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Green one-step synthesis of silver nanoparticles and their biosafety and

antibacterial properties
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ABSTRACT

Ag nanoparticles (Ag NPs) with antibacterial properties were synthesized by using a one-step method.
The reagents used were environmentally friendly, and no subsequent purification treatment was
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required. This method conformed to the concept of green chemistry, and the synthesized silver

nanoparticles had biosafety and antibacterial properties. The structure of Ag NPs was investigated
and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and
transmission electron microscopy (TEM). The particle size of Ag NPs was approximately 14.01 nm,
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and the particle size distribution was relatively uniform. The antibacterial properties of Ag NPs were
studied by conducting an inhibition circle experiment and investigating the growth curve. Lignin-
capped Ag NPs (L-Ag NPs) were synthesized and characterized as inorganic antibacterial agents

with good antibacterial activity and no biological toxicity.
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1. Introduction

To comply with the general principles of green chem-
istry, significant effort has recently been devoted to
the synthesis of metal NPs using plants extracts as redu-
cing agents (7-3). These methods are eco-friendly and
cost-effective ways to prepare metal nanocomposites
with antibacterial activity. Plants contain a variety of
phytochemicals, including soluble carbohydrates, phe-
nolic acids, alkaloids, flavonoids, and terpenoids(4,5).
These phytochemicals can be used as reducing agents
and stabilizers to prepare metal NPs, including Ag NPs,
which can be used as antibacterial agents(6). Lignin is
among the most abundant renewable natural resources
in the world. It has received much research attention

because of its good biodegradability (7). Lignin contains
a large number of active hydroxyl, aldehyde, and other
reducing groups and has a special 3D structure (8,9).
Therefore, lignin can be used as a green capping agent
and dispersant of metal NPs (70,77). Such utilization of
lignin significantly improves its application value. In
addition, lignin is conducive to environmental protec-
tion and the utilization of biological resources. Thus, its
use has a positive theoretical and practical significance.

Viruses and bacteria are widely distributed in nature.
They spread rapidly, thereby seriously threatening the
health and safety of humans. The development of
effective antimicrobial agents and their application to
daily life are conducive to controlling the spread of
viruses and bacteria (72). In recent vyears, the
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antibacterial properties of metal oxides, which are pro-
duced through the emergence of resistant strains to
various organic antimicrobial agents, have received con-
siderable attention. However, metal nanomaterials have
stronger antibacterial activity than the same materials
with large particles (73). Silver nanoparticles (Ag NPs)
are nontoxic, biosafe, and biocompatible antimicrobial
agents that have been applied to many products, includ-
ing drug carriers, cosmetics, medical materials, and
household products (74,15). Ag NPs are powerful adsor-
bents that destroy the biochemical pathways of microor-
ganisms through various pathways, e.g. the formation of
reactive oxygen species (ROS) and the interruption of
electron transfer reactions (76,17). In recent years,
several reviews have reported the physicochemical
properties and antibacterial activity of metal nanoparti-
cles, such as Ag NPs (718-217).

Sodium lignosulfonate, which is the main form of
lignin, was used as a reactant, whereas ascorbic acid was
used as the reducing agent. L-AgNPs were synthesized
through a one-step method, and no other chemical
reagents were needed. The reaction conditions were
mild and simple, and high purity L-AgNPs can be obtained
without purification (22,23). The prepared L-AgNPs were
nontoxic and had strong antibacterial properties.

2. Experimental
2.1. Materials

AgNO; and ascorbic acid were obtained from the Tianjin
Beichen reagent factory. Sodium lignosulfonate was pur-
chased from Shanghai McLean Biochemical Technology
Co., Ltd.. Peptone, yeast extract, and agar were procured
from Shandong Yubao Biotechnology Co., Ltd. Candida
albicans (ATCC10231) and Escherichia coli (ATCC25922)
strains were incubated for 24 h at 37 °C. All reagents
were analytically pure and did not require further
processing.

The equipment used in the experiment included a
UV-visible 2550 ultraviolet spectrophotometer (Shi-
madzu, Japan), a D8 Venture X-ray single crystal diffract-
ometer (Brooke, Germany), and HT7800 transmission
electron microscope (Hitachi, Japan).

