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REVIEW

The mycobiota of the human body: a spark can start a prairie fire
Di Zhang a, Ying Wang a, Sunan Shena,b, Yayi Houa,b, Yugen Chenc, and Tingting Wanga,b

aThe State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China;
bJiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; cDepartment of Colorectal Surgery, The
Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China

ABSTRACT
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria
among microorganisms. What is surprising is that this seemingly small species can trigger huge
changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease
in different parts of the body. Meanwhile, our body also produces corresponding immune
changes upon mycobiota infection. Several recent studies have made a connection between
intestinal mycobiota and the human immune system. In this review, we focus on questions
related to mycobiota, starting with an introduction of select species, then we summarize the
typical diseases caused by mycobiota in different parts of the human body. Moreover, we
constructed a framework for the human anti-fungal immune system based on genetics and
immunology. Finally, the progression of fungal detection methods is also reviewed.

ARTICLE HISTORY
Received 8 August 2019
Revised 5 January 2020
Accepted 4 February 2020

KEYWORDS
Mycobiota; colorectal
carcinogenesis; immunity;
host-microbe interaction;
detection methods

Introduction

The mycobiota, a general designation of fungal
species, evolved from the branch of a single-
celled marine organism and then underwent
further evolution consistent with that of animals,
the common ancestor is the organism with a single
flagellum1, which indicated the close connection
between two species. Mycobiota play a role in
maintaining stability in both terrestrial and aquatic
ecological environments, acting as a decomposer,
pathogen, and mycorrhizae.2

Research on human microorganisms has been
extensively concentrated on bacterial species.
However, the growing number of mycobiota-related
research papers in recent years indicates an expansion
in the field of the mycobiota. Accumulating evidences
show that many diseases are inextricably linked to
mycobiota.3-5 Meanwhile, numerous achievements
have been made in the research of organism fungal
immunity6,7 (Figure 1). It is suggested that its latent
role in human health is growing recognized. In parti-
cular, the latest researches8,9 reveal the mechanism of
intestinal mycobiota in colorectal carcinogenesis,
which is of great significance for the diagnosis and
treatment of colorectal tumor. Thus, overviewing

mycobiota in the human body is necessary for further
breakthroughs.

In this review, we systematically describe the colo-
nization of mycobiota in healthy people and summar-
ize their association with pathology and immunity. In
addition to a comprehensive understanding of the
relationship between mycobiota and disease, we also
conclude methods for detecting mycobiota to provide
guidance for relevant researchers.

Mycobiota at healthy state

Advanceddetection techniques give us an opportunity
to understand the colonization of mycobiota in the
healthy human body. The numerical inferiority of the
mycobiota have no effect on its irreplaceable role.10,11

The colonization of mycobiota in different body sites
of a healthy human is characteristic, in general,
Candida, Malassezia, Aspergillus, Epicoccum,
Saccharomyces, Alternaria, and Cladosporium are
common species.7 As an essential part of the human
microbiome, mycobiota are widely distributed in the
healthy human body, mainly exist on the skin and
nearly all the mucosal surfaces, such as the gastroin-
testinal tract,12 oral cavity,13 skin,14 and vagina.15 They
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interact with the host as commensalism and contri-
bute greatly to the maintenance of healthy homeosta-
sis in the human body, which depends on the host,
environmental and fungal factors.16

Mycobiota in the gastrointestinal tract(GI)

Using high-throughput sequencing to explore, we
realized the abundance of the mycobiota in the
intestine.17,18 There are nearly 70 genera and more
than 184 species ofmycobiota colonized in the human
gut, with Candida, Saccharomyces, and Cladosporium
species being major. Among the Candida species,
Candida albicans(C.albicans), Candida glabrata,
Candida dubliniensis, and Candida parapsilosis are

the most common species in the gut. Mycobiota are
at great risk of instability due to the influence of other
factors in the gut. The antibiotic therapy can change
the bacterial community, which in turn promoted the
colonization of C.albicans in the GI of mice.
Additionally, these mice were more likely to be
attacked by Aspergillus fumigatus and developed the
allergic response.19 The stomach and gut are tasked
with digestion and absorption of food, so that diet can
change the composition of intestinal mycobiota to
absorb nutrients better. It is significant to have abun-
dant human diet habits and adapt to a new diet
quickly.20 Age and sex can also cause differences in
the gastrointestinal fungal population.21 The abun-
dance of mycobiota in infantile gut is much higher

Figure 1. Time line of clinical progress of mycobiota and related diseases in various parts of the human body.
a.A brief summary of time-points for research published on fungal-related diseases and immune progression, Color coded as follows:
disease (pink), immunity (blue). b. Fungal-related diseases spread across all parts of the body, covering nervous system, respiratory
system, digestive system, reproductive system, endocrine system and the whole body, reflecting the enormous effects of this tiny
species on the body. Abbreviation: ASCA: Anti-S. cerevisiae antibodies; TLR: Toll-like receptor; IBS: Irritable bowel syndrome; Card9:
Caspase recruitment domain-containing protein 9; IBD: Inflammatory bowel disease; GVHD: Graft-versus-host disease; ASD: Autism
spectrum disorders; CMC: Chronic mucocutaneous candidiasis; ABPA: Allergic bronchopulmonary aspergillosis; CAC: Colitis-associated
colorectal cancer; RVVC: Recurrent vulvovaginal candidiasis
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than that of adults, it could be attributed to the weak
bacterial competition. Due to the role of sex hor-
mones, there are a larger number of mycobiota in
the body of female compared to male subjects.

Many studies have discussed the protective ben-
efits of commensal bacteria. Jiang and colleagues
emphasized that intestinal mycobiota are also ben-
eficial for human health.22 Mycobiota can protect
people from mucosal injury and reduce the risk of
diseases such as colitis and influenza. The role of
mycobiota such as C.albicans or Saccharomyces
cerevisiae is shown during the bacterial depletion
caused by the use of antibiotics, which suggests the
substitution of mycobiota to bacteria.

Mycobiota in the oral cavity

The oral fungal community of healthy people is
quite complex, Up to date, the groundbreaking
research by Ghannoum and colleagues13 have
shown that the number of species of mycobiota
is considerable. The most common is Candida;
therefore, Candida is commonly used as
a standard for cavity cleaning in healthy indivi-
duals. Cladosporium, Aureobasidium, and
Aspergillus also occur in the oral cavity. The dif-
ference is obvious in the colonization of mycobiota
among individuals. Dupuy and colleagues made
the supplement in 2014.23 Their team firstly iden-
tifies the existence of Malassezia in the oral fungal
community. Due to their large cell bodies, hyphae
and other characteristics, mycobiota have an unex-
pected impact on oral health by the interaction of
bacteria.24 For example, C.albicans can cause den-
tal caries couple with Streptococcus mutans or
Streptococcus oralis.

