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REVIEW

Sweet, bloody consumption – what we eat and how it affects vascular ageing, the 
BBB and kidney health in CKD
Angelina Schwarza, Leah Hernandeza, Samsul Arefina, Elisa Sartiranab, Anna Witaspa, Annika Wernersona, 
Peter Stenvinkela,c, and Karolina Kublickienea

aDepartment of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; 
bDepartment of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy; 
cDepartment of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden

ABSTRACT
In today’s industrialized society food consumption has changed immensely toward heightened red 
meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. 
These dietary changes affect public health in general through an increased incidence of metabolic 
diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. 
Research shows that high red meat intake and artificial sweeteners ingestion can alter the micro-
bial composition and further intestinal wall barrier permeability allowing increased transmission of 
uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylgluta-
mine into the blood stream causing an array of pathophysiological effects especially as a strain on 
the kidneys, since they are responsible for clearing out the toxins. In this review, we address how 
the burden of the Western diet affects the gut microbiome in altering the microbial composition 
and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early 
vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implica-
tions for dietary changes/interventions to preserve the health issues related to chronic diseases in 
future.
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In the Anthropocene, which is marked by the 
human impact on the environment through 
immense development of modern technologies, 
the general style and habits of people’s life are 
also altered accordingly.1 It is debatable when the 
influences of mankind became so big that they 
affected environmental factors like climate change 
and agricultural landscapes, however the recent 
development of mankind analogously resulted in 
societies that consume proportional high amounts 
of red meats, animal products and pursue low carb 
diets achieved through artificial sweeteners.2 In 
parallel, this is also relevant for an extensive 
increase and presentation of life style diseases that 
are developing due to complex interactions 
between genetic, epigenetic and functional adapta-
tions that occur as a result of changes during the 
lifespan of a human and in response to environ-
mental insults such as climate changes, food avail-
ability and potential pandemics.

Currently, it is increasingly accepted that dietary 
choices and practices can have a significant impact 
on the composition and function of the gut 
microbiome.3,4 The complex interplay between 
the diet and the gut microbiota influences micro-
bial diversity, metabolic activity and overall gut 
health. Diets high in saturated fats have been linked 
to an unfavorable shift in the gut microbiome 
composition. This is characterized by reduced 
microbial diversity and an increase in potentially 
harmful bacteria, which can contribute to inflam-
mation, increased gut permeability and potentially 
impact the development of obesity.5

The Western dietary pattern known for its 
high content of fat, salt and food additives, 
along with increased consumption of refined 
and artificial sugars and processed foods, 
coupled with reduced intake of whole grains 
and dietary fiber, not only may contribute to 
the development of obesity but also increase the 
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risk of diabetes and cancer.6 This is also impor-
tant for chronic kidney disease (CKD) patients, 
who are usually advised to adhere to a strict 
dietary plan to minimize intake of nutrients 
like potassium, phosphorous, sodium and pro-
teins to help the affected kidneys that are tasked 
with the clearance of those from the circulation.7

Like many chronic diseased conditions, CKD is 
a multifactorial disease, influenced by many exter-
nal and internal factors. The disease picture is often 
accompanied by uremia induced early vascular 
aging (EVA) phenotype and an associated increase 
in cardiovascular disease (CVD) risk, cognitive 
impairment and increased risk for depression.8,9 

Thus, CKD patients usually must adhere to 
restricted diets to minimize the solute clearance 
burden of the functionally diminished kidneys.7,10 

Therefore, the current health care burden requires 
a strong focus on dietary interventions in addition 
to pharmacological and renal replacement thera-
pies, identifