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ABSTRACT
Pancreatic b-cells are connected to neighboring endocrine cells through the adherin proteins and
gap junctions. Connexin 36 (Cx36) is one of the most well-studied and abundantly expressed gap-
junction proteins within rodent islets, which is important in coordinated insulin secretion. The
expression of connexins is regulated at various levels and by several mechanisms; one of which is
via microRNAs. In past 2 decades, microRNAs (miRNAs) have emerged as key molecules in
developmental, physiologic and pathological processes. However, very few studies have
demonstrated miRNA-mediated regulation of connexins. Even though there are no reports yet on
miRNAs and Cx36; we envisage that considering the important role of connexins and microRNAs in
insulin secretion, there would be common pathways interlinking these biomolecules. Here, we
discuss the current literature on connexins and miRNAs specifically with reference to islet function.
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Increasing complexity in multi-cellular organisms
requires a higher order of cell-cell coupling for opti-
mal tissue function. In the islets of Langerhans, the
secretion of insulin and other hormones needs to be
carefully coordinated through membrane depolariza-
tion and calcium influx that drive the release of insulin
in response to increasing concentrations of glucose.
Gap junctions are cross-border gateways that connect
adjoining cells, which readily transfer ions, metabo-
lites and other small molecules between cells. Inter-
cellular cross-talk is an essential component of normal
cellular physiologic processes that integrate a range of
environmental cues from their interactions with solu-
ble factors, signaling molecules, extracellular matrix
components as well as from their neighboring cells. A
defect in signaling across such gap junctional proteins
is implicated in various diseases, including diabetes.
The goal of this article is to discuss the existing litera-
ture on connexin expression and islet cell function,
then to introduce the literature on regulation of non-
islet connexin expression by microRNAs and finally to
emphasize the need for future research in regulation
of islet-enriched connexins by microRNAs. Even
though connexins in the pancreas have not been

shown to be regulated by pancreas-specific/-enriched
microRNAs, there is plenty of evidence suggesting the
role of each of them (connexins and microRNAs) in
insulin secretion, an important function of pancreatic
islet cells. Bioinformatically, one can predict different
microRNAs targeting pancreatic connexins and there-
fore it is very likely that connexins and microRNAs
could be interlinked with each other in regulating pan-
creatic insulin secretion. We hope that future studies,
which investigate microRNA-mediated-regulation of
connexins in islet cells and their role in b-cell dysfunc-
tion and diabetes would lead to developing novel ther-
apies for improving islet cell function, and survival,
through regulation of gap junctional coupling.

Gap junctions and connexins

A pancreatic b-cell as well as other specialized endocrine
cells, represent a highly active entity where several mole-
cules are synthesized and degraded continuously. Most
of the cellular physiologic processes are very well regu-
lated and this regulation occurs at multiple levels. In a
multicellular organism, where several cell types give rise
to a single tissue that then serves a particular function for
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survival of that organism, it is extremely important that
all cells efficiently communicate with each other. This is
also true for maximizing the functional capacity of mini
organs such as the islets of Langerhans. Most cells com-
municate with each other via secretion of effector mole-
cules such as proteins, peptides, nucleic acids, hormones
and ligands, and by responding to them. This communi-
cation can be either contact-independent (paracrine,
endocrine and neuronal) or contact-dependent. In a
contact-dependent communication, two of the cells
need to be in a close vicinity to one another and should
be connected to each other via a ligand-receptor complex
or via gap junctions or via other cell adhesionmolecules.

