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ABSTRACT
Introduction: Despite the success of immunotherapies for melanoma in recent years, there remains 
a significant proportion of patients who do not yet derive benefit from available treatments. 
Immunotherapies currently licensed for clinical use target the adaptive immune system, focussing on Tcell 
interactions and functions. However, the most prevalent immune cells within the tumor microenvironment 
(TME) of melanoma are macrophages, a diverse immune cell subset displaying high plasticity, to which no 
current therapies are yet directly targeted. Macrophages have been shown not only to activate the adaptive 
immune response, and enhance cancer cell killing, but, when influenced by factors within the TME of 
melanoma, these cells also promote melanoma tumorigenesis and metastasis.
Areas Covered: We present a review of the most up-to-date literatureavailable on PubMed, focussing 
on studies from within the last 10 years. We also include data from ongoing and recent clinical trials 
targeting macrophages in melanoma listed on clinicaltrials.gov.
Expert Opinion: Understanding the multifaceted role of macrophages in melanoma, including their 
interactions with immune and cancer cells, the influence of current therapies on macrophage pheno-
type and functions and how macrophages could be targeted with novel treatment approaches, are all 
critical for improving outcomes for patients with melanoma.

ARTICLE HISTORY
Received 22 December 2023  
Accepted 29 February 2024  

KEYWORDS
Melanoma; macrophages; 
polarization; 
immunoregulatory; tumor 
microenvironment; 
immunotherapy; checkpoint 
inhibitors

1. Introduction

Although it accounts for only 5% of skin cancers diagnosed, 
melanoma remains the deadliest cutaneous tumor type, in 
spite of the major advances in immunotherapy over the last 
decade. Added to this, melanoma diagnoses have increased in 
the last five years, with an incidence of 16,700 new melanoma 
skin cancers in the UK every year that is expected to continue 
increasing to reach 20,800 new cases per year between 2023– 
2025 [1,2]. Melanoma arises from melanocytes, the specialized 
pigmented cells found predominantly in the skin and eyes. 
A combination of genetic and environmental factors, such as 
chronic intermittent and prolonged UV radiation exposure, can 
result in sequential pathogenic mutations leading to constitutive 
activation of pro-survival signals in these cells and thus tumor 
growth [3]. Melanoma is considered the archetypal immuno-
genic tumor, with a tumor microenvironment (TME) consisting 
of a dense immune infiltrate. Interactions between melanoma 
cells and the immune compartment can be beneficial to tumor 
control, however, the same interaction can also promote the 

hallmarks of cancer, namely tumor cell invasion at the primary 
site, intravasation into the lymphatic system and the circulation, 
extravasation, and survival of tumor cells at distant sites [4].

Harnessing these immune interactions has been shown to be 
critical to increasing survival of patients with melanoma. 
Historically, advanced stage melanoma was resistant to conven-
tional systemic therapies; however, in the last decade, novel immu-
notherapies and targeted therapies have transformed patient 
outcomes. Current standard of care immunotherapies predomi-
nantly work by blocking the regulatory functions of T cells, namely 
the cell-surface checkpoints programmed death-ligand1 PD-L1 
/PD-1 axis and the cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4). Small molecule inhibitors target mutant of BRAF (BRAFi) 
and MEK (MEKi) on the mitogen-activated protein kinase (MAPK) 
pathway to block cancer cell survival signals [5]. In early-stage 
disease (stage 0, I, II) surgery remains the preferred treatment 
with curative intent. For high-risk stage IIB and IIC disease, adjuvant 
immunotherapy has recently received regulatory approval [5]. In 
advanced unresectable disease settings (stage III and IV), 
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immunotherapies and targeted therapies can extend survival, with 
evidence suggesting the former are more likely to yield durable/ 
curative responses (https://ascopubs.org/doi/full/10.1200/JCO.22. 
01763). Despite clear advances in systemic therapies that have 
improved 5-year survival rates from 5% to 50%percent, survival
rates remain poor in half of patients due to treatment resistance 
and toxicity, which can result in treatment discontinuation [6].

Melanoma is an immunogenic tumor whose relationship with 
immune cells resident in the TME significantly influences cancer 
cell proliferation, progression, and metastasis. Macrophages in the 
TME, referred to as tumor-associated macrophages (TAMs), are the 
most prevalent infiltrating immune cells, representing over 50% of 
the hematopoietic cell populations [7]. Yet, these cells are not the 
overt target of current therapies. While the presence of TAMs is 
often associated with poor prognosis, macrophages represent 
diverse populations with complex and multifaceted functional 
capabilities [7]. Emerging research suggests that macrophages 
are able to interact with current clinically approved therapies. 
Importantly, by manipulating their capacity for plasticity, these 
cells harbor significant potential to be directly targeted. In this 
review, we provide an overview of the origin, recruitment, and 
polarization of TAMs in the context of melanoma and insights into 
the multifaceted roles and therapeutic potential of TAMs.

2. Origins of tissue macrophages

Macrophages play essential roles in both the innate and adap-
tive immune responses, as well as in tissue homeostasis, repair, 
and immune regulation. Many theories have been postulated to 
categorize these highly plastic cells into different subsets and to 
decipher their roles within healthy tissue and in cancer.

For example, macrophages can be classified by their origins 
into monocyte-derived macrophages (MDMs) or tissue-resident 
macrophages (TRMs) [8]. In an adult, macrophages mainly origi-
nate from monocytes in the blood generated from myeloid pro-
genitors within the bone marrow. Once recruited to different 
tissues, mainly via the CCL2/CCR2 pathway, monocytes then differ-
entiate into macrophages depending on organ-specific cues [8]. 
TRMs are embryonic-derived, generated during earlier stages of 
ontogeny that persist throughout life and can be recruited to the 
TME via the CSF-1/CSF-1 R pathway [9]. TRMs are highly hetero-
genous, have self-renewal properties, and can be found in tissues 
such as the skin, eye, brain, and lung [9]. Within the context of 
cancer, although not yet clearly elucidated, the contribution of 

either TRMs or MDMs in tumors appears to be organ specific [10– 
12]. It has been suggested that the source of macrophages may 
vary depending on the stage of tumorigenesis and the cancer
type [13]. In early stages of tumorigenesis, TRMs may predominate 
as the main infiltrating population, while in the later stages MDMs 
are recruited and polarized by the tumor, becoming the dominant 
TAM population [13].

Macrophages can be classified by function. For example, 
macrophages can have pro-inflammatory properties, contri-
buting to immune defense via key mechanisms that include 
phagocytosis, antigen presentation and immunomodulation 
[14]. Upon recognition of pathogen-associated molecular pat-
terns (PAMPs) or damage-associated molecular patterns 
(DAMPs) by cell surface pattern recognition receptors (PRRs), 
macrophages mount a rapid response to phagocytose target 
cells, such as pathogens or apoptotic cells [14]. Macrophages 
can then secrete cytokines to modulate the immune system 
and activate the complement cascade. Macrophages are also 
present engulfed exogenous antigens through the major his-
tocompatibility complex class II (MHC II), and cross presenta-
tion on MHC I, to activate T helper cells via cognate T cell 
receptors, mounting an adaptive immune response [15]. 
Furthermore, macrophages may be involved in antibody 
dependent cellular cytotoxicity (ADCC), phagocytosis (ADCP) 
and complement activation (CDC) [14]. Several of these func-
tions may also be seen in anti-tumor immunity and cancer 
surveillance [15].

On the other hand, macrophages can also exhibit immunoregu-
latory roles, evident in their ability to maintain tissue homeostasis 
and coordinate tissue repair. They can perform these juxtaposing 
mechanisms via an array of mediators to potentiate complex pro- 
inflammatory or anti-inflammatory cascades, depending on the 
local tissue conditions in which they operate [14].

Categorizing macrophages by function was historically, and 
perhaps simplistically, achieved using the M1/M2 spectrum [16]. 
The ‘classically activated’ M1 phenotype is typically described as 
pro-inflammatory, and in the context of cancer, thus tumoricidal, 
whilst the alternatively activated M2-like phenotype is considered 
anti-inflammatory, regulatory, immunosuppressive or pro- 
tumorigenic [16]. ‘M1-like,’ or classically activated macrophages 
are involved in antigen presentation and mediate intracellular 
pathogen or tumor cell destruction [16]. These cells typically 
express high levels of cytokines and chemokines such as IL-12, IL- 
6, CXCL10, IFN-γ, IL-23, and TNF-α, and other secreted mediators 
such as nitric oxide synthase (NOS) and reactive oxygen species 
(ROS) [16,17]. The production of ROS may also increase TNF-α and 
MCP-1 secretion, further contributing to enhanced infiltration of 
macrophages into tissues including into the TME [18]. On the other 
hand, ‘M2-like,’ or regulatory macrophages are characterized by 
high expression of cytokines such as IL-10 and TGF-β, which 
among other functions support expansion of regulatory T cells 
(Tregs) [16] and vascular endothelial growth factor (VEGF) which 
supports angiogenesis and inhibits T cell activity [19,20]. Together, 
these create an immunosuppressive environment amenable to 
tumor proliferation and metastasis (8). It is widely acknowledged 
that a binary M1 or M2 nomenclature represents only extreme 
phenotypes. Based on their extraordinary plasticity and diversity in 
morphology, cell surface, and intracellular markers, secretomes 
and functions, macrophage populations likely represent a wide 

Article highlights

● Macrophages are a highly diverse and plastic subset of immune cells, 
with both inflammatory, cancer-killing functions, and immunoregula-
tory, cancer-promoting functions.

● Melanoma derived factors can influence macrophage polarization to 
promote pro-tumor functions.

● Macrophages are active players in all current therapies for melanoma: they 
interact with monoclonal antibody therapy, contribute to MAPKi therapy 
resistance and play a key role in the mechanism of oncolytic viruses.

● When designing new treatment for melanoma, the interactions with 
macrophages should be considered. Further to this, specifically tar-
geting macrophages may hold great therapeutic potential.
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spectrum of polarization phenotypes, continuously influenced and 
regulated by immune and inflammatory milieu [21]. This milieu 
may differ by cancer type, organ and the local tissue in which 
macrophages reside [22].

3. TAMs in the melanoma tumor microenvironment

3.1. Melanoma derived factors can influence 
macrophage polarisation

Within the continuum of diverse phenotypes of TAMs in the TME 
of melanoma, a process of adaptation from an immune activating 
to immunosuppressive and tumor-promoting functions may 
occur early [22]. Melanoma-derived soluble factors and metabo-
lites, such as TGF-β, IL-10, IL-4, and IL-13 May contribute to this 
shift toward acquisition of pro-tumorigenic features [23]. Tumor- 
derived granulocyte-macrophage colony-stimulating factor (GM- 
CSF), has been reported to downregulate macrophage-mediated 
cytotoxic functions [24]. Melanoma exosomes have been shown 
to induce a spectrum of macrophage phenotypes secreting 
a variety of anti-inflammatory (IL-4, IL-10, IL-11, and IL-13) but 
also pro-inflammatory (TNF-α, IL-12B, IL-1β, IL-6, iNOS, and 
CCL22) factors, reflecting the spectrum of phenotypes detected 
in the TME [25]. Hypoxia can be another driver of macrophage 
polarization toward immunosuppressive phenotypes. In hypoxic 
environments, melanoma cells have been reported to enhance 
release of the DAMP High-Mobility Group Box 1 protein (HMGB1), 
driving accumulation of M2-like macrophages at the tumor site 
and release of IL-10 [26]. A recent study also showed that lactic 
acid, produced by tumor cells as a by-product of hypoxic glyco-
lysis, induced VEGF expression, and M2-like polarization of TAMs, 
promoting tumor development [26].

3.2. TAMs interact with immune cells in the TME to 
promote both anti- and pro-tumour effects

3.2.1. TAMs and T cells
Macrophage polarization states may also be influenced by 
a variety of interactions with different immune cells in the 
TME.
The interaction between TAMs and T cells is reciprocal and 
complex. TAM polarization is known to be regulated by T cells, 
while macrophages also have a large influence on T cell activ-
ity [27].

For example, in the initial stages of tumorigenesis, TAMs play 
a pro-inflammatory role resulting in tumor suppression, with IFN-γ 
activating TAMs able to exert a killing effect on tumor cells [28]. As 
well as this, TAMs mediate the T cell responses by upregulating co- 
stimulatory molecules, such as CD80 and CD86, activating and 
recruiting CD8+ T cells via CD28 engagement, to initiate the 
release of chemokines and cytokines further promoting an inflam-
matory response [29].

Tumor progression is associated with an immunoregula-
tory-TAM phenotype switch, which creates a tumor- 
promoting environment through the expression of T cell 
immune checkpoint ligands on TAMs including PD-L1 inhibit-
ing T cell activation [30]. TAMs are also able to influence T cell 
recruitment, demonstrated in studies in which depletion of 
TAMs is shown to restore T cell migration and infiltration into 
the TME, improving the efficacy of immune checkpoint inhi-
bitors (ICIs) such as anti-PD1 immunotherapy [27].

The interaction between macrophages and Tregs may play 
a key role in tumor-associated immunosuppression [31]. Tregs 
promote macrophage polarization toward an immunoregula-
tory phenotype [31]. This is done through the secretion of 
cytokines such as IL-4, IL-10, TGF-β and IL-13 by Tregs [32]. 

Figure 1. Macrophages can be polarised to a pro-tumour phenotype by cells in the TME. Macrophages can be influenced by melanoma-secreted factors, melanoma-derived 
exosomes and melanoma-derived products of hypoxia metabolism. Regulatory T cells (Treg) can reduce IFNγ production, required for pro-inflammatorymacrophage polarisation, as 
well as produce immunoregulatory cytokines including TGFF-β, IL-10 and IL-4. Effector T cells (Teff) and macrophages can interact via the PD-1/PD-L1 axis, reducing T cell activation 
and further promoting an immunoregulatory environment. B cells can secrete multiple immunoregulatory factors that influence macrophage states; and pro-tumour neutrophils 
reciprocally interact with macrophages to increase the recruitment and polarisation of both pro-tumour macrophages and neutrophils. Created with BioRender.com
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Such macrophages in return secrete TGF- β and promote 
expression of PD1 on CD4+ T cells, resulting in further infiltra-
tion of Tregs into the tumor [32]. As well as this, Tregs inhibit 
the release of IFN-γ by CD8+ T cells, inhibiting the presence of 
tumor-killing macrophages in the TME [31].

Figure 1 summarizes the interaction between macrophages 
and cells within the TME to drive polarization to a pro-tumor 
phenotype.

3.3. Manipulating TAM-T cell interactions through cell 
surface receptors

3.3.1. CD40
CD40, a co-stimulatory molecule, is strongly expressed on 
macrophages and binds to the CD40 ligand present on 
CD4+ T cells to activate T cell maturation functions via its 
interaction with its ligand CD40L on the T cell surface [33]. 
Agonistic CD40 monoclonal antibodies can stimulate the acti-
vation of pro-inflammatory marker genes, which in turn can 
reeducate TAMs toward an anti-tumorigenic phenotype [34]. 
CD40 monoclonal antibodies can also exert an effect through 
a T cell independent, macrophage-dependent anti-tumor 
mechanism. CD40 agonists bind CD40 expressed on macro-
phages resulting in the release of IFN-γ and CCL2, redirecting 
CCR2+ macrophages to infiltrate tumors until the CD40 signal 
ablates [35]. As well as this, CD40 activation triggers fatty acid 
oxidation (FAO) and glutamine metabolism, promoting epige-
netic reprogramming of pro-inflammatory genes and an anti- 
tumor macrophage phenotype [33]. This dual mechanism of 
action of CD40 agonists, may therefore highlight a novel ther-
apeutic option (see Table 1).

3.3.2. Marco
Macrophage receptor with collagenous structure (MARCO) is 
a scavenger receptor expressed almost exclusively on tumor- 
promoting TAMs and are thought to have an immunoregulatory 
role within the TME supporting tumor growth [36]. MARCO liga-
tion to modified cell-antigens, such as apoptotic cells or tumor 
cells, induces activation of the MEK/ERK/p90RSK/CREB signaling 
cascade, promoting the release of IL-10 and upregulation of PD-L1 
in a STAT3-dependent manner [37], which contributes to an 
immunosuppressive TME
through enhancing Treg cell proliferation, blocking cytotoxic 
CD8+ T cell and NK cell activation [38]. Upregulation of surface 
MARCO expression can be induced by certain cytokines including 
IL-1a, IL-6 and IL-10 present within the TME [38].

