2 receptor inhibitors.
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