Mycobiota in the respiratory tract

In the past, it was widely accepted that the respira-
tory tract in a healthy state was aseptic. With further
researches, scientists found that there is a microbial
community on the bronchus.25 But the result only
shown the colonization of bacteria. As the matter of
fact, the fungal colonization in the bronchoalveolar
lavage of healthy people is cut no figure.26 The few
fungal abundance in distrinct segments of the
respiratory tract exists with significant differences,
the part near the mouth are more affected by the

environment factors,27 such as Davidiellaceae,
Aspergillus, and Cladosporium.

Mycobiota of the skin and vagina

Skin is the first part of human body to touch envir-
onmental microorganisms, with a tremendous com-
munity of bacteria and mycobiota.14 Mycobiota
mainly conclude Malassezia, Penicillium, and
Aspergillus. Malassezia dominates skin mycobiota
in different sites of the healthy human body. By
contrast, the foot sites such as toenail and plantar
heel shown the highest abundance of mycobiota,
which suggested that the foot is easier to suffer
a fungal infection. The reason is that a moist skin
environment and rich protein provide favorable
conditions for fungal colonization.28 With the quan-
titative analysis, Malassezia represents 53% to 80%
of total mycobiota on the human skin29 and impact
the health of our skin greatly. When the skin is
damaged, the mycobiota fills the wound and slows
down the healing.30

Vaginal mycobiota are similar to those in the oral
area; C. albicans, C. glabrata and C. krusei, three
subtypes of Candida, are the major colonizing
mycobiota.31 Mycobiota are generally recognized
as healthy microbes in the vagina, but C.albicans
can colonize in the vagina without causing any
symptoms and can be contagious.32 Bacteria act as
inhibitors against fungal invasion,33 Lactobacilli is
commensal bacteria in the female vagina and have
the ability to prevent the adhesion of Candida.

Mycobiota and disease

Commensal mycobiota are beneficial for human
health, but they are also opportunistic pathogens.
Mycobiota cause human disease for two reasons,
dysbiosis and infection. Here, we provide
a summary of mycobiota-related diseases based
on the parts of the human body (Figure 1).

Mycobiota-related diseases in the
gastrointestinal tract

Inflammatory bowel disease (IBD)
IBD contains two common forms, Crohn’s disease,
and ulcerative colitis. The main characteristic
pathological change, mucosal inflammation, is
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proved that associated with the decreased abun-
dance of gastrointestinal microbiome.34 With the
accumulation of correlative researches, people
have begun to realize the effect of mycobiota on
IBD.35 The detection and analysis showed more
intuitively that the intestinal fungal abundance of
patients with IBD altered greatly compared with
healthy individuals,36 with an increased
Basidiomycota/Ascomycota ratio and incremental
C.albicans. It is might because the absence of bac-
teria provide a more favorable environment for
mycobiota. Additionally, the raising of Malassezia
was also identified as the supplement.37 As early as
1990, researchers used immunological methods to
test patients with Crohn’s disease and an antibody
against fungal cell wall components was found in
their serum. The antibody is known as Anti-
S. cerevisiae antibodies (ASCA).38 Later, studies
provide evidence that intestinal mycobiota trigger
the production of systemic antibodies, such as IgG
and IgA ASCA, could be used as serological mar-
kers of IBD to diagnose and predict the progres-
sion of the disease.39-41 Dectin-1 and Card9 play
a key role in the antifungal immunity. Study by
Iliev and colleagues42 showed that the deficiency of
dectin-1 limited the antifungal immunity of den-
dritic cells and increased the colonization of C.
tropicalis, which raised the susceptibility of
induced colitis. Furthermore, the use of antifun-
gals could allay the inflammation. The results sup-
ported powerfully that mycobiota involved in the
process of IBD dynamically. However, mycobiota
are only closely related to the occurrence and
maintenance of inflammation, rather than
a directly induced factor of IBD. The previous
research of our group clearly identified that the
stimulation of C. tropicalalis could lead to the lack
of NF-kB signaling pathway, resulting in reduced
secretion of IL-6 and thus affecting the repair of
intestinal epithelial cells.43 On the other hand,
taking the genetic mechanism into consideration,
the mutation of mycobiota-sensing related genes,
Card9 and dectin-1, were associated with the
increasing susceptibility of IBD.44 (Table 1).

Colorectal carcinogenesis
Crohn’s disease and ulcerative colitis can increase
the risk of colorectal cancer,70 which is collectively
known as colitis-associated colorectal cancer

(CAC). The involved mechanism concludes
genes, inflammatory molecules, gastrointestinal
tract microbiota and extracellular matrix. The
effect of intestinal bacteria had been identified.71

After that, researchers found five fungi phyla in
the intestine of patients with adenomas, which
shown the advantage of abundance compared
with the two phyla from patients with IBD.72

Moreover, they also identified that Fusarium
genus of advanced adenomas was much richer
than that of non-advanced subjects. It indicated
that fungal colonization contribute the progression
of adenoma. Subsequently, Gao and colleagues73

researched the mycobiota of polyp and CAC
patients and complemented the contrast of healthy
subjects. They verified the higher abundance of
mycobiota in polyp and CAC patients with the
comparsion of control group, characterized with
the enrichment of Malassezia, Talaromyces, and
Trametes. In addition, the difference of fungal
structure in three groups was also shown in the
result. Coker and colleagues74 creatively demon-
strated that patients with colorectal cancer were
characterized with the enhancive Basidiomycota:
Ascomycota ratio, the changes in the abundance
of Saccharomycetes, Pneumocystidomycetes, and
Malasseziomycetes classes. Moreover, the antago-
nistic effects of mycobiota and bacteria in the
intestine contribute to the development of color-
ectal tumors (Figure 2).

How mycobiota affect the development of
CAC? Two studies published on Immunity
found a link between Card9 and the develop-
ment of colorectal carcinogenesis, which marked
the entry of the mycobiota into the stage of
colon carcinogenesis. Malik and colleagues8

aimed at understanding the role of the Syk-
Card9 signal axis in colorectal cancer. Learning
from comparative experiments on wild-type and
Card9-deficient mice, we known that the inflam-
matory reaction and the maturation of IL-18
induced by Syk-Card9 signaling provide strong
support for the protective effects of mycobiota
against colitis and colon cancer. Meanwhile, due
to the phenomenon that Card9-deficient mice
may take on a higher risk of colon cancer,
Wang and colleagues9 provided evidence that
the impaired anti-fungal immunity of Card9-
deficient mice results in increased mycobiota,
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especially C.tropicalis, which increase the prolif-
eration of myeloid-derived suppressor cells
(MDSCs) and promote the risk of colon cancer.
Similar results from two researches suggest that
mycobiota induces a series of response to protect
against colon cancer (Figure 2). One interesting
thing is that Bergmann and colleagues75 found
a conclusion inconsistent with the above results.
They proved that Card9 induces the production
of IL-1β, thus exacerbating colon cancer. In this
study, Card9-deficient mice and wild-type mice
were co-housed for 3 weeks before the experi-
ment, which weakens the influence of fungal
factors on tumor development. In conclusion,
fungal dysbiosis is closely linked to the

deterioration of colitis to cancer, which reminds
us that regulating the state of intestinal myco-
biota can be a way to treat colorectal cancer.76