Inhibition of MARCO can reverse the immunosuppressive 
effects of TAMs, which in turn has been shown to reduce 
tumor progression in murine models of solid tumors [39]. 
Upon inhibition of MARCO, macrophages release TNF- 
related apoptosis-inducing ligand (TRAIL) promoting natural 
killer (NK) cell-mediated killing and results in downmodula-
tion of Tregs, reduction of IL-10, and reestablishes cytotoxic 
T cell activity [37]; Therefore, anti-MARCO antibody treatment 
used in combination with T cell-directed immunotherapy, 
such as antibodies to PD-1 or PD-L1 May provide 
a promising approach to combinatorial immunotherapy for 
melanoma.

3.3.3. Sting
Stimulator of interferon genes (STING) is a type 1 interferon 
driver mediated by ligands such cyclic GMP-AMP (cGAMP) [40]. 
STING-triggered tumor-infiltrating macrophages showed more 

Table 1. Examples of current and ongoing clinical trials targeting macrophages in cancer therapy.

Drug Name Type Target
Cancer 
Type Phase Status

Route of Drug 
Administration Outcome Reference

Plozalizumab 
Vedolizumab

mAb – IgG1 CCR2 Melanoma 1b Terminated Intravenous Protocol efficacy futility met NCT02723006

Carlumab mAb – IgG1 CCL2 Solid 
tumors

1 Completed Intravenous No objective anti-tumor response observed NCT00537368

Sotigalimab mAb – IgG1 CD40 Solid 
tumor

1b Active Intravenous NCT03502330

CP-870,893 mAb – IgG2 CD40 Melanoma 1 Completed Intravenous Combination therapy shows clinical efficacy NCT01103635
Cabiralizumab mAb – IgG4 CSFR-1 Solid 

tumor
1b Active Intravenous NCT03502330

Emactuzumab mAb – IgG1 CSFR-1 Solid 
tumors

1/1b Active Intravenous NCT01494688

Emactuzumab mAb – IgG1 CSFR-1 Solid 
tumors

1 Completed Intravenous Manageable safety profile and considerable 
objective response rate was observed

NCT02323191

Poly-ICLC dsRNA TLR3 Solid 
tumor

1 Active Intratumoral NCT04116320

BO-112 dsRNA TLR3 Melanoma 2 Active Intratumoral NCT04570332
Bevacizumab mAb – IgG1 VEGF Melanoma 2 Recruiting Intravenous NCT04356729
AT13148 Protein 

kinase 
inhibitor

ROCK-AKT Solid 
tumor

1 Completed Orally No results published NCT01585701

Vactosertib Protein 
kinase 
inhibitor

TGF-β Melanoma 2 Recruiting Orally NCT05436990

Panobinostat Hydroxamic 
acid

HDAC Melanoma 1 Completed Orally Results pointed against the use as 
monotherapy

NCT01065467

Panobinostat Hydroxamic 
acid

HDAC Melanoma 1 Completed Orally No additional benefit observed in response 
rate when combined with anti-CTLA4

NCT02032810

0508CT- CAR-M HER-2 Solid 
tumors

1 Recruiting Intravenous NCT04660929
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M1-like phenotype compared with other TAMs [40]. STING also 
exerts anti-tumor effects by promoting CD8+ T cell activity 
through upregulation of MHC class I molecules and NK cell 
infiltration [41]. Intratumoral injection of cGAMP resulted in 
accumulation of activated macrophages in the TME in a STING- 
dependent manner resulting in an antitumour immune response 
[40,41]. STING signaling contributed to the activation of the 
NOD-like receptor protein 3 (NLRP3) [42]. NLRP3 is 
a multiprotein complex that regulates macrophages, promoting 
secretion of pro-inflammatory cytokines such IL-18 and IL-1β by
macrophages and this in turn was shown to optimize anti-tumor 
activity of NK cells and restrict tumor growth [42]. [42] Similarly, 
low levels of expression of STING in hepatocellular carcinoma 
cells has been associated with increased tumor volume and 
decreased CD8+ T cell infiltration [43]. Several STING agonists 
have shown potent anti-tumor efficacy with good tolerability in 
melanoma-bearing mice models and clinical applicability may 
therefore be promising [44].

3.4. TAMs and B cells

Macrophages may interact with regulatory B cells (Bregs). 
Transfer of B1a Bregs in mouse melanoma models has been 
shown to exacerbate tumor growth [45], a process thought to 
be mediated by the secretion of anti-inflammatory factors 
including IL-10, IL-35 and TGF-β by Bregs [46]. In the human 
setting, a study reported enhanced circulating TGF-β+PD-L1+ 
B cells and TGF-β+:TNF-α+ B cell ratios and lower pro- 
inflammatory TNF-α+ B cells and IFN-γ+:IL-4+ B cell ratios as 
a feature of melanoma [46]. TGF-β-expressing B cells were also 
detected in human melanoma lesions assembling in clusters 
[46]. These skewed B cell responses are expected to impact on 
macrophage phenotypes and their functions. TGF-β has been 
shown to transform macrophages into an immunosuppressive 
phenotype. IL-10 results in inhibition of macrophage function 
[47,48]. IL-10 also plays a key role in reducing the proportion 
of cytotoxic T cells further resulting in pro-tumor remodeling 
of the TME [45]. B cell-derived GABA signaling has also been 
implicated in promoting monocyte differentiation into anti- 
inflammatory macrophages with subsequent upregulation of 
secretion of IL-10 and inhibition of CD8+ T cell cytotoxic 
function [49]. Thus, by inactivating the B cell-specific GABA- 
generating enzyme GAD67, an anti-tumor response can be 
enhanced, offering a potential new therapeutic target [49].

Recent studies have also highlighted that murine, and 
possibly human cancers, may also stimulate transformation 
of B cell precursors into macrophage-like cells to generate 
immunosuppressive TAMs [50]. Mouse models of solid tumors 
have shown the differentiation of B cell precursors to generate 
macrophage-like cells (B-MFs) in response to tumor-secreted 
CSF that activate the CSF-1 R signaling pathway [50]. Unlike 
monocyte-derived macrophages, B-MFs are more efficient at 
phagocytosing apoptotic cells, suppressing proliferation of 
cytotoxic T cells and inducing a rise in Tregs [50]. This, in 
turn, promotes tumor progression and metastasis [50]. Even 
though myeloid-biased differentiation in the bone marrow is 
traditionally considered the primary source of TAMs, the dif-
ferentiation of splenic hematopoietic stem, erythroid progeni-
tor cells, and B precursor cells in the spleen, have all also been 

depicted as important origins of TAMs [51]. It may therefore 
be possible to utilize the heterogeneity and plasticity of TAMs 
as a future therapeutic target in the context of melanoma, by 
targeting tumor-promoting immune cells and reeducating 
them into TAMs with an anti-tumor phenotype.

3.5. TAMs and neutrophils

Neutrophils are phagocytic cells, which can be polarized into 
an anti-tumor N1 or pro-tumor N2 phenotype [52]. The
presence of tumor-associated neutrophils has been correlated 
to poor prognosis in melanoma patients [53]. It is thought that 
melanoma cells reshape the TME by secreting various cyto-
kines including TGF-β, IL-6, and IL-8 that trigger a pro-tumor 
N2 phenotype in neutrophils [54]. N2 polarized neutrophils, in 
turn, confer stem-like traits to melanoma cells, sustaining 
melanoma development and progression [54]. Through the 
secretion of IL-8 and TNF-α, neutrophils recruit macrophages 
to inflammatory environments; in turn, TAMs trigger 
a reciprocal signaling cascade involving IL-17 expression by 
T cells leading to G-CSF-induced migration of pro-tumor N2 
neutrophils [52].

The interaction of macrophages within the wider immune 
system and the mechanisms driving early polarization that 
favor immune-activating phenotypes versus the signals that 
promote immunosuppressive signals in advanced disease are 
still being elucidated. Understanding this may help create 
immunotherapy approaches for melanoma by allowing target-
ing of specific signaling molecules and pathways.

3.6. Interaction of TAMs with myeloid-derived 
suppressor cells (MDSCs) and dendritic cells (DCs)

MDSCs are a group of heterogeneous bone marrow-derived 
immature myeloid cells associated with chronic inflammation 
and tumor progression. Their pro-tumoral roles are thought to 
be mainly mediated by suppressing CD8+ T cell and NK cell 
activation and cytotoxic activities [55] Veglia et al. 2021). 
Macrophages and MDSCs are present within most solid 
tumors, and contribute to the creation of an immunosuppres-
sive TME and unfavorable prognosis [55]. MDSCs exert an 
immunosuppressive effect on macrophages by releasing IL- 
10, thus inhibiting macrophage expression of IL-12 and pro-
moting M2-like-phenotype switching (Parker et al., 2014). 
These mechanisms impair anti-tumor immunity and promote 
tumor invasion and metastasis. A study in an inducible CSF1R 
knockout mouse model of melanoma demonstrated that gran-
ulocytic myeloid-derived suppressor cells (G-MDSCs) persist 
following CSF1R blockade which depleted TAMs (Banuelos 
et al. 2024). G-MDSCs furthermore suppressed macrophage 
phagocytosis, while CXCR2 blockade of G-MDSCs promoted 
macrophage pro-inflammatory phenotype and melanoma 
clearance (Banuelos et al. 2024).