2.2. Preparation of L-AgNPs

Sodium lignosulfonate (0.30 g) was accurately weighed,
placed in a round-bottomed flask, and dissolved in
30 mL of water. The solution was mixed under magnetic
force at room temperature for 3 min. Ascorbic acid
(0.03 g) was weighed and dissolved in 30 mL distilled
water before being added dropwise to 30 mL of
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0.01 mol/L silver nitrate solution until the solution was
completely dissolved by ultrasound. The solution was
heated in a water bath at 37 °C for 5 h.

2.3. Bacteriostatic circle test

Several sterile qualitative filter paper discs (6 mm in
diameter) were prepared along with distilled water,
10 mg/mL lignin solution, 10 mg/mL L-AgNPs, 1 mg/
mL L-AgNPs, and 0.1 mg/mL L-AgNPs. The filter paper
discs were soaked in five samples, removed after
10 min, sterilized with high-pressure steam, and dried.

A liquid culture medium was then prepared using 6 g
peptone, 3 g yeast extract, 6 g NaCl, 16 g agar, and
600 mL of distilled water. The pH value was adjusted
from 7.2-7.4 by using a 6 M sodium hydroxide solution.
The solution was placed in a high-pressure steam sterili-
zation pot, sterilized at 120 °C for 30 min, and removed
for cooling. C. albicans and E. coli were then added
into the liquid culture medium to produce a solid
culture medium. Five filter paper discs containing the
samples were pasted on each culture dish. Each dish
was placed in a constant temperature incubator at 37 °
C for 24 h. The growth of the bacteriostatic circle was
then observed.

2.4. Cell viability assay

The cytotoxicity of L-AgNPs was examined by cell-count-
ing kit-8 (CCK-8, Dojindo Laboratories, Japan). The A549
cells were seeded in 96-well plates at a density of 4000
cells mL™". After 24 h of incubation, the medium was
replaced by a new one containing L-AgNPs at various
concentrations (0, 1x1077, 1x107% 1x107°, 1x107%
1x1073, 1x1072, and 1x10™" ug/mL). The cells were incu-
bated for another 24 h. Freshly prepared CCK-8 (10 L)
solution in culture medium (90 pL) was added to each
well. After 1 h to 4 h of incubation, the CCK-8 medium sol-
ution was carefully removed. The plate was gently shaken
for 5 min at room temperature, and the optical density
(OD) of the mixture was measured at 450 nm. Cell viability
was assessed by using the following equation:

Cell viability (%)
= (Sample OD — Blank OD)/(Control OD — Blank OD).
x 100%

3. Results and discussion
3.1. L-AgNP preparation

L-AgNPs are prepared with sodium lignosulfonate as
reactant and ascorbic acid as reducing agent. The
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Figure 1. a: Effect of reaction temperature; b: reaction time and amount of anticoyclic acid; c: on fluorescence intensity of L-AgNPs.

reaction process was optimized. The effects of reaction
time, reaction temperature, and the amount of ascorbic
acid were investigated. As shown in Figure 1a, during L-
AgNP preparation, the absorption peak intensity of L-
AgNPs increased with increasing temperature. The
absorption peak intensity was strongest at 40 °C. There-
fore, 37 °C was selected as the reaction temperature.
With increasing reaction time (Figure 1b), the absorption
peak intensity of L-AgNPs strengthened and stabilized
after 5h. Thus, the chosen reaction time was 5 h.
Figure 1c shows that no reaction was observed when
ascorbic acid was not added. The optimum amount of
ascorbic acid was 1 mg/mL. Through the optimization
of reaction conditions, the optimal reaction conditions
were determined to be as follows: temperature of 37 °
C, synthesis time of 5h, and reductant dosage of
1 mg/mL.

3.2. L-AgNP characterization

Figure 2a shows the UV-vis spectrogram of the prepared
L-AgNPs. The maximum absorption wavelength of the L-
AgNPs was 420 nm, which was consistent with the
results reported in the literature (24). The typical iso-
therms for nitrogen (N,) adsorption of the samples are

shown in Figure 2b. The adsorption isotherm of L-
AgNPs was a typical type lll adsorption isotherm. The
L-AgNP sample had a specific surface area of 18.7537
m?/g.