Irritable bowel syndrome (IBS)
IBS has a great impact on human health. The
connection with mycobiota was described when
it was discovered that the yeast Candida can
make allergic patients suffer from IBS. In recent
years, increasing research has been conducted on
this disease.77 It is a type of disease that is
characterized by abdominal pain caused by stress
allergies. Botschuijve and colleagues78 provided
further information, indicating that differences
in mycobiota existed between patients with IBS

Table 1. Genetic polymorphisms related diseases.
Gene Immunity impairment Response to Diseases References

CYBA/CYBB
NCF1,2,4

Damage to NADPH oxidase CGD 45

Dectin-1 Reduce the effect of IL-1β and Th17 CMC
Candida colonization
Invasive aspergillosis

46,47

DEFB1 Unknown Resistance to Candida carriage 48

IL-4 Increase vaginal IL-4, reduce NO and MBL levels RVVC 49

IL-10 Reduce the production of IL-10 Resistance to invasive aspergillosis 50

Increase the production of IL-10 Persisting candidemia 51

IL-12B Reduce the production of IFN-γ Persisting candidemia
IL-12Rβ1 Reduce the response to IL-12 and IL-23 CMC 52

IL-17RA
IL-17 F

Reduce the axis of IL-17 CMC 45

IL-22 Increase the production of IL-22 Resistance to VVC and RVVC
MBL2 Reduced MBL levels RVVC

Chronic necrotizing pulmonary
aspergillosis

53

CARD9 Impair the response of dectin-1/dectin-2
Reduce the response of Th17 cell and TNF

CMC
Onychomycosis
Deep dermatophytosis

54,55

Reduce the production of IL-1β IBD 56

NLPR3 Reduce the production of IL-1β RVVC 57

TLR1 Reduce the production of IL-1β, IL-6 and IL-8 Candidemia
Invasive aspergillosis

58

TLR3 Reduce the production of IFN-γ and TNF-α CMC 59

TLR4 Invasive aspergillosis 60

TLR9 Increase NF-kB signal ABPA 61

AIRE Autoimmunity reduce the production of IL-17A, IL-17 F and IL-22
Impair the response of T cells

Autoimmune polyendocrine syndrome
type I
APECED
CMC

62

DOCK8 Impair the response of Th17 cell Hyper-IgE syndrome(HIES)
CMC

63,64

STAT3 Impair the response of T cell(Th17 cell and memory T cell) HIES
CMC

65,66

CX3CR1-M280 CX3CR1 functional decline Systemic candidiasis 67

STAT1 Reduce the production of IL-17, IL-22 and IFNγ (the response of Th1 and
Th17 cells)

CMC 68

SFTPA2 Increase the production of IgE and eosinophilia ABPA,
CCPA

69

Abbreviation: CMC: Chronic mucocutaneous candidiasis; CGD: Chronic Granulomatous Disease; VVC: Vulvovaginal candidiasis; RVVC: Recurrent vulvova-
ginal candidiasis; APECED: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy; CCPA: chronic cavitary pulmonary aspergillosis; ABPA:
allergic bronchopulmonary aspergillosis; IBD: Inflammatory bowel disease
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and healthy people; in other words, fungal dys-
biosis was related to IBS. The study suggests the
mechanism of the disease: in the first phase,
after the stress reaction, corticotropin releasing
factor was activated, and then mast cells released
histamine, which damaged the barrier function.

In the second stage, mycobiota became patho-
genic, and the body initiated the immune
response depending on dectin-1/Syk, which is
the main cause of abdominal pain. Meanwhile,
barrier dysfunction and hypersensitivity contin-
ued, causing a vicious circle.

Figure 2. The influence of mycobiota on IBD and colorectal carcinogenesis.
a. Depend on the studies of model mice, we can know that DSS induces local inflammation in mice. Under normal circumstances,
Fungi penetrates the epithelial cell layer and activate immune responses based on dectin-1 and Card9, lymphocytes(Th17 cell) have
a further protective role to play in preventing the process of inflammation. However, without the function of dectin-1 and Card9, the
growth of fungi may out of control and promote inflammatory cell infiltration, this make mice take on high risk of IBD. In addition,
there are two points we need to take notice, firstly, Fungi have nothing to do with inflammation, they just drive the process; the lack
of Card9 can be more serious than dectin-1, it is because that Card9 can receive signals from other receptors. b. According to recent
researches, fungi may influence colorectal carcinogenesis in two pathways. On the one hand, it will involve the immune system. SYK-
Card9 signaling pathway is the main mechanism that mediates fungal immunity, its deficiency can lead to two disastrous results.
Firstly, the maturation process of IL-18, a key inflammatory factor, is inhibited. Moreover, impaired immunity can promote the
proliferation of MDSCs, which is a catalyst for tumor formation. On the other hand, Competitive antagonism between intestinal fungi
and bacteria may also effect the development of colon cancer. Abbreviation: DSS: Dextran sulfate sodium; IBD: Inflammatory bowel
disease; CLR: C-type lectin receptors; SYK: Spleen tyrosine kinase; MDSCs: Myeloid-derived suppressor cells.
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Mycobiota-related diseases in the respiratory
system

Oropharyngeal candidiasis (OPC)
As mentioned, the dominant fungal species in the
mouth is C.albicans, which causes OPC (also known
as thrush) in the absence of immunity.79 In the core
oral mycobiome of Human Immunodeficiency
Virus (HIV) patients and healthy individuals, the
researcher identify the enrichment of Candida in
HIV patients, leading to a higher risk of oral candi-
diasis caused by an opportunistic fungal infection.80

Apart from Candida, Epicoccum, and Alternaria
were also common genera in HIV-infected patients.
The occurrence is based on the imbalance between
fungal invasiveness and the immune reaction.81 HIV
blocks the function of antigen-presenting cells and
CD4 + T cells. The resistance of oral mucosa is also
destroyed. In addition, at the gene level, it was found
that the transcription of SAPs in HIV-positive mice
was higher than that in the negative control group.
In this way, the starting point of prevention and
treatment of oral candidiasis should be the enhance-
ment of immunity82,83 and resistance to mycobiota.
However, the abuse of antifungals could resulted in
the drug-resistance of Candida.84

Cystic fibrosis and asthma
The lungs of healthy people have very little fungal
colonization, which is affected by the environmental
and oral mycobiota. When pathological changes
occur in the lungs, such as cystic fibrosis mycobiota
(mainly Aspergillus fumigatus85), overpopulate due
to amutation of the transcriptional repressor Nrg1.86