Dendritic cells (DCs) can exert both an anti-tumor and pro- 
tumor functions. They can initiate an anti-tumor immune 
response by cross-presenting tumor-associated antigens pre-
dominantly to CD8+ T cells [56]. Cross-presenting DCs may 
interact with antigen-presenting macrophages to activate 
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cytotoxic T cells [57]. This process is further enhanced by the 
production of IFN-I derived from macrophages and therefore 
plays a key role in promoting anti-tumor effects [57]. 
Melanoma cells can exploit DC versality to subvert their func-
tions toward pro-tumor phenotypes that promote Tregs and 
a Th2 response [58]. Interestingly, tumor-infiltrating CDs have 
been shown to express high levels of markers characteristic of 
TAMs, such as CD206 and CD163, suggesting these cells exhi-
bit a TAM-like pro-tumoral function [59].

MDSCs can migrate to different peripheral organs and 
rapidly differentiate into mature macrophages and DCs [60].
This highlights likely interlinked roles between MDSCs, DCs, 
and macrophages in driving tumor growth.

3.7. Tumour-promoting functions of TAMs in melanoma

Melanoma progression and prognosis correlates with increasing 
abundance of TAMs and a shift in their phenotypes within the TME 
[21]. This reflects a multitude of attributes with which these cells 
may support melanoma progression and the process of metasta-
sis. TAMs secrete chemotactic factors, such as CCL2 and CCL1, 
which promote further macrophage recruitment and polarization, 
as well as migration of other cells, such as tumor-promoting 
neutrophils, to support an immunosuppressive TME [61,62]. 
TAMs are reported to feature reduced cytotoxic functions, poor 
antigen-presenting ability, and expression of the checkpoint mole-
cule PD-1; all of which have been correlated with disease progres-
sion and poor therapy response [63,64].

Macrophages can contribute to angiogenesis [65–67]. The 
secretion of TNF-α and IL-1α by activated TAMs triggers the pro-
duction of IL-8 and VEGF-A by melanoma cells, resulting in 
enhanced angiogenesis and leakier vasculature [68]. Together 
with IL-4 and IL-10, VEGF-A also acts as a chemoattractant for 
immunosuppressive macrophages [69]. Additionally, melanoma 
polarizes immunoregulatory macrophage phenotypes able to 
secrete adrenomedullin (ADM), a potent and long-lasting vasodi-
lator, as well as upregulates its receptors to promote pro- 
angiogenic and cancer cell proliferation processes by improving 
the blood supply to tumor cells [70]. Furthermore, expression of 
the macrophage inhibitory cytokine-1 (MIC-1), a member of the 
TGF-β family regulated by mutant BRAF melanomas, is enhanced 
in the TME and the patient circulation [71]. MIC-1 is a cytokine 
which regulates various cancer hallmarks including proliferation 
and promotion of a pro-tumor inflammatory environment, indu-
cing invasion, metastasis, angiogenesis, and resisting cell-death 
[71,72].

TAMs can play a key role in promoting a metastatic cascade of 
cancer cells within melanoma [2]. The epithelial–mesenchymal 
transition (EMT) is a complex developmental process that mor-
phologically transforms tumor cells to allow loss of cell–cell junc-
tions and detachment from the basement membrane, enabling 
migration into the surrounding stroma and formation of distant 
metastasis [73], a process known as phenotype-switching in mel-
anoma. Several studies in other cancer types have shown that 
TAMs regulate the EMT-like process to promote metastasis, 
through the secretion of IL-8, TNF-α and TGF-β allowing down-
regulation of E-cadherins, required for maintenance of cell–cell 
junctions [74–76].

Macrophages are found to be localized to blood vessels within 
the TME and assist in intravasation of tumor cells into the circula-
tion [77]. Macrophages within the TME release proteolytic 
enzymes that breakdown the extracellular matrix [78] and trigger 
a positive feedback loop consisting of tumor cell-produced CSF-1 
and TAM-produced EGF promoting chemotactic migration of 
tumor cells toward blood vessels [79]. The Rho-kinase (ROCK) – 
myosin II pathway is a key regulator of invasive and metastatic 
behavior [80], driving contractile forces of tumor cells required for 
migration, metastatic colonization, and aggressive invasion 
[80,81]. Analysis of human melanoma biopsies demonstrated 
high myosin II activity in the invasive segments of tumors in 
proximity of CD206+CD163+ TAMs and vessels [82]. Melanoma 
cells secrete a complex set of proteins controlled by IL1α-NF-κB, 
and this in turn triggers a positive feedback loop with ROCK- 
Myosin II that enables recruitment of monocytes and their differ-
entiation into tumor-promoting macrophages [82]. The mela-
noma-associated macrophages subsequently support melanoma 
cell growth, by secreting factors that support MAPK-ROCK2- 
Myosin II-dependent growth [83] Inhibition of ROCK-myosin II 
reduces the presence of pro-tumorigenic macrophages in the 
TME, contributing to tumor regression [82]. The combination of 
ROCK-inhibitors with anti-PD1 therapy, has also been shown to 
reduce PD-L1 expression on both tumor cells and macrophages, 
thus improving therapeutic efficacy [84].

Macrophages have been shown to assist tumor cells attach 
and extrude through vessel walls, and loss of macrophages has 
therefore been shown to dramatically decline the extravasation 
rate with a co-incidence failure of metastasis [85]. Studies have 
shown that there are two distinct types of macrophages that 
infiltrate melanoma metastasis, and the profile of these cells 
depends on their location [86]. iCD14+ macrophages are close 
to the tumor nests and T cells, with a primary role of presenting 
intracellular indigested tumor antigens. On the other hand, 
sCD14+ macrophages localize in the stroma, and these often 
correlate with better survival for melanoma patients [86]. 
Interestingly, Martinek et al. also demonstrated that the macro-
phage profile at different metastatic sites is homogeneous, sug-
gesting that the cellular profile is shaped more by the 
neighboring melanoma cells rather than intrinsic properties of 
the metastatic tissue site [86]. It may therefore be important to 
take into consideration the topology of macrophages in meta-
static disease when developing macrophage-targeted therapies.

Through a better understanding of the conditions that 
influence macrophages and how these cells respond to 
shape the TME, it may be possible to derive strategies to 
enhance immune-activating subsets and re-activate or 
deplete immunoregulatory and suppressive phenotypes.

4. Macrophages are active players in checkpoint 
inhibitor functions and patient outcomes

4.1. Mechanisms of action of checkpoint inhibitor 
antibodies

Monoclonal antibody ICIs are now first line treatment for 
advanced melanoma. These include inhibiting the pro-
grammed cell death-protein 1 (PD-1), its ligand programmed 
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death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4). CTLA-4, expressed on activated memory 
T cells and upregulated on FoxP3+ Tregs, competes with CD28 
on the T cell for recognition of co-stimulatory CD80/86 on 
antigen presenting cells [87]. This delivers negative signals to 
moderate T cell activation [87]. A negative regulator of mature 
T cell functions, PD-1 is expressed on activated and exhausted 
T cells, B cells, NK cells, and in peripheral tissues. Its ligand PD-
L1, whose expression is induced by inflammatory cytokines, 
such as IFN-γ, is found on immune cells including T cells, 
B cells, DCs, macrophages but also on cancer cells or cancer 
associated stromal cells [88]. PD-1-PD-L1 attenuates activation 
of antigen-educated T cells, limiting their functions and pro-
moting immune tolerance [89].

ICIs include Ipilimumab, an IgG1 antibody specific for CTLA- 
4, Pembrolizumab and Nivolumab, IgG4 antibodies specific for 
PD-1, and Atezolizumab, an IgG1 antibody recognizing PD-L1 
and many others. ICIs reverse inhibitory immune checkpoints 
to unleash effective T cell responses that can restrict tumor 
progression [90]. Although the response rates to ICIs in 
patients with melanoma is improving, around half of mela-
noma patients still do not respond combination anti-PD-1/ 
anti-CTLA-4 therapies, whilst single agent response rates are 
even lower at ~ 30–40% for anti-PD-1 agents and ~ 10–15% for 
anti-CTLA-4 agents [91–93].