Gap junctions are important for the cell to cell
communication, intercellular signaling and coordi-
nated cellular functions.1,3 In eukaryotes, metabolites,
nutrients, signaling molecules; eg. small RNAs,4 ions
as well as electrical signals are exchanged via gap junc-
tions, thus maintaining cellular homeostasis.5 Apart
from their role in cellular function, gap junctions are
also important for normal development, proliferation,
and differentiation of stem/progenitor cells. In verte-
brates, connexins are building blocks of gap junctions,
while innexins are proteins that form gap junctions in
invertebrates.6 There are 21 connexin proteins in
humans and 20 connexins in mice.7 Another family of
connexin-like proteins; the pannexins, is known to be
essential in mammals and consists of 3 members.8

A single connexin protein is a non-glycosylated,
transmembrane molecule that spans the plasma mem-
brane 4 times and has both C- and N-terminals in the
cytoplasm. Six connexin protein units bunch together
in a cylindrical fashion and form a single connexon/
hemichannel. Two hemichannels, one contributed by
each of the adjoining cells, connect with each other and
create a hydrophilic gap junction that allows transfer of
small molecules (up to 900 daltons). Accordingly, the
gap junctions are called as homotypic gap junction and
heterotypic gap junction (Fig. 1). In homotypic gap
junction, both hemichannels/connexons are identical,
while heterotypic gap junction consists of 2 different
connexons.9 There are 2 types of connexons; homo-
meric and heteromeric connexon (Fig. 1). Homomeric
connexons have identical connexins while heteromeric
connexons are composed of different types of connex-
ins.9 It is also observed in some cases that a hemichan-
nel does not connect to another cell but could open in
the extracellular environment, facilitating the trans-
ports of ions, ATP and glutamate.1,10

Cell to cell communication via gap junctions is seen
in almost all cells excluding erythrocytes, circulating
lymphocytes and skeletal muscle cells.2 Any changes
or inhibition of gap junction-mediated cellular cross-
talk leads to abnormal biology potentially contributing
to the development of diseases including cancer and
diabetes. Connexins have been well known as tumor
supressors in cancer biology, as reviewed elsewhere.11

With reference to the islet-enriched connexin; i.e.
Cx36, it is well known that the gene encoding Cx36 is
located on the 14q region of chromosome 15, which is
a susceptibility locus for Type 2 diabetes, indicating a
possible role in reduced b-cell function associated
with progression to Type 2 diabetes.12,13 Thus, there is
significant evidence to understand the role of con-
nexin dysfunction in disease. Although causality
remains to be conclusively identified, the current evi-
dence recognizes the need for normal connexin
expression in optimal tissue function. Connexin pro-
teins have a very short half-life of around 3 hours and
are internalized or degraded by lysosomes or protea-
somes.1,2 Connexin expression and gap junctional
intercellular communication are regulated at many
levels including electrochemical gradient across the
chanel, change in pH, change in the concentration of
calcium ion, phosphorylation of connexin molecules,
rearrangement of the structure as well as voltage and
chemical gating.2,3

Figure 1. Organization of gap junction proteins. This is a sche-
matic presentation of different types of connexons. A homomeric
connexon refers to a connexon formed when 6 identical connexin
proteins form the pore for a gap junction. A heteromeric con-
nexon refers to a connexon formed between different connexin
subunits. Two identical connexons form a homotypic gap junc-
tion, whereas a heterotypic gap junction consists of 2 different
hemichannels.
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Gap junctions in the pancreas

The pancreas is a unique organ wherein its endocrine
portion; the islets of Langerhans, is embedded within
the exocrine counterpart (acini and ducts). Islets con-
sist of 5 different endocrine cell types; a, b, d, pp and e
cells. The most abundant islet cell type is the b-cell,
which produce and secrete insulin – the islet hormone
that works toward reducing circulating glucose con-
centrations. Although there are significant differences
observed between human and rodent islet architec-
ture,14-16 b-cells are always in contact with other
b-cells or other endocrine pancreatic (non-b) cells
and “hard-wired” or connected via specific connexins.
Synchronized and pulsatile secretion of insulin
requires co-ordination and electrical coupling with
adjacent cells for transfer of the depolarizing signal
from the adjacent endocrine cells in the islet to achieve
normal insulin secretion; a process that is known to be
coordinated via gap junction signaling.17 Connexin 43
(Cx43) was demonstrated to be important in rat pan-
creas function;18 however later on it was demonstrated
that Cx36 is the most abundant and exclusive con-
nexin expressed in pancreatic insulin-producing
cells19-21 while Cx43 and Cx45 are expressed by vascu-
lar endothelial cells that are abundant in islets.22,23