Notably, the fungal dysbiosis is insensitive to anti-
biotic therapy87and can lead to allergic bronchopul-
monary mycosis (ABPM) (Box1). This allergic
reaction is a complication of cystic fibrosis, increas-
ing the severity of the disease.88 There are many
serum markers that can be used to diagnose cystic
fibrosis complicated with allergic diseases,89,90 such
as thymus- and activation-regulated chemokine,
CD203c, IgE, and so on. Studies have shown that
vitamin D3 can be used to prevent allergic airway
disease in cystic fibrosis, hindering further health
deterioration.91 Several studies explained that intest-
inal mycobiota can cause allergic airway disease in
the lung through the entero-pulmonary axis

mechanism92,93 (Figure 3). Allergic airway diseases
also account for the severity of asthma.94 The term
for this type of disease is severe asthma with fungal
sensitization (SAFS) (Box1). The treatment of SAFS
mainly include anti-IgE monoclonal antibodies
(omalizumab) and high-dose intravenous corticos-
teroids rather than conventional treatments.95

Graft-versus-host disease (GVHD)

According to the result of multivariate analysis,
Candida spp colonization induce the Th17/IL-23
response through pattern-recognition receptors,
which promotes the development of GVHD.103

The success of lung transplantation is mainly
affected by infectious complications. Using
bronchoalveolar lavage (BAL) and oropharyngeal
wash (OW) to sample lung transplant patients and
healthy people,26 the result clearly show that both
BAL and OW samples from patients contain
Candida at higher abundance than healthy indivi-
duals, while Aspergillus is also dominant in BAL
samples. This provides good evidence that myco-
biota threaten lung transplantation by causing
infection.

Box 1: ABPM
Patients with ABPM usually have severe asthma, elevated IgE
levels, and bronchiectasis. Many factors such as a humid
environment and climate change can affect the sensitivity of the
airway to mycobiota. Skin prick test and IgE serological tests are
commonly used to diagnose allergic reactions to mycobiota in
patients.96

Allergic bronchopulmonary aspergillosis (ABPA), the major form of
ABPM, is caused by Aspergillus fumigatus. Colonization of the
airway mucus by this fungal species promotes the responses of
CD4+Th2 cells, eosinophils and mast cells in patients.88,97 A recent
study found that the Geno variation of ZNF77 is beneficial to
fungal colonization in ABPA, which can be regarded as
a diagnostic marker for fungal infection.98 Further study
discovered that most patients with ABPA have a Card9 S12 N
mutation;99 the infection of Aspergillus fumigatus activates the
RelB signaling pathway (nonclassical NF-κB), which mediates the
production of IL-5 by pulmonary macrophages. After that, Th2
cells begin to differentiate and trigger allergic reactions, leading to
ABPA.
Epidemiological evidence of an association between asthma and
fungal allergies is accumulating.100 SAFS may be complicated by
pulmonary-infiltrating inflammation, bronchial mucus clogging,
and proximal bronchiectasis, and then degenerate into pulmonary
fibrosis.95 Studies have shown that corticosteroids can increase the
airway fungal burden in patients with SAFS.101 In addition, the
mechanism of fungal exacerbation of asthma depends on the
immunomodulatory function of β-glucans (component of fungal
cell wall) rather than the antigenicity of fungal spores.102
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Mycobiota-related metabolic diseases

Intestinal bacteria have been recognized as patho-
genic factors affecting obesity and diabetes.104,105

Mar Rodriguez and colleagues106 emphasized the
composition changes of the fungal community in
obese subjects for the first time. They studied the
mycobiota in fecal samples from obese subjects
and control groups. The difference of fungal
abundance between two groups was unconspicu-
ous; however, the common genus in obese
patients include Candida, Nakaseomyces, and
Penicillium while Mucor, Candida and
Penicillium were most frequently detected in non-
obese individuals. Significantly, It is discovered
that phylum Ascomycota et al. were associated
with abnormal metabolism and phylum
Zygomycota et al. contributed to the defense of
metabolic disturbance conversely, which indicates
that mycobiota will become therapeutic sites for
metabolic diseases. Gosiewski and colleagues107

used Quantitative real-time PCR(qPCR) to ana-
lyze gut mycobiota, such as Candida, in patients
with type 1 diabetes and concluded that the high
prevalence of C.albicans is one of the characteris-
tics of diabetes.

Other mycobiota-related diseases

Malassezia, the main mycobiota in the skin, can cause
different skin infections. Pityriasis versicolor is a form
of skin tinea that has a definite connection with
Malassezia.108 The hyphae of Malassezia invades the
skin, and its metabolites form small-scale pigmented
plaques in lipid spills.Balaji and colleagues109 detected
that cross-reactivity between fungal thioredoxin and
human thioredoxin may related to the inflammation
in the patients with atopic dermatitis. In addition,
Malassezia also contributes to dandruff110 and
folliculitis,111which bring stubborn trouble to the
patient. Candida can also cause skin infection,
named chronic mucocutaneous candidiasis
(CMC),112 marked with the deficiency of IL-17. In
the patient’s body, mutations in STAT1 prevent
T cells from differentiating into Th17 cells and thus
fail to secrete immune effectors such as IL-17, which
are the key to skin resistance to Candida
infection.65,68,113 Moreover, patients with autoim-
mune disease produce antibodies to IL-17, which
impair immunity and can also trigger CMC.62

Recent study by Yang and colleagues shows that
intestinal mycobiota contributed to the aggrava-
tion of alcohol-induced liver disease.114 After

Figure 3. Gut-lung axis.
The changes of intestinal fungi are closely related to lung pathology, this connection is called gut-lung axis. It has been proved by
experiments that the use of antibodies may cause an imbalance in intestinal micro ecology thus prostaglandin E2 (PGE2) promote
the production of M2 type macrophage, which aggravates allergic airway inflammation. On the basis of this, further researches have
given support that the dysbiosis could promote the development of allergic airway disease(AAD) through the response of Th2 cells.
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drinking alcohol, the burden of intestinal myco-
biota in mice increased, with the majority being
Humicola species, Fusarium and Aspergillus, which
led to an increase of mortality. Moreover, the
development of liver disease depends on dectin-1,
the signal induces the production of IL-1β from
Kupffer cells and promotes liver inflammation.
These findings suggest that the intestinal myco-
biota may become the therapeutic target for alco-
hol-related liver disease.115

Recurrent vulvovaginal candidiasis(RVVC) is
a mucosal fungal infection that seriously affects the
health of women.116 C.albicans can act as a symbiont
in the vagina of most healthy women, causing inflam-
mation through promoting epithelial cells to produce
cytokines and chemokines117 when the body is com-
promised, such as with HIV infection, pregnancy,
diabetes, antibiotic use, and so on. In addition, genetic
factors can also increase susceptibility, which is linked
with genetic polymorphisms of immune molecular-
related gene, such as dectin-1.118 Antifungal drugs
such as fluconazole are commonly used in clinic,54

but there is a risk associated with their use in pregnant
women.119 Therefore, probiotics and vaccines54,120are
hopeful use instead of to anti-fungal therapy.