4.2. Macrophage Fc-receptor engagement: influencing 
ICI therapy outcomes

Although ICIs primarily target T cell mediated responses to acti-
vate a broad T cell response against the tumor, as a highly abun-
dant and diverse immune cell population in the TME, 
macrophages are emerging as key players in influencing ICI func-
tions via a range of mechanisms. Dissecting these attributes may 
help predict or delineate disparate therapy response outcomes.

ICIs used in melanoma are monoclonal antibodies (mAbs). 
As such, ICIs are composed of the fragment for antigen bind-
ing (Fab) region, the proportion of the antibody that binds 
target antigens, and the crystallizable fragment (Fc) region, 
which binds Fc receptors (FcR) on immune cells, including 
macrophages [94]. Macrophages express multiple FcRs, 
which when engaged by antibodies via the Fc region, can 
trigger a pro- or anti-tumor response [95]. Macrophages 
express activatory FcRs, including FcyRIIA, which leads to 
strong ADCC and ADCP activity against tumor cells when 
bound to IgG1 antibody isotypes (e.g. ipilimumab) [96]. In 
addition, activation of the ADCP cascade may allow macro-
phages to present tumor antigens to T cells in the TME, 
eliciting a long-lasting tumor-specific adaptive immune 
response [94]. Alongside, macrophages express FcγRIIB, 
which is the only inhibitory FcyR, transducing an inhibitory 
signal via ITIM domain signaling upon binding of antigen- 
bound IgG. This is known to reduce the capacity of mAbs to 
induce ADCC and ADCP [94].

Designing ICIs with an optimal Fc portion should take into 
account several considerations [94]. For example, anti-PD-1 
mAbs including Nivolumab and Pembrolizumab are of the 
IgG4 subclass, which is the least immune activating isotype, 

with well-described impaired Fc-mediated effector functions 
[97,98]. IgG4 antibodies, however, retain affinity for FcγRI 
expressed on macrophages, meaning that they can still bind 
to and be sequestered by macrophages [94]. Time-lapse intra-
vital imaging studies in mouse models of anti-PD-1 responsive 
cancers, have shown that macrophages uptake anti-PD-1 
mAbs from the surface of T cells [99], reducing their efficacy, 
an unhelpful consequence of mAbs binding the high affinity 
FcRs on these macrophages. In addition, anti-PD-1 mAbs when
bound to the FcRs of macrophages via the Fc portion and 
target T cells via the Fab, can promote T cell mediated cyto-
toxic killing by macrophages, reducing therapeutic efficacy 
[94,100]. Furthermore, IgG4 binding to FcγRs can not only 
impair PD-1 targeting but also the recognition of the inhibi-
tory FcγRIIB could restrict pro-inflammatory macrophage prop-
erties via downstream ITIM signaling.

In contrast to the sometimes-unhelpful interactions 
between PD-1/PD-L1 mAbs and macrophages in the TME, 
the efficacy of anti-CTLA-4 mAbs may be enhanced by 
macrophages. CTLA-4 is highly expressed by tumor infiltrat-
ing Tregs. Aside from the Fab portion of Ipilimumab binding 
and preventing the regulatory action of CTLA-4 on T cells, 
Tregs expressing high levels of CTLA-4 could be targeted by 
ipilimumab with the Fc portion of the antibody binding 
FcγRs expressed on immune cells including macrophages, 
inducing ADCC of Tregs [101,102]. Genetic Treg ablation in 
mouse models has shown that the immune regulatory 
impact of anti-CTLA-4 mAbs may not be solely driven by 
their effect on T cell stimulaton, but also through engage-
ment of FcγR on macrophages [103]. FcγR engagement by 
anti-CTLA-4 mAbs, induces rapid remodeling of the innate 
immune landscape through downstream activation of type 1 
interferon signaling and reduction of suppressive macro-
phages; this likely contributes to the induction of 
a successful response as part of anti-CTLA-4 therapy [103].

Aside from engaging their FcRs, macrophages may be directly 
targeted by the Fab portion of ICIs. It has been shown that TAMs 
in melanoma tumor express PD-L1, which can regulate macro-
phage activation and proliferation [63,104]. Although not 
designed to specifically effect macrophage function, studies in 
mouse models of cancer have shown that anti-PD-1/PD-L1 block-
age in vivo increases macrophage phagocytosis with subsequent 
reduction in tumor growth and prolonged survival [63]. Real-time 
imaging in whole tumor tissues has demonstrated accumulation 
of anti-PD-L1 mAbs in tumor tissues regardless of PD-L1 expres-
sion by tumor cells [105]. The response to checkpoint inhibitors 
was predominantly mediated through interactions of anti-PD-L1 
antibodies with PD-L1 on host myeloid cells, which promotes 
T cell activation to mount an anti-tumor response [105]. This 
would explain why some patients with PD-L1 negative tumors 
also respond to PD-L1 blockade therapy.

4.3. Recruitment of TAMs and TAM-mediated 
recruitment of other effector cells

The effect of ICIs could be enhanced by altering the composi-
tion of the TME. For example, CSF-1 is a primary growth factor 
that controls recruitment, proliferation, and survival of macro-
phages through engagement with and activation of the CSF-1 
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receptor (CSF-1 R) [106]. Myeloid cell-rich tumors, require CSF-1 
for TAM accumulation and maintenance. Blockade of CSF- 
1-CSF-1 R can functionally reprogramme macrophage 
responses, enhancing their antigen-presenting abilities to pro-
duce anti-tumor T cell responses [107]. F [107,108]

A phase 1b study (NCT02323191) evaluated the safety and 
efficacy of the CSF-1 R blocking mAb emactuzumab in combi-
nation with the anti-PD-L1 mAb atezolizumab in patients with
advanced solid tumors [109]. Combination treatment demon-
strated a manageable safety profile with an objective response 
rate of 5.6% in melanoma patients [109]. An increase of CD8+ 
TILs was also observed in patients who lacked TAM depletion 
and was associated with a clinical benefit [109]. It is speculated 
that this may be mediated by PD-L1 and CSF-1 R mAbs bind-
ing to persisting TAMs to influence downstream signaling and 
ultimately drive TAM reprogramming [109]. TAMs may be 
reprogrammed to have a lower dependence on CSF-1 as 
a survival signal [109], show emactuzumab-induced pro- 
inflammatory type I IFN release [110], or atezolizumab- 
induced PD-L1-dependent M1 TAM polarization [111,112]. An 
alternative treatment approach may include blockade of CCL2 
signaling involved in recruitment of TAMs to the TME as 
discussed above, which was shown to reduce tumor progres-
sion in several experimental tumor models [113]. However, 
when taken into clinical trials, plozalizumab, an IgG1 antibody 
against CCR2, failed to show any discernible benefit 
(NCT02723006) (see Table 1).

4.3.1. Enhancing T cell recruitment
In a large proportion of cancer patients, CD8+ T cells are 
excluded from the vicinity of cancer islets. This contributes 
to limited therapeutic response and poor clinical outcomes 
[114]. TAMs are an important determinant of T cell exclusion 
[114]. Macrophages form long-lasting interactions with CD8+ 
T cells, and in mouse tumor models depletion of macro-
phages, using CSF-1 R inhibitors, results in CD8+ T cell migra-
tion and infiltration into tumor islets [114]. When combined 
with anti-PD-L1 therapy, this further enhances CD8+ T cell 
migration subsequently delaying tumor progression [114]. 
Furthermore, following CSF-1 R inhibition, an increase in 
CCL2, CXCL9, and CXCL10 was also noted [114], increasing 
recruitment of myeloid cells through the CCL2/CCR2 axis 
[115], and cytotoxic T cells, NK cells, and macrophages via 
the CXCL9–10/CXCR3 axis [116]. Cytotoxic T cells and NK 
cells further release IFN-y, promoting polarization of macro-
phages to a pro-inflammatory phenotype [116]. These altered 
chemotactic mediators in the TME and the subsequent influx 
of pro-inflammatory cells demonstrate the profound effect of 
the depletion of anti-inflammatory macrophages and polariza-
tion to a pro-inflammatory phenotype can have on the whole 
TME [114].