Recently, connexin 30.2 has been demonstrated to be
present in mouse b-cells along with Cx36,24 however,
its functional role in insulin secretion is not yet con-
firmed. Connexins 26 and 32 have been reported in
pancreatic exocrine/acinar cells during mouse pan-
creas development.19 Cx36 is shown to be b-cell spe-
cific and is seen between adjacent b-cells,21 while a
probability of heterotypic gap junction consisting of
Cx36 and Cx43 is suggested that may mediate b-cell
and intra-islet endothelial cell interactions.25

Cx36 knockout mouse islets fail to demonstrate
intracellular calcium oscillations as well as the synchro-
nous and pulsatile release of insulin.26-28 Similar obser-
vations were reported in an in vitro manipulated
(MIN6) cell line.29 Cx36 knockout mice have normal
fasting glucose, but display abnormal glucose clearance
following an intraperitoneal glucose tolerance test, sug-
gesting glucose intolerance.17 There are also contradic-
tory reports on the increase in basal insulin release in
Cx36 deficient islets.27,30 Studies in Cx36 knockout ani-
mals have indicated that these gap junctions in b-cells
not only regulate insulin secretion but also regulate
intra-islet blood flow.31 High fat fed mice, which show

insulin resistance, obesity and pre-diabetes have a sig-
nificant reduction in islet Cx36 protein and around
30% less b-cell to b-cell coupling.32 These data suggest
that Cx36 gap junctions are affected and may contrib-
ute to islet b-cell dysfunction during the progression
from impaired glucose tolerance to Type 2 diabetes.
Although the role of connexins in b-cell dysfunction is
well established, their role in b-cell survival is not dem-
onstrated as yet. It is well understood that b-cell dys-
function precedes their death in progression to Type 2
diabetes.33 The role of connexins in b-cell survival
would need long-term assessment of b-cells from con-
nexin-specific knockout mice during different stages of
progression to Type 2 diabetes and insulin-requiring
Type 2 diabetes. Overall, there is significant evidence to
confirm the role of Cx36-dependent intercellular com-
munication in glucose-stimulated insulin secretion
(GSIS) and in b-cell dysfunction, leading to the devel-
opment of Type 2 diabetes.

As mentioned above, connexin expression is regu-
lated at multiple levels. However, there is not much
information on regulation of Cx36 in islets. In the reti-
nal AII amacrine cells, Cx36 is phosphorylated by pro-
tein kinase A (PKA) and it results in reduced coupling,
decreased permeability across the Cx36 gap junction
in these cells mediating visual adaptation.34 Recently,
another protein kinase PKCd is shown to alter Cx36
coupling in islet cells and is believed to be a mecha-
nism of islet dysfunction during cytokine exposure
leading to diabetes.35 Another study where islets were
co-cultured with endothelial progenitor cells in vitro,
reported decreased expression of Cx36 with increase
in basal insulin secretion.36 Even though the exact
molecular mechanism was not investigated, a possibil-
ity of crosstalk between b-cells and endothelial cells is
evident. All these reports point to the intricate regula-
tory processes within islet cells including those con-
trolling connexin expression and coupling in
pancreatic islets. Recently, microRNAs have been
shown to regulate connexin expression and function
in multiple non-islet tissues and in several species;37-40

however, no reports on microRNA regulation of islet-
specific/-enriched connexins are available till date.
Considering the existence of such a mechanism in
non-islet cell systems, this article presents a review of
the known microRNAs that target connexins and
attempts to initiate discussion in this area of biology
that we think would emerge to be an important com-
ponent of islet cell organization and function.
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microRNAs

microRNAs are small, non-(protein) coding RNA
molecules that are about 22 nucleotides in length and
act as negative regulators of gene expression.41 They
are synthesized as a long transcript (primary miRNA)
in the nucleus, which undergoes 2 rounds of process-
ing by enzyme complexes (Drosha and Dicer in
nucleus and cytoplasm respectively) to generate
mature miRNAs in the cytoplasm.42,43 These mature
miRNAs are single-stranded molecules, which act at
post-transcriptional level via incorporation into RISC
(RNA-induced silencing complex) and regulate the
target mRNA expression largely through 2 processes;
i) degradation of target mRNA or ii) translational
inhibition. Most miRNAs target 30UTR of the mRNAs
and in some cases its 50UTR or the coding region,
functioning as key regulators of developmental, physi-
ologic and pathological conditions.45,46