The TEM of L-AgNPs is shown in Figure 3. The par-
ticles of L-AgNPs were spherical and well dispersed.
The particle size distribution diagram was used to cal-
culate the particle size of approximately 14.01 nm,
and the particle size distribution was relatively
uniform. As shown in Figure 3b, the selected area
electron diffraction of L-AgNPs had evident symmetri-
cal diffraction spots, and its lattice fringes were clearly
observed. The calculated lattice spacing was 0.238 nm.
The crystal surface spacing was very close to
0.2359 nm of the (111) crystal surface spacing of Ag.
TEM results showed that Ag NPs were successfully
synthesized.

Figure 4 presents an X-ray diffraction (XRD) diagram
of pure lignin and L-AgNPs. Figure 4a shows the peaks
at 20=38.12° (111), 44.2° (200), 64.43°(220), 77.47°
(311), which are consistent with the standard crystal
silver structure (Ag PDF#04-0783) (25). These Bragg
reflections corresponded to the crystalline planes of
the face-centered cubic crystal lattice of metallic silver.
However, lignin does not contain these diffraction
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Figure 2. a: UV-Vis spectra of L-AgNPs; b: N, adsorption-desorption isotherms of L-AgNPs.
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Figure 3. TEM of L-AgNPs.

peaks. The diffraction peaks after the synthesis of L-
AgNPs showed that high purity Ag NPs were successfully
prepared by this method. To further study the crystal
structure of L-AgNP samples, Jade 9.0 software was
used to perform a full spectrum fitting of the XRD data
(Figure 4b). The doped lattice parameters obtained by
the fitting refinement were as follows: a =4.09366, b =
4,09366, c =4.09366; atomic positions a=90° f3=90°
and y=90°. L-AgNPs were an orthorhombic crystal
system. The space group was Fm3 m (225), and the cri-
terion of the fit was a residual factor Rp=1.12% and a
weighted residual variance Rwp =2.77%. The values
were less than 10%, indicating that the experimental
value fitted the theoretical value. The XRD results of L-
AgNPs were consistent with their crystal data simulation
results, thereby confirming that the compound had a
pure phase.

Figure 5a shows the XPS full spectrum scanning spec-
trogram of L-AgNPs. This finding showed that the main
elements in L-AgNPs were C, O, and Ag. Figure 5b
shows the peaks of C1s (284.8 and 286.3 eV) from left
to right. These peaks represented the carbon atoms of
aliphatic (C-C) and carboxyl (-C-OH) groups in lignin.

a — Lignin

— L-AgNPs

Intensity (a.u.)

10 20 30 40 50 60 70 80
20 (degree)

The peaks at 288.2 and 289.5 eV represented sodium
carbonate and bicarbonate, respectively (26). Figure 5c
shows the peak of O1s in L-AgNPs. The peaks at 531
and 533.5 eV were attributed to C-O and hydroxyl (-C-
OH) in lignin, and Na KLL was found at 536 eV (27). In
addition to C and O elements, an abundance of Ag
was observed. Figure 5d shows the peak diagram,
where 367.8 and 373.9 eV represented Ag3ds,, and
Ag3ds,,, respectively. Their splitting energies were
5.7 eV. The peaks at 371.8 and 376.6 eV were attributed
to the high binding energy loss peaks of the
components in the silver spin orbit, indicating that the
Ag in the sample was almost Ag (0). The results
showed that Ag NPs were successfully synthesized (28).

3.3. Antibacterial properties of L-AgNPs

The filter paper soaked in the L-AgNP solution was
placed in a solid medium, and the antibacterial activity
of these NPs was tested with the use of an antibacterial
ring. Gram-positive C. albicans and Gram-negative E. coli
were selected as antibacterial targets (Figure 6), and the
antibacterial properties of L-AgNPs were evaluated. As

X Measured
— Calculated
— differences

| Bragg positions

10 20 30 40 50 60 70 80 90
20 (degree)

Figure 4. a: X-ray diffraction patterns of L-AgNPs; b: Full spectrum fitting of XRD.
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Figure 5. a: XPS full spectrum of L-AgNPs; b: XPS spectrum of C1s; c: XPS spectrum of O1s; d: XPS spectrum of Ag3d.