An upregulation of CXCR3 ligands, CXCL9 and CXL10, in an 
IFNγ-dependent manner has also been demonstrated follow-
ing dual PD-1/CTLA-4 blockade with subsequent improvement 
in therapeutic efficacy [117]. Single-cell RNA-sequencing ana-
lysis of patient tumor-infiltrating lymphocytes revealed that 
CXCR3 was expressed by CD8+ and CD4+ T cells, whilst 
CXCL9 and CXCL10 were predominantly expressed by 

macrophages following dual ICI treatment [117]. Depletion of 
macrophages halted CD8+ T cell infiltration, but not migration 
of CD4+ Tregs, and reduced therapeutic efficacy to dual ICI 
therapy [117]. This suggests that CD8+ T cells infiltrate the 
tumor via the CXCL9/CXCL10-CXCR3 pathway and therefore 
T cell expression of CXCR3 is cruicial for their migration toward 
CXCL9/10 produced by TAMs. Adding to the importance of 
this macrophage-T cell interaction, CXCL9/10 production was
demonstrated to be dependent on the release of IFNγ and 
TNF-α produced by T cells [117]. As well as this, given that 
macrophages also express CXCR3, a positive feedback loop 
may be stimulated by CXCL9/10, further promoting both 
macrophage and CD8+ T cell recruitment [117]. This highlights 
a novel strategy to enhance CXCL9/10 production, particularly 
by macrophages, to enhance efficacy of immunotherapy in 
cancer patients.

TGF-β has also been shown to impair anti-PD-1/PD-L1 
immunotherapy efficacy by inducing an upregulation of PD- 
L1 by tumor cells [118]. Macrophages release cytokines, such 
as TGF-β, causing T cell dysfunction, accumulation of Tregs 
and reduced infiltration of CD8+ T cells [119]. Combination 
therapy of TGF-β inhibitors and anti-PD-1/PD-L1 has been 
shown to restore cytotoxic activity of T cells and anti-tumor 
activity of anti-PD-L1 in mouse models of melanoma and is 
currently being explored in phase 1 trials (NCT05436990) (see 
Table 1) [120,121].

4.3.2. Polarisation of TAMs towards pro-inflammatory 
phenotypes
Another strategy to enhance the effect of ICIs is to polarize 
macrophages into a more pro-inflammatory phenotype with 
the aim of enabling improved antigen presentation to, and 
activation of, T cells. Agonists to CD40 (CD40a) can trigger pro- 
inflammatory cytokine secretion and promote maturation and 
activation of macrophages and other antigen presenting cells 
to enhance anti-tumor activity, stimulate antigen presentation 
to T cells and promote influx of cytotoxic T cells [122]. 
A combination of CSF-1 R and CD40a may simultaneously 
augment T cell infiltration and alter TAM composition. 
Consequently, a phase 1 clinical trial (NCT03502330) investi-
gated the efficacy of the treatment combination of a CD40 
agonist (APX005M, sotigalimab) with a CSF-1 R inhibitor (cabir-
alizumab), offering a dual targeting approach to activate 
macrophages [122] (see Table 1). This combination alongside 
nivolumab showed good tolerability and signs of efficacy with 
upregulation of pro-inflammatory cytokines in solid tumors 
including melanoma [122]. However, optimization of the dos-
ing frequency is required to assess wider clinical applicability 
in difficult-to-treat patient populations with limited therapeu-
tic options.

MicroRNAs are a class of non-coding RNAs that regulate 
immune cells through the repression of certain genes [123]. 
miR-155 plays an expanding role in modulating the expression 
of CD8+ T cell effector genes such as IFNγ and TNF-α, within 
the TME [123]. Lack of miR-155 in T cells results in reduced 
IFN-γ expression by T cells; this decreases IFN-inducible gene 
expression by TAMs and subsequent reduction in the number 
of M1 macrophages, influencing the TME to promote anti- 
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tumor immunity [123]. Combination treatment with miR-155 
and ICI therapy may function via overlapping pathways; miR- 
155 expression within T cells allowed recovery of anti-tumor 
immune response by ICIs, and ICI treatment resulted in 
decreased expression of the targets repressed in miR-155 
tumor-infiltrating T cells [123].

In conclusion, this section demonstrates that macrophages 
play a key role in influencing the function of checkpoint 
inhibitors. Macrophages can be harnessed to hone an anti-
tumor response using several novel therapeutic strategies, and 
when combined with current ICI treatments this can improve 
patient outcomes (Figure 2).

5. Involvement of macrophages in melanoma 
pathways and pathway inhibitor mechanisms: 
opportunities for therapy

Targeted therapies developed for melanoma include MAPK 
inhibitors, BRAFi and MEKi, These target the pathogenic con-
stitutively activated MAPK pathway in BRAF- and NRAS- 
mutant melanoma cells [124]. Mutations in BRAF promoting 
cell proliferation and inhibiting apoptosis are present in 
approximately 50% of the cutaneous melanomas [125]. 
Inhibition of BRAF therefore halts tumorigenesis, a result 
which is significantly improved in combination treatments of 

BRAFi and MEKi therapies. While targeted therapies have 
improved progression-free survival and overall survival com-
pared to historical treatments including chemotherapy, they 
are only effective in a subset of patients with specific muta-
tions and the durability of response is often limited due to the 
development of treatment resistance [126].

TAMs often support neoplastic growth through their con-
tribution to development of treatment resistance [127]. In vivo 
BRAF-mutant melanoma models with fluorescent markers to 
track stage-specific changes in macrophages under targeted
therapy with BRAFi/MEKi, showed a rise in CCR2+ macrophage 
infiltration at the onset of a drug-tolerant persister (DTP) state 
after several weeks of treatment [127]. The DTP state refers to 
tumor cells entering a reversible slow proliferation state, 
which allows tumor cells to survive drug therapy long enough 
to acquire mechanisms of drug-resistance [128]. This can 
therefore have considerable clinical implications on response 
rates to targeted therapies. Various potential mechanisms 
have been revealed to mediate survival of DTP cells, including 
slow or no proliferation, adaptive energy depletion, microen-
vironmental adjustments and phenotypic plasticity [129]. All 
these mechanisms are thought to be related to the redox 
signaling pathway, whereby DTP cells undergo metabolic 
reprogramming to promote mitochondrial oxidative respira-
tion and an antioxidant process [129]. A therapeutic strategy 

Figure 2. Harnessing macrophages to enhance current and future therapies. Macrophages can be harnessed to hone an anti-tumour immune response via several 
therapeutic strategies. The left side summarises approaches to inhibit macrophages and their pro-tumour functions. Top left: treatment approaches blocking 
recruitment and survival of macrophages. Bottom left: strategies focusing on inhibiting immunosuppressive functions of macrophages and re-educating TAMs into 
anti-tumour effectors. The right side summarises current treatment approaches that stimulate a pro-inflammatory TAM response, including stimulation through 
multiple cell-surface receptors and the creation of CAR-M with enhancing cancer killing abilities. Created with BioRender.com
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may therefore be to increase intracellular ROS levels by using 
pro-oxidants such as transition metals or free fatty acids to 
interfere with the antioxidant functions of DTPs, thereby caus-
ing cell death [129]. On the other hand, a CCR2-deficient TME 
delayed the onset of resistance and shifted melanoma cells to 
a more sensitive state to targeted therapy [127]. Importantly, 
this phenotype was reversed with the introduction of CCR2+ 
macrophages in the TME of melanoma [127]. In another study, 
overexpression of CSF-1 R was demonstrated in patients with 
BRAF and other MAPK activating mutations [130]. As pre-
viously mentioned, CSF-1 R is expressed on TAMs and, 
enabling their recruitment toward CSF-1 ligand, which also
activates the ERK and PI3L/AKT pathways stimulating prolifera-
tion, differentiation, and survival of macrophages [130]. BRAF 
inhibition can result in rebound ERK activation with an asso-
ciated upregulation of CSF-1 R and its ligand [130]. Inhibition 
of CSF-1 R inhibits rebound of ERK in BRAF-treated melanoma, 
shifting the TME toward a pro-inflammatory state with subse-
quent reduction in growth and invasiveness of melanoma cells 
[130]. These effects were further improved with the synergistic 
use of coinhibition of CSF-1 R and BRAF [130].