It is now known that microRNAs themselves are
regulated by various other mechanisms including
RNA-binding proteins, SNPs, methylation, miRNA-
editing and circadian rhythms as reviewed else-
where.47 It has been demonstrated that a RNA-bind-
ing protein Deadend-1 (Dnd1) can physically block
the access to a miRNA target site, thereby sterically
hindering the normal function of RISC.48 Although
not much is known about the structural aspects of
miR-RISC target recognition and Dnd1 binding, such
molecules may offer another layer of regulation. It is
also speculated that Dnd1 may change the subcellular
localization of mRNA molecules, taking it out of the
reach of its targeting miRNAs. Indeed, Dnd1 has been
shown to localize to discrete perinuclear granules in
primordial germ cells.49

miRNAs are required for normal pancreas develop-
ment, regeneration and function.41,50-52 miR-7 and
-375 are some of the most abundant miRs within the
pancreas53 and are shown to regulate a and b-cell
mass,54,55 insulin expression,56 insulin secretion,57,58

as well as b-cell secretome.59 Apart from these, several
other miRNAs are implicated in regulating pancreas
development by targeting important transcription fac-
tors.41,50 Several microRNAs have been shown to be
altered during b-cell dysfunction and/or apoptosis;
especially miR-34a, miR-21, miR-29, and miR-146
have been reported to date;51,60-63 as well as in diabetes
progression/complications.64-66 Insulin secretion is
also regulated by several different miRNAs, apart

from the miR-7 and miR-375 mentioned above. These
include miR-30d that targets MAP4K4,67 miR-124a
targeting sirt1, NeuroD1, FoxA2 and Rab27a,68 miR-
96 that targets Noc2 and granuphilin,69 miR-33a/b
targeting ABCA170 and multiple others. Although
these studies underscore the importance of miRNAs
in pancreas development, function, and disease (dia-
betes) progression, there are no reports yet on micro-
RNA regulation of connexins in the pancreatic b-cells.

microRNAs and connexins

Till date, there are few studies demonstratingmicroRNA-
mediated regulation of connexins. Most of these demon-
strate regulation of Cx43, one of the most commonly
expressed connexins in the body.71,72 Bioinformatics
analysis of microRNA and connexin interactions also
predict Cx43 to be extensively regulated by miRNAs
compared with other gap junction proteins.73

In one of the reports, miR-206 and miR-1 micro-
RNAs are shown to negatively regulate Cx43 during
in vitro myoblast fusion37 and a similar mechanism is
implicated during muscle development in vivo. Ele-
vated expression of miR-1, a muscle-specific miRNA,
is observed during coronary artery disease and
arrhythmia.74,75 The proposed mechanism involves
post-transcriptional repression of Kir2.1 and Cx43,
thereby lowering conduction potential and depolariza-
tion of cardiac muscles. Three miRs (miR-1, -206 and
-133) are also seen to be upregulated during in vitro
myoblast differentiation with a concomitant reduction
in Cx43 mRNA, suggesting that Cx43 is a potential
target of these microRNAs.76 MiR-206 is observed to
be involved in osteoblast differentiation, where its
abundance decreases during normal differentiation.77

Overexpression and knockdown studies of this
miRNA indicated that Cx43 is a target of miR-206
during bone formation. MiR-1 regulates Cx43 in car-
diac hypertrophy78 and the interaction between these
2 molcules is also important in bladder cells, thereby
controlling bladder development and sensitivity.79

Cx43 is also reported to be targeted by miR-218 in
cancer cell lines,80 miR-145 in corneal epithelial pro-
genitor cells,81 miR-221/222 cluster in glioblastoma
cells,38 miR-20a in prostate cancer cell lines82 and
miR-19a/b in murine cardiac cells.83 Among other
connexins, Cx40 is shown to be regulated by miR-
208a, which is also necessary for normal cardiac con-
duction and function.84,85
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miRNAs transfer via connexins/gap junction