Multiple fungal species can be associated with
the central nervous system when the body’s
immune function is defective, mainly Aspergillus
and Cryptococcus.121 For example, brain abscesses
are caused by Aspergillus infection in leukemia
patients because of neutropenia. Additionally,
cryptococcal meningitis is related to HIV infec-
tion, which is a great threat to human life.122

Meningitis usually originates from a lung infec-
tion, and there is evidence that antifungal treat-
ment for meningitis may exacerbate immune
reconstitution inflammatory syndrome.123

Intestinal mycobiota may be involved in nervous
system diseases, such as autism spectrum
disorders124 and Rett syndrome.125

Host immunity and mycobiota

We have long known the damage caused by myco-
biota to the human body and the severity of the
damage warrants vigilance. Furthermore, the poly-
morphisms caused by fungal immunity-related
gene mutations impact the immune response,
which is associated with the susceptibility to fungal

genetic diseases or infectious diseases (Table 1).
Healthy people can live normally in environments
with an abundance of mycobiota or harbor myco-
biota in their body thanks to a strong immune
system interaction with the commensal mycobiota
to achieve balance. This process includes the
immune defense against infection and the reaction
of mycobiota to the immune system.

Immunity of organisms to fungal infection and
dysbiosis

The skin and mucosa of the human body are the
most exposed to mycobiota. Innate immunity
begins with the perception and recognition of
fungal invasion at these sites (Figure 4). After
that, the downstream signaling pathway begins,
with transduction in the nucleus, triggering
a series of immune effects.

Pattern recognition receptors
Pattern recognition receptors (PRRs) in the
human body consist of C-type lectin receptors
(CLRs), toll-like receptors (TLRs), NOD-like
receptors (NLRs) and RIG-I-like receptors
(RLRs). Research on RLRs is still insufficient, but
we are aware of a function in the recognition of
Candida. PRRs recognize fungal pathogen-
associated molecular patterns (PAMPs) in particu-
lar (Figure 4).

CLRs dominate fungal perception and immunity,
they can activate the Syk-Card9 pathway through
immune receptor tyrosine-based activation motifs
(ITAMs) or FcRγ(relate to ITAMs), which in turn
activates nuclear factor kappa B(NF-kB) signaling
and a series of inflammatory reactions.126 However,
there are differences among receptors (Figure 4),
dectin-1 (also known as Clec7a) is a CLR that is
expressed by many immunological cells. This mole-
cule recognizes β-glucan and then promotes the
production of cytokines to induce inflammation,
thus controlling Candida infection mainly.127 The
deficiency of dectin-1 may cause the reduction of
IL-17, the patient may be more likely to develop
recurrent vaginal candidiasis and onychomycosis.46

However, the results of subsequent experiments are
contradictory. Saijo and colleagues128 suggested that
the function of neutrophils in killing C. albicans was
not impaired when dectin-1 was lacking, which
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Figure 4. The reaction between mycobiota and immune system.
a. On the cell membrane of the phagocyte, there are many pattern recognition receptors, they sense the fungal infection through
recognizing specific components of the cell wall, then the signal goes downstream. The C-type lectin receptors (dectin-1,2,3 and
mincle) are based on SYK-Card9 pathway and then reach NF-kB. The toll-like receptors (TLR2,4,6) are coupled with MYD88 pathway
mainly. b. The maintenance of immune homeostasis includes resistance and tolerance. The resistance is divided into two parts.
Firstly, phagocytic-centered innate immune system. The neutrophil could not only produce IL-6, IL-23 but also cooperate with
macrophages and monocytes to cause inflammation. Dendritic cells could deliver information to T cells through MHC and TCR.
Secondly, adaptive immune effects include antibodies produced by B cells and specific lymphokines produced by different subtypes
of T cells; The tolerance is mainly relying on the remission of inflammation by Treg cells. The two kinds of actions coordinate with
each other to reach the balance state of the body’s immune system. Abbreviation: TCR: T cell receptor; MHC: Major histocompat-
ibility complex; PRRs: Pattern recognition receptors; IDO: Indoleamine-2,3-dioxygenase
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indicated that dectin-1 had no obvious effect on
invasive fungal infection. This led to speculation
until studies found that the response of dectin-1
was species specific, only involving C.albicans yeast
but not filaments, depending on the nature of the β-
glucan in the cell wall of the yeast.129 Apart from the
isolation of infection, experimental evidence has
shown the role of dectin-1 in fungal dysbiosis.
Researchers have shown that dectin-1 inhibits the
excessive growth of Candida in the gastrointestinal
tract to coordinate the ecological environment of the
intestine and avoid colitis.42 Interestingly, Iliev and
colleagues130 found the role of dectin-1 was
explained in the opposite way. They demonstrated
that dectin-1 signals, while resistant to mycobiota,
also inhibited the growth of Lactobacillus in the
gastrointestinal tract and affected the infiltration of
Treg cells, which undermined the body’s ability to
protect against colitis. In addition, dectin-1 also
assists the function of TLRs(TLR2, TLR4).131

Dectin-2, dectin-3, and Mincle have a secondary
role in fungal immunity and connect to the down-
stream Sky-Card9-Bcl10-Malt1 pathway through
FcRγ. Unlike dectin-1, dectin-2 can reduce systemic
Candida infection by stimulating the differentiation
of Th17 cells.132 Additionally, the recognition of
dectin-2 by α-mannan is essential to trigger the
immune response of the human body against
Malassezia, which is also associated with Mincle via
the recognition of lipophilic components in vitro.133

The effect of dectin-3 is similar to that of dectin-2,
which enhances the immune control of fungal inva-
sion. Dectin-2 and dectin-3 cooperate with each
other to form heterodimers, which promote the pro-
duction of proinflammatory factors (IL-1β, IL-6).
Research has shown that this type of complex
improves the ability to sense mycobiota
pathogens.134 Mincle could kill mycobiota by pro-
moting phagocytosis and TNF production, although
this function is not widely accepted.135 A recent
study provided more information about dectin-3,
scholars found that the composition of the gutmyco-
biota is altered in model mice with dectin-3 deletion
and the dysbiosis causes a higher risk of colitis
induced by dextran sodium sulfate. This finding
indicates the role of dectin-3 in maintaining the
homeostasis of the colon microenvironment.43

Mannose receptor(MR) recognizes α-mannan, med-
iating the sensing of mycobiota on the surface of

a macrophage.136 A characteristic of MR is that it
can build a bridge for the immune effect of Th17
cells induced by C.albicans in human peripheral
blood mononuclear cells without anti-CD3 or anti-
CD28 antibodies, which assist IL-17 in fungal
resistance.137 Importantly, MR requires the assis-
tance of other CLRs, such as dectin-1 and TLR2. It
is worth emphasizing that the absence of MR leads to
the susceptibility to C.neoformans and is ineffective
against infection by C.albicans and P. carinii.138