Melanoma cells expressing vascular endothelial growth factor 
receptor 1 (VEGFR-1) particularly demonstrate resistance to this 
therapy [131]. Vascular endothelial growth factor A (VEGF-A), 
a proangiogenic signal, interacts with VEGFR-1 to promote 
a tumorigenic milieu contributing to angiogenesis and TAM 
recruitment [131,132]. Targeting VEGFR-1 has been demon-
strated to decrease macrophage recruitment [131]. In the setting 
of BRAFi resistance, it is recognized that BRAFi can lead to 
paradoxical activation of the MAPK pathway in non-mutant 
cells in the TME, including in TAMs, driving these cells to an 
immunosuppressive VEGF-secreting state, which in turn reacti-
vates the MAPK pathway in melanoma cells [131]. Thus, blockade 
of VEGF and its interaction with VEGFR-1, in conjunction with the 
use of BRAFi may provide a potential treatment approach (see 
Table 1)

Given the reported roles of TAMs in BRAF mutant mela-
noma influencing tumor progression and response to targeted 
treatments, altering the macrophage protumour function may 
present a potential therapeutic strategy to improve melanoma 
treatments [133,134].

6. The role of macrophages in oncolytic virus 
therapies used in melanoma

Talimogene laherparepvec (T-VEC) is an intralesional oncolytic 
viral immunotherapy, consisting of a genetically modified 
oncolytic herpes simplex virus, approved for the localized 
treatment of advanced unresectable melanoma. The phase III 
study Oncovex Pivotal Trial in Melanoma (OPTiM) demon-
strated a durable response over 6 months in patients in the 
T-VEC arm with improving overall survival in metastatic mela-
noma [135,136]. T-VEC’s tolerable side-effect profile also favors 
its use; however, since it is administered intralesionally, its use 
is limited to accessible metastasis and patients with visceral 
metastases do not benefit [135,136].

Early pre-clinical studies in melanoma reported anti-tumor 
effects of T-VEC through the direct infection and destruction of 

cancer cells [137]. However, recent studies have demonstrated 
an insight into the immunological functions of T-VEC [138–140]. 
Oncolytic viruses (OV) eliminate cancer cells by activating apop-
totic pathways, creating pathogen-associated molecular pattern 
molecules, PAMPs [137]. PAMPs are a diverse set of microbial 
molecules that share patterns, which bind to pattern recogni-
tion receptors (PRRs) on immune cells including dendritic cells, 
NK cells and macrophages to stimulate their activation and 
migration [137]. These immune cells then gather tumor anti-
gens and present them to T cells to further trigger a durable, 
adaptive immune response [137].

Toll-like receptors (TLRs), are one example of PRRs, expressed 
on immune effector cells. TLRs play an important role in triggering
an early immune response and in polarizing macrophages to 
a pro-inflammatory phenotype [141]. TLRs differ in their cell 
expression profile, intracellular signaling pathways, and subse-
quent influence on the TME [142]. For example, TLR3 agonists 
have been shown to polarize macrophages toward an immune- 
activating phenotype in preclinical models of melanoma, and this 
increases the macrophage antigen presenting capabilities and 
decreases expression of PD-L1 and inhibitor receptors on infiltrat-
ing monocytes via the type 1 interferon signaling pathway [142]. 
In contrast, TLR7 and TLR9 agonists are potent drivers of anti- 
tumor macrophages, and these macrophages in turn secrete pro- 
inflammatory cytokines including IL-12 and type 1 interferon to 
activate CD8+T cells highlighting a therapeutic potential to use 
different TLR agonists to cause a synergistic effect [142]. Some 
studies have reported that melanoma cells can block macrophage 
activation through the suppression of TLR signaling [142]. Given 
that TVEC can increase the presence of PAMPs within the TME, 
further enhancing TLR stimulation by the inclusion of TLR ligands, 
may further promote macrophage polarization and subsequently 
enhance their tumoricidal effects of TVEC. Clinical trials evaluating 
intratumoral TLR agonists in combination with immunotherapy 
include NCT04116320 and NCT04570332 (see Table 1).

Initially, macrophages can have a barrier function that lim-
its the efficacy of the OV [143]. Complement proteins bind the 
OV particles to opsonise them, allowing recognition and pha-
gocytosis by M1 macrophages [144]. Macrophages also pha-
gocytose infected tumor cells and present viral antigens to 
T cells for an adaptive immune response [144]. This suggest 
that anti-cancer activity of OVs may be impaired by 
a macrophage-mediated response, however, it is important 
to carefully evaluate the studies suggesting an obstructive 
macrophage response to OVs, as the majority of the data 
have been obtained from murine models limiting its transla-
tional application to humans [145]. To prevent macrophage- 
mediated removal of OVs, it may be possible to redirect TAMs 
toward tumor cells for therapeutic benefits. Cao et al. engi-
neered an OV vaccine that disrupted the CD47/SIRPa [146]. 
CD47 is a ‘don’t eat me’ signal overexpressed on tumor cells 
and this interacts with its ligand SIRPa, which is a protein 
expressed on macrophages and dendritic cells, to prevent 
phagocytosis [146]. Blockade of the CD47/SIRPa signaling 
pathway enables macrophage phagocytosis of tumor cells 
that were otherwise protected [146]. Genetically modified 
SIRPa-Fc can block CD47, and these can therefore be delivered 
by OVs to hone an immune response toward tumor cells by 
macrophages exerting a therapeutic benefit [146].
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Another strategy to enhance TVEC efficacy is by using it in 
combination with histone deacetylases inhibitors, HDACi, to 
enhance oncolysis and anti-tumor immunity [138]. HDACs are 
enzymes that interact with a wide spectrum of substrate 
proteins, involved in a range of cellular processes including 
exertion of antitumor activity through its effects on immune 
and survival-related pathways [147]. HDAC6 plays a key role as 
an immune checkpoint regulator in human melanoma cells 
[147]. Inhibition has been shown to exert an anti-tumor effect, 
however, only in immunocompetent mice, suggesting that the 
anti-tumor activity of HDAC6 inhibitors (HDAC6i) requires an 
intact adaptive immune system [147]. When OVs were com-
bined with HDACi an anti-melanoma response was observed
via monocyte-mediated type I IFN production that activated 
NK cells and lead to viral maturation of dendritic cells to 
potent antigen-presenting cells for cytotoxic T cell priming 
[138]. The addition of HDACi to OVs also lead to increased 
viral replication within tumor cells with subsequent enhanced 
oncolysis and anti-tumor immunity [138].

7. Harnessing macrophages and their mechanisms 
in novel treatments

Advances in understanding of the role of TAMs in the TME 
have allowed research into the development of numerous 
novel strategies designed to alter the pro-tumor functions of 
macrophages. This can be done through mechanisms includ-
ing blockade or depletion of TAM recruitment, activating 
polarization to an anti-tumor phenotype, and adapting TAM- 
based communications among the TME (Figure 2).

7.1. Macrophage FcRs can be engaged by anti-cancer- 
antigen monoclonal antibodies

A growing field within oncoimmunology is the design of mAbs 
against cancer-specific antigens. Within the context of mela-
noma, creating a mAb with a Fab region against a melanoma- 
restricted antigen, and a Fc portion optimized to activate TAMs 
and increase their ability to perform ADCC and ADCP, could be 
highly effective, allowing the activation of TAMS localized to 
cancer cells, promoting their repolarization and the subsequent 
creation of an inflammatory TME [148]. One such antigen cur-
rently under investigation is chondroitin sulfate proteoglycan 4 
(CSPG4), expressed in 70% of melanoma but demonstrating low 
expression in healthy tissue [149]. In human xenograft models 
of melanoma, an anti-CSPG4 IgE has been shown to restrict 
tumor growth and prolong the survival of xenograft-bearing 
mice. These anti-tumor functions were associated with 
enhanced macrophage infiltration and promotion of pro- 
inflammatory signaling pathways in the tumor microenviron-
ment. Aside from this, IgE is able to promote a pro- 
inflammatory cytokine profile in monocytic cells and is able to 
engender ADCC and ADCP of melanoma cells by immune 
effector cells from patients with advanced melanoma [149]. 
CSPG4-IgE has been shown to be well tolerated in immuno-
competent rodent models [150]. Taken together, these studies 
point to great potential for future IgE based anti-cancer antigen 
therapies that may offer new options for the treatment of 

melanoma by harnessing macrophage effector mechanisms 
and driving microphages toward pro-inflammatory phenotypes 
in the tumor microenvironment.