Apart from miRNA-mediated regulation of connex-
ins, another interesting interaction exhibited by con-
nexins/gap junctions and miRNAs involves
intercellular communication via gap junction-medi-
ated transfer of miRNAs (Fig. 2). With this novel
mechanism, miRNAs cannot only regulate various

gene transcripts within a cell of their origin but also
have the ability to do so in their neighboring cells. It is
yet uncertain as to what signals drive the shuttling of
miRNAs between the cells via gap junctions and also
whether this transfer is an active mechanism or a pas-
sive flow. Different in vitro co-culture studies have
demonstrated the transfer of miRNAs between donor
and recipient cells, especially in cancer cells.86-89 There
are no in vivo studies reported as yet, however, this
specific and efficient mode of intercellular miRNA
transfer would have clinical applications that include
cell-specific delivery of small RNAs as a cancer ther-
apy or for regenerative medicine. Whether such trans-
fer exists between adjacent b-cells for regulation of
insulin secretion and calcium signaling is yet unclear.

Conclusion

MicroRNAs have emerged as important regulators
of several physiologic and pathological processes.
Though most of the current literature demon-
strates the role of miRNAs in Cx43 regulation
(Fig. 3); it is most likely that such regulatory effect
on other connexins will be discovered in near
future. Gap junctions in pancreatic b-cells are
made of Cx36; which is shown to be important for
normal islet function including coordinated insulin
release. The decrease in expression of Cx36 is now
linked to b-cell dysfunction and prediabetes.
Whether such progressive loss of Cx36 is causal to
b-cell failure, leading to apoptosis, is not yet

Figure 2. Intercellular transcript regulation via miRNA transfer. miRNAs can enter into neighboring cells via gap junction-mediated
transfer. This cartoon demonstrates the ability of a cell (on the left) to transcribe and process the pre-miRNA to mature (single stranded)
microRNA. A mature microRNA gets incorporated into RISC (RNA-induced silencing complex) and can target the expression of mRNAs in
the same cell via translation inhibition/ transcript degradation or may enter the adjoining cell(s) to inhibit the expression of a specific
set of genes in the neighboring cells.

Figure 3. Regulatory microRNAs targeting connexin gene tran-
scripts. Schematic illustrating different microRNAs targeting the
expression of specific connexin molecules demonstrated herein.
The most widely studied Cx43 is experimentally shown to be tar-
geted by several different miRNAs in various tissues (Right side
panel). Left side panel represents different connexins in islets and
bioinformatically identified, highly conserved (using the
publically available site http://www.targetscan.org) microRNAs
predicted to bind to a specific connexin.
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understood. Cx43 is also present in pancreatic
islets but mainly in islet vasculature, which has a
regulatory role in b-cell function. Given the
importance of connexins in insulin secretion and
the known regulation of miRs on insulin secretion
(miR-375 via myotrophin and PDK1), it would be
interesting to see if any of the “pancreatic” miRs
regulate connexin expression and thereby insulin
secretion. The potential regulation of cell-to-cell
communication channels via microRNAs adds a
first level of regulatory control. Interestingly, the
demonstration of the regulatory molecule (dead
end 1/dnd1), which can antagonize the action of
these microRNAs48,90 present a potentially intricate
mechanism wherein such molecules could modu-
late connexin expression through regulation of tar-
geting microRNAs. Further research is needed to
understand if connexins, which are known to be
altered in disease state, can be rescued using mole-
cules that can either inhibit the miRNA binding or
localize them to sub-cellular compartments that
offer protection from miRNA-mediated degrada-
tion. If such RNA-binding proteins proffer the
proposed regulatory mechanisms, then these could
be used as modulators of miRNAs with potential
for translational research. Studies focused on
understanding the role of miRNAs in the regula-
tion of islet-associated connexins could lead to the
identification of strategies for enhancing insulin
secretion in differentiating islet progenitor/stem
cells.
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