Figure 6. a: Inhibition circles of L-AgNPs against E.coli; b: Inhibition circles of L-AgNPs against C. albicans.

shown in Figures 6a and b, the bacteriostatic circles of L-
AgNPs to E. coli and C. albicans was evident after incu-
bation at 37 °C for 24 h. Figure 6a shows that L-AgNPs
had good inhibitory effect on E. coli. In accordance
with the amount of L-AgNPs added (0.1-10 mg/mL),
the diameters of the inhibition zones were 14+ 1, 16 +
1, and 18+ 1 mm. Figure 6b shows the bacteriostatic
circle of L-AgNPs to C. albicans. In accordance with the
amount of L-AgNPs added (0.1-10 mg/mL), the

diameters of the inhibition zones were 12+ 1, 14+1,
and 20+ 1 mm. Figure 6 shows bacteriostatic circles,
thereby indicating that L-AgNPs had strong inhibitory
effects on E. coli and C. albicans (29,30).

To observe the inhibitory effect of L-AgNPs on E. coli
and C. albicans, the growth curves of L-AgNPs in 36 h
were measured. As shown in Figure 7, with prolonged
culture time, the colony numbers of E. coli and
C. albicans gradually decreased, and the curve showed



GREEN CHEMISTRY LETTERS AND REVIEWS e 33

—s— () mg/mL b i —s— () mg/mL
—e—0.1mg/mL| ;1 —e— (.1 mg/mL
—4—(0.5mg/mL - —A— 0.5mg/mL
bt —v—1.0mg/mL| 8 (50 —v— 1.0mg/mL
£ g 0.
g —+— 2.0mg/mL g —4q— 2.0mg/mL
5 —<— 5.0mg/mL| 3 (.45 —»— 5.0mg/mL
5 —»— 10 mg/mL é . e 10mgmL,
0.40 -
" Yo = /5—;;45
M| ] W
*é‘% \ »
0.304 0.30 4
1 . Ll " ] »: 1 L 1 L 1 i 1 - 1 T o 1 L ] L ] L T * 1 » 1 L ]
0 S5 10 15 20 25 30 35 0 S 10 15§ 20 25 30 35
Time (h) Time (h)

Figure 7. The growth curve added after L-AgNPs. a: E.coli.; b: C. albicans.

a downward trend. This finding showed that L-AgNPs
had an evident inhibitory effect on both strains, and
such effect increased with time. The colony numbers
of E. coli tended to be stable after 20-24 h, thereby indi-
cating that the L-AgNPs inhibited the growth of E. coli in
24 h. L-AgNPs inhibited the growth of C. albicans in
approximately 15 h (37).

3.4. Biological toxicity of L-AgNPs

We tested the biological toxicity of L-AgNPs to reveal the
feasibility of L-AgNPs as antibacterial agents. We used
A549 cells as a biological experimental model. The cyto-
toxicity of L-AgNPs was detected by CCK-8. Figure 8
shows that almost 98% of A549 cells were still alive
when exposed to L-AgNPs. Thus, L-AgNPs have very low
cytotoxicity and are suitable as antibacterial agents (32).

120

100 ~

80 4

Cell Viability(%)

0 107 10° 10° 10* 10° 107 10"
Concentration of L-AgNPs (1g/mL)

Figure 8. After being incubated L-AgNPs in the concentrations,
the viability of A549 cells range from 0 to 10~ pg/mL. The error
bars show standard deviations on the basis of three indepen-
dent measurements.

4. Conclusions

L-AgNPs were prepared by using a simple and green
chemical method. Structural analysis has proven that
the prepared L-AgNPs have uniform size distribution
and high purity. The antibacterial experiment on E. coli
and C. albicans proved that L-AgNPs had good antibac-
terial properties, while CCK8 experiment showed that L-
AgNPs were biologically non-toxic and could be used as
antibacterial materials in life.
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