7.2. Cell therapies: adapting TAM-based 
communications in the TME

The underlying principle of Chimeric antigen receptor (CAR) 
therapy is the modification of immune cells with cell surface 
chimeric antigen receptors that recognize and bind to specific 
antigens, on the surface of tumor cells. Adoptive cellular ther-
apy and CAR therapy of T cells, referred to as CAR-T cells, have 
been successful in the treatment of hematopoietic tumors, but 
there have also been recent advancements that may lead to
applications for the treatment of solid tumors [151]. One 
approach may be for CAR-T cells to be engineered to target 
surface markers, such as CD163, CD204 and CD206, predomi-
nantly expressed by tumor-promoting TAMs, resulting in their 
depletion [152]. However, the high plasticity of TAMs and 
inter- and intra-tumoral heterogeneity, create complexity in 
the development of efficacious TAM-targeted CAR-T cells. 
Molecular mapping of macrophage surface markers may 
offer a chance to profile the distribution of TAMs in the TME 
and identify novel therapy targets. In addition, the conse-
quences on the immune system of depleting macrophages 
for a prolonged period are yet unknown. An alternative strat-
egy may therefore be to target and block regulatory macro-
phage subsets. For example, macrophages expressing FRβ+ 
are known exert an immunosuppressive effect on T cells, thus 
FRβ CAR-T cells could be engineered to block the FRβ+ por-
tion of macrophages, reestablishing the cytotoxic properties 
of T cells [153].

This knowledge has also allowed advancements in engi-
neering of CAR macrophages (CAR-M). TAMs can be con-
structed with CAR constructs targeting specific cancer 
antigens, boosting macrophage cytotoxic ability to recognize 
and phagocytose tumor cells [154]. Alternatively, CAR-M can 
be reeducated into a pro-inflammatory phenotype, stimulat-
ing expression of pro-inflammatory cytokines to induce 
a tumor-suppressing microenvironment, which subsequently 
will enhance the immune response of other cells including 
cytotoxic T cells [155]. To reduce the off-target effects of CAR- 
M, strategies would need to be adapted to ensure that CAR-M 
cells are engineered to recognize specific tumor antigens with 
low and restricted distribution in normal tissues to minimize 
off-target toxicity and enhance their immune efficacy [154]. 
CAR-M could also be used in conjunction with established 
therapies such as immune checkpoint inhibitors [156], overall 
providing a promising novel therapeutic approach in the 
treatment of melanoma.

8. Concluding thoughts: TAMs in therapy and 
biomarker development

Here we have discussed the many roles macrophages play, in 
both the tumorigenesis and treatment of melanoma. TAMs 
can be continuously influenced by their environment and 
interact with many other cell types in the TME. This inherent 
plasticity renders them key players in melanoma and 
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simultaneously an important treatment target. Whilst the TME 
of melanoma is able to polarize macrophages toward immu-
noregulatory phenotypes that can support tumor growth, 
macrophages can also be influenced by exogenous signals, 
with the potential to be ‘reeducated’ toward more pro- 
inflammatory subsets.

Licensed therapies for melanoma, including ICIs, MAPKi 
and T-VEC, can utilize this plasticity for better or worse. For 
example, anti-CTLA-4 antibodies are reported to enhance 
macrophage-induced ADCC of Tregs, promoting cancer clear-
ance, whereas MAPKi can promote the secretion of TAM- 
derived angiogenic factors, supporting tumor growth. 
Understanding the interactions between macrophages and
current therapies, therefore, could be critical for understand-
ing treatment limitations and for improving therapies 
through multiple mechanisms. Firstly, by enhancing the 
treatments themselves, for example Fc-engineering to 
potentiate macrophage-dependent effects of ICI; secondly, 
priming TAMs, through FcR engagement, CD40 agonism, or 
TLR stimulation, that can lead to alterations in the TME that 
will better promote immune responses and enhance the anti- 
tumor effects of current therapies. And thirdly, developing 
new cell based therapies, to change the composition of the 
TME entirely.

Understanding the properties of this most important infil-
trating immune cell may be the key to ultimately unlocking 
better treatments for patients with melanoma, from enhan-
cing of current therapies, to designing new optimized treat-
ments that harness the pro-inflammatory attributes of 
macrophages to more effectively operate within the immuno-
logical constraints of the TME.

9. Expert opinion

In this article, we have discussed the multiple roles macro-
phages play in melanoma, from their ability to promote mel-
anoma cell survival, growth and invasion, angiogenesis and 
metastasis, to their potential to be key effector cells in current 
and future antibody treatments and novel cell therapies.

As an archetypal immunogenic tumor, melanoma has been 
hailed as the success story of immunotherapy, with mAbs that 
target predominantly the T cell adaptive arm of the immune 
system having a huge impact on patient outcomes. Despite 
this success, there remains a substantial proportion of patients 
who do not benefit from ICIs and/or who suffer toxicities 
which require withdrawal of treatment. There is a lot of 
focus on how to potentiate ICI functions, with trials focussing 
on how best to sequence currently licensed therapies, for 
example, whether patienst benefit most from ICI followed by 
MAPKi or vice versa, and which combinations of licensed 
therapies able to best potentiate therapeutic effects in treat-
ment-resistant patientsfor example, combining radiotherapy 
and ICIs [157,158].

Immunotherapy has demonstrated that the cancer killing 
capacity of the immune system can be harnessed and 
enhanced in the clinical setting. It therefore follows that 
harnessing the most abundant immune cell in the tumor 
microenvironment, namely TAMs, could be an effective 

strategy. TAMs transverse the innate and adaptive immune 
system and are able to directly trigger killing mechanisms 
(ADCC/ADCP), as well as secrete pro-inflammatory cytokines 
that consequently can change the milieu and cellular com-
position of the TME, including activating T cell and other 
cellular immune responses.

Targeting TAMs alone has been evaluated, and it is not con-
sidered an effective treatment strategy leading to tumor clear-
ance. Furthermore, therapies that have solely focussed on the 
depletion of macrophages, blocking their recruitment or polariz-
ing these cells, have failed to progress in clinical trials (for exam-
ple, NCT01494688, NCT00537368, NCT02723006) [148]. Findings 
from recent pre-clinical studies and clinical trials to-date suggest 
that TAM-targeted a sufficient as a treatment option and the 
optimal therapeutic approach has yet to be identified. These 
failures may be a product of the significant diversity, plasticity 
and roles of these cells and their ability to be influenced by the 
tissue microenvironment. This makes targeting one specific func-
tion extremely difficult, rendering them a complex and ever 
evolving target. Pan-macrophage-targeted therapy is associated 
with systemic toxicity, which presents further challenges. 
Furthermore, a combination therapeutic approach may help to 
maximize immunostimulatory activities and minimize associated 
toxicity.

However, there is an argument that targeting both innate 
and adaptive immune responses may lead to a synergistic 
response. Since mAbs have already been shown to be safe 
and effective treatments in melanoma, designing mAbs with 
Fc portions that can polarize macrophages or increase their 
capacity for antibody dependent cell ADCC and ADCP killing 
mechanisms could be a strategy for improving current treat-
ments. For example, engaging the activatory FcRs on monocytic 
cells can increase secretion of chemokines which can recruit 
effector immune cells, and their secretion of cytokines which 
can activate these cells [149]. If this was coupled with ICIs, 
which in turn can unleash T cell responses, this could greatly 
increase the chances of tumor clearance. Aside from this, it is 
already established that macrophages are able to interact with 
current ICIs. Understanding this interaction and improving cur-
rent treatments to make the most of these effector properties 
of macrophages, for example, modifying Fc-FcR interactions, 
seems like a clear opportunity to improve currently approved 
treatments, a process that may be an immediate opportunity 
when compared to the long process of new drug discovery or 
costly personalized/autologous cell therapies.

The design of Fc engineered antibodies offers the chance 
to enhance engagement and signaling through macrophage 
FcRs. This has been reported as part of targeting CTLA-4 [101] 
and with novel anti-cancer therapies targeting novel check-
points [149]. However, creating Fc regions that bind strongly 
to activatory FcRs promoting phagocytosis by macrophages 
may lead to exhausted macrophages accumulating in the 
TME, switching the environment from actively pro- 
inflammatory to immunoregulatory [159]. The future lies in 
combinations of therapies and perhaps with sequential treat-
ments, in order to overcome resistance and to ensure that all 
elements of the immune response are harnessed to achieve 
cancer cell clearance.
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Macrophages are an ever increasingly diverse cell population 
with a multitude of cellular states and further study character-
izing macrophage subsets in melanoma, their functions and 
how their characteristics and attributes change over time may 
lead to the discovery of new ways to approach harnessing this 
abundant tumor infiltrating cell type to treat cancer.
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