CD23 is a newly discovered CLR, JNK1 (also
known as MAPK8) can down-regulate the body’s
antifungal immunity. According to an experiment
withmice, we concluded that inactivating the activity
of JNK1 could increase the level of CD23 and pro-
mote the production of nitric oxide, which contri-
butes to stronger immunity against fungal
pathogens.139 Therefore, we expect that the JNK1
inhibitor may bring hope for antifungal therapy.
Later, an article revealed the mechanism of antifun-
gal immunity of CD23: it connects the NF-κB signal
pathway through the FcRg subunit and upregulates
the production of nitric oxide from macrophages.
Notably, this applies to defense against C. albicans
and A. fumigatus, but not C.neoformans.140

TLRs such as TLR2, TLR4, and TLR9 are essen-
tial parts of PRRs that participate in sensing myco-
biota. In addition, the polymorphisms of TLR4
and TLR9 could affect human susceptibility to
mycobiota (Table 1). After the recognition of fun-
gal PAMPs, protease-activated receptors (PARs)
are activated, and then PARs and TLRs influence
each other and impact fungal immunity. The
results of studies have shown that PAR1 enhances
immune inflammation in Candida infection with
the help of TLR2, while PAR2 cooperates with
TLR4, downregulating the response to
Aspergillus.141 TLR2 can also maintain the balance
between Th17 cells and Treg cells, with the depres-
sion of Th17 cells.142 The downstream of Toll-like
receptor is linked with MYD88. Using in vivo
experiments, we found that the IL-1 R/MyD88
pathway is essential for the defense against C.albi-
cans and that the TLR4/MyD88 pathway protects
us from succumbing to Aspergillus fumigatus.

The function of NLRs is shown in the NLRP3
inflammasome. The signal transduction of fungal
infection is dependent on Sky, which can endow
NLRP3 activity and produce the precursor of IL-
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1β. Then, the role of NLRP3 becomes relevant,
which activates caspase1 for processing IL-1β.
This process is significant for the defense against
mycobiota.143 NLRC4, which controls the activity
of IL-17 and IL-1β, is also required in resisting
mucosal candida infection.144

The role of cells and molecules
The roles of cells and molecules are divided into
two parts: innate immunity and adaptive immu-
nity. These two parts work together to build har-
monious and unified anti-fungal immune
homeostasis (Figure 4).

Neutrophil is the most powerful phagocyte, and
this type of cell has the ability to kill mycobiota
through oxidative and nonoxidative mechanisms.
For oxidative methods, neutrophils can first product
mycobiotacidal peroxide through NADPH oxidase
and myeloperoxidase, which is known as
a respiratory burst.145 The deficiency of protection
from NADPH oxidase has been proven to be linked
with chronic granulomatous disease, a hereditary dis-
ease marked by chronic inflammation and lethal fun-
gal infection. Secondly, another system is based on
reactive nitrogen intermediates, which are guided by
inducible nitric oxide synthase (iNOS or NOS2).145

For the nonoxidative system, nuclear members are
functional proteins or polypeptides, including antimi-
crobial peptides and hydrolases. All of these pose
a powerful threat to fungal invasion. Additionally,
some proteases in neutrophils have been reported to
have a role in neutrophil extracellular traps, which are
able to catch mycobiota. Otherwise, the neutrophils
can also provide a source of IL-17, assisted by IL-6 and
IL-23.146

The cytotoxicity of epithelial cells is not strong and
mainly functions as a barrier. Themacrophage is not
able to kill fungal spores but can control their growth
and help pathogens become exposed to anti-fungal
drugs. Due to the experiments on CX3CR1 deficient
mice, we underline the potent protection from renal
resident macrophages in the early stage of systemic
Candida infection, which relies on CX3CR1.67 The
latest study found that CX3CR1+ mononuclear pha-
gocytes (MNPs) have an impact on antifungal immu-
nity. CX3CR1+ MNPs could trigger patient defenses
such as Th17 cells and antibodies to reduce fungal
colonization during bowel disease depending on
CLR signaling pathways, and even better, these cells

can regulate the intestinal fungal community and pre-
vent imbalances.147 Monocytes play a major assisting
role; they can kill fungal spores or transport them into
lymph nodes in the form of dendritic cells, triggering
adaptive immunity. In addition, mononuclear cells
can also provide assistance to neutrophils in prevent-
ing the progression of disseminated candida infection,
but overreaction can lead to immune-related pathol-
ogy in the kidneys.148

In the innate anti-fungal immunity, except for the
effects of the abovementioned cells, the role of other
cells and molecules should not be ignored. Innate
immune cells include epithelial cells, natural killer
cells and dendritic cells, while molecules contain che-
mokine, complement, and newly discovered Casitas
B lymphoma-b (CBLB) molecules (Table 2).

Adaptive immunity against mycobiota is sup-
ported by T lymphocytes and antibodies produced
from B lymphocytes. T lymphocytes include CD4
+ and CD8 + T cells. Some studies have authenti-
cated that CD8 + T cells are able to supplement
CD4 + T cells’ functional deficiency in the case of
immunodeficiency153 and other antifungal
activities.154 Here, we only focus on CD4 + T
cells, such as Th1, Th2, and Th17 cells.

It has been reported that T cells of different
subtypes have specific functions. Th1 cells can be
activated by cytokines (IL-12) produced down-
stream of PRRs, although the guidance of dendri-
tic cells(DCs) is found to have an effect when the
body suffers from systemic infection,155 then per-
forming functions such as the production of IFNγ
and enhancing the anti-fungal ability of innate
immune cells like phagocytes. To employ
a different role, the function of Th2 cells is more
likely to soften the immune system. These cells can
be regarded as the target of negative regulation in
an organism’s anti-fungal immunity, maintaining
a balance. Thus, the activation of the Th2 cell
response requires Th1 cell inhibition as a cost,
which causes susceptibility to Candida
infection.156 IL-4 is a trigger factor of the Th2-
type response, and this upregulated response of
Th2 cells may cause people to suffer from
diseases.91

Th17 cells are the main force of specific immunity
against fungal infection in organisms. Th17 cells can
receive stimulatory signals from multiple cytokines
(IL-23, IL-6, and IL-1β), with an article highlighting
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the role of IL-6 produced by the Langerhans cell
combined with CLRs.155 The upstream events may
lead back to a few signaling pathways that were pre-
viously discussed; the well-knownmechanism is com-
bined with Card9, which is the center of anti-fungal
immunity.157,158 For example, in the response to
Aspergillus fumigatus infection, researchers found
that Card9 accepts the signal fromdectin-1 and impels
CD4 + T cells toward the direction of Th17 cell differ-
entiation, which is based on the inhibition of Th1 cell
formation.159 After activation, Th17 cells can produce
cytokines based on IL-22 and IL-17. Accumulating
evidence has shown that IL-17 predominates the pro-
tective response160 with the second role of IL-22 when
the body encounters OPC and RVVC. It suggests that
Th17 cells have a role in the immunity of mucosal
fungal infection specifically.79

Treg cells are another important subtype of T cells.
The effects of Treg cells and monoclonal antibodies
have complemented the antifungal adaptive immunity
so that the organism can mount a better response to
fungal-induced lesions (Table 2).

Effects of mycobiota on organism immunity

The evasive fungal pathogen response to the
immune system
The recognition of PAMPs is the basis for the immune
system tomonitor fungal pathogens. Therefore, many
mycobiota utilize this point for immune escape. For
example, the polysaccharide layer ofCryptococcus neo-
formans and the protein layer from Aspergillus fumi-
gatus can hide PAMPs.145 Additionally, the
morphology of mycobiota may play the same role,161

such as the hyphae ofCandida. Damage to recognition
is also realized by other pathways, including the acti-
vation of complements and the inhibition of phago-
cyte function. After being identified, mycobiota still
struggle to survive by various methods, including the
destruction of the mature of phagocytes, escape,162

and the resistance to unfavorable environments,
which are used by different species of mycobiota.145

Furthermore, fungal pathogen Pneumocystis
carinii causes infection and initiates the Syk path-
way triggered by Dectin-1. This response promotes
MR shedding, which gives functionality to MR (in
the form of sMR) based on metalloproteinase.
Soluble MR (sMR) is widely thought to help myco-
biota avoid clearance by host immunity.163

Interestingly, the Mincle receptor is a powerful
weapon for mycobiota, but toxic factors of myco-
biota could reduce the activation of Interferon
Regulatory Factor (IRF1), which is associated
with the pathway induced by E3 ligase Mdm2.
The alteration could damage the ability to resist
fungal infection by blocking the production of IL-
12, which weakens Th1 cells activity but increases
that of Th2 cells.164

Impact of mycobiota on the immune system
More and more studies show that mycobiota have
the effect on human immune system. In early times,
researchers found the benefits of Saccharomyces bou-
lardii, a type of probiotic mycobiota, which can reg-
ulate the immune system against the invasion of
C. difficile and relieve intestinal inflammation.148 C.

Table 2. Other contributors of anti-fungal immunity.
Immunity Effect

Cells Epithelial cells ·Barrier
·Control growth
·Let pathogens expose to
anti-fungal drugs obviously.

NK cells (rely on
IL-17,IL-23)149

·NKp30 activating receptor is used
for recognition and defense.
·Produce GM-CSF to instruct
neutrophils
·Control systemic fungal infection

Dendritic cells ·Produce IL-23p19 depend on Syk
promote NK cells to secrete GM-
CSF
·Control the inflammation
·Activate T cells

ILCs ·Produce IL-17 against Candida and
IL-23 against Aspergillus

Treg cells150 ·Product IL-10 and TGF-β to down-
regulate the inflammation
·Promote the tolerance and
inhibition of immune system to
mitigate tissue damage caused by
immune overload

mAbs151 ·Target β-glucan, mannan and
Cryptococcus to provide protection
·Regulate the response of T cells.

Molecules Complements ·C3b promotes phagocytosis of
neutrophils and macrophages
·C3a and C5a promote
inflammation

Chemokines and
Chemokine
receptors

·CXCR2: recruit monocytes
·CXC type: recruit neutrophils
·IL-22:acting on epithelial cells,
anti-fungal in the case of anti–
inflammatory.

CBLB152 Ubiquitin dectin-1 and dectin-2 to
restrict the signal of Syk thus
reduce the innate immunity.

Abbreviation: NK cells: Natural killer cells; ILCs: Innate lymphoid cells;
mAbs: Monoclonal antibodies; CBLB: Casitas B lymphoma-b
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albicans was found to affect immune components
such as TLR4, Dectin-1 and build patient defense in
the gut and lung.165 There is also evidence that myco-
biota regulate lymphocyte recirculation. Fungal flora
can induce Raldh+ dendritic cells gathering in periph-
eral lymph nodes. Without this process, lymphocyte
adhesionmolecules (necessary in recirculation) would
have no response. To survive under the surveillance of
the immune system, apart from the help from Treg
cells mentioned above, mycobiota could also accom-
modate immune sensitivity. C. albicans can activate
the tolerance of macrophage and DCs increase the
impression of indoleamine-2,3-dioxygenase. It is
widely accepted that it can induce the enrichment of
Treg cells and the depletion of Th17 cells. All of these
may help mycobiota adapt to immunity better. In
addition, the contribution of cytokines cannot be
ignored, and TGF-β and IL-10 are used by
Malassezia to avoid excessive inflammatory
responses.156

MDSCs are usually believed to promote tumor
formation depending on the nature of hyper
proliferation.166 According to further study, people
began to realize the effect they play in the interaction
between fungal pathogens and hosts. A murine study
further provides evidence that the recognition
between fungal pathogens and dectin-1 drives the
neutrophilic subtype ofMDSCs to obstruct the activity
of Natural killer cells and Th17 cells through coopera-
tion with caspase-8, IL-1β and ROS, thereby prevent-
ing the human body from suffering severe
inflammation. It is also proved9 that C.tropicalis
induce MDSCs differentiation from bone marrow
cells, which promote the development of CAC. In
short, MDSCs can be used by mycobiota as
a medium to achieve the regulation of the immune
system.

Except for the primary immune response, some
researchers found that the innate immune system
that has been exposed to fungal pathogens can
provide a faster and stronger defense against rein-
fection, which is called ‘trained immunity’ (Box2)
for fungal pathogens. This revolutionizes our per-
ception of innate immunity. It was found that C.
albicans can enhance the resistance of monocytes
to secondary infection in the body by means of
dectin-1 and it’s epigenetic modification.167

Recently, Tso and colleagues had shown that the
mechanism of fungal pathogen evolution involves

a symbiotic relationship with the host gastrointest-
inal tract. The use of antibodies selects a fungal
strain with hyphal deficiency, which has low toxi-
city and high immunogenicity. This fungal patho-
gen’s adaptation to the intestinal tract enhances
the protective power depending on the innate
immune system. The effect is impermanent, but
it can relieve a crisis of adaptive immune defi-
ciency, such as Acquired immune deficiency syn-
drome (AIDS).168 It can also give us an advantage
when searching for proper vaccines for infection
protection, for example, Bacillus Calmette-Guerin
is a well-known anti-tuberculosis vaccine that also
has protective effects on fatal systemic fungal
infections, which has been demonstrated to have
an association with the change of metabolic
pathways.169

Methods for detecting mycobiota

Hospital AIDS172 and transplant patients173 as well
as intensive care patients174 have a high risk of
fungal infection. In addition, drug-resistance due
to inappropriate anti-fungal treatment can also
lead to a challenging disaster for humans.175 To
realize more accurate and fast detection, we must
rely on convenient and advanced methods and
techniques(Figure 5).

Box 2: Trained immunity
People have always held the view that, among the immune
responses, including nonspecific (innate) and specific (adaptive)
responses, only the latter can preserve memory to provide
a stronger protection against reinfection. However, several studies
have shown that plants and invertebrates, which only have innate
immunity, are on-alert when they reencounter the same or
different pathogens. This phenomenon is named systemic
acquired resistance. Targeted in-depth studies have deepened our
understanding of this phenomenon. Previous invasion trained the
innate immune system to offer better protection when reinfection
occurred. Thus, the concept of ‘trained immunity’ is widely known.
According to a study on vertebrates, we also found the existence
of trained immunity in their bodies, which has the characteristic of
adaptability, but not specificity.170

On the basis of experimental studies, β-glucan (mycobiota),
peptidoglycan or lipopolysaccharide (bacteria) and other microbial
pathogens could trigger responses targeted on innate immune
cells, mainly macrophages, monocytes and natural killer cells.
Compared with adaptive immunity, trained innate immunity
contains many differences such as temporal and nonspecific
characteristics, which are attributed to the dependence on
epigenetic or transcriptional changes rather than genetic variation.
However, there are still some adverse effects and labile factors
exist.171
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Histopathological and immunological methods

Traditional diagnostic methods for fungal diseases
depend on histopathological examination (selective
culture, microscopic examination, biochemical detec-
tion). This method provides a reliable standard for
Candida infection but more damage to the patient
due to the length of the detection time, including
disease deterioration and economic losses.176 There
are differences in detection methods for different
types of fungal infections;177 however, false positivity,
confusion, and invalidation may occur in the mor-
phological diagnosis of fungal infection.178

The immunological method is a technique for
detecting fungal antigens, mainly components of the
fungal cell wall, such as β-d-glucan.179 Some labora-
tory researchers used radioimmunoassay to detect
fungal mannan, which has diagnostic significance
for systemic candidiasis.180 The Cand-Tec latex agglu-
tination test also has a related application.181 Enzyme-
linked immunosorbent assay (ELISA) is used in the
diagnosis of penicilliosis by detecting the antibody
Mp1p.182 It has been proven that ELISA is better
than the latex agglutination test in aspergillus infec-
tion identification.183 Nevertheless, antigen detection

Figure 5. Fungal detected methods.
The AIDS patients and Intensive care patients, as well as patients who receive organ transplant have a high risk to suffer the fungal
damage. In order to reduce the harm caused by fungal pathogens to the human body, people use a variety of detection methods to
diagnose fungal infection quickly and accurately, which involve pathology, immunology, and molecular science. Abbreviation: AIDS:
Acquired Immune Deficiency Syndrome; ICU: Intensive Care Unit; RIA: Radioimmunoassay; ELISA: Enzyme-linked immunosorbent
assay; PCR: Polymerase chain reaction; LAMP: Loop-Mediated Isothermal Amplification; NGS: Next-generation sequencing; WGS:
Whole Genome Sequencing; FISH: Fluorescence in situ Hybridization.
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is influenced by many factors, such as immune com-
plexes and detection thresholds, which are limited;
therefore, prospective improvements are required.184

Molecular biological methods

The above methods cannot address the complexity
of the fungal community. Therefore, molecular bio-
logical methods have entered the stage of fungal
detection.185 Polymerase chain reaction (PCR) is
a basic technology related to fungal DNA detection.
Although traditional PCR technology has advantages
of being quick and intuitive, the low DNA content of
fungal pathogens has led to the fact that this techni-
que cannot meet the required sensitivity.186 Thus,
some improved technologies were born. qPCR
allowed us to access real-time detection, enhancing
sensitivity and specificity.187 This instant feedback
signal was accomplished by fluorescent probes such
as Taqman. Isothermal PCR eliminates the thermal
cycle step, simplifying the PCR technology greatly.
Loop-mediated isothermal amplification has an
absolute advantage.188 Use of PCR necessitates atten-
tion to some points: DNA extraction should be per-
formed with attention to DNA quality and should
avoid contamination;189 in regard to the design of
various primers,4 the target is usually directed to the
fungal rDNA operon region.190 Researchers have
harmonized the biomarkers used to identify fungal
species. Based on the considerable sequences and
analyses, The taxonomic and phylogenetic classifica-
tion based on sequence analysis of the ITS genomic
region has become a crucial component of fungal
ecology and diversity studies.191

After using PCR to amplify specific regions,
sequencing is the next step. Currently, metagenome
sequencing opens the door to a new world for fungal
detection.74 Next-generation sequencing (NGS) is
the second generation high-throughput sequencing
technology,192 replacing Sanger sequencing.193 NGS
is supported by high-throughput sequencing plat-
forms such as 454-pyrosequencing technology194

and the Illumina MiSeq sequencing platform.195

The sequence results should be compared according
to a common database (like GenBank). Although
there are some shortcomings with searching, it has
provided an effectivemethod for the identification of
mycobiota.

The methods of DNA analysis for mycobiota
help us to familiarize ourselves with fungal colony
changes associated with related diseases. For
example, the microscopic pathological changes of
patients with ulcerative colitis were studied by
denatured gradient gel electrophoresis analysis.18

Moreover, clinical studies have shown that micro-
array technology can be used in the pathological
analysis of mycosis.193 Because the structures and
characteristics of mycobiota are diverse, we often
need to use different methods for specific fungal
species to achieve accurate judgments, except for
common approaches such as β-glucan assays. For
example, it is most appropriate to detect germ tube
antibodies for Candida spp. while detecting galac-
tomannan for Aspergillus spp.177

Over time, the rapid development of new mole-
cular identification methods has opened the under-
standing of the fungal world. Whole Genome
Sequencing is applied in human oral mycobiota.13

Other technologies such as Mass spectrometry196

Fluorescence in situ Hybridization197 and Magnetic
resonance198 help us have a more thorough under-
standing of mycobiota.

Conclusions

Earlier, when it came to the microbiome of the
human body, the first thing people considered
was bacterial species. However, in recent years,
the role of the mycobiota has gradually appeared,
reflecting a position that cannot be ignored.
Through reviewing these studies, we have rea-
lized that the effects of mycobiota have pene-
trated all aspects of human pathology, with
a gradual expansion of scope. This tells us that
the door to the new world of mycobiota has
opened and that more novel problems are in
need of our solutions: how to transfer the model
of colon cancer into clinical practice; whether the
functional similarity between bacteria and sym-
biotic mycobiota can be extended to other
aspects; what should we do to preserve the ben-
efits of mycobiota for the immune system and
minimize the damage?

The rapid rise of fungal research also provides
a new approach to the treatment of clinical-related
diseases. It is worthwhile to note that we should
consider fungal species in the internal
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microenvironment rather than in isolation. Only
in this way can we systemically understand the
responses and apply them in actual disease treat-
ments for the benefit of more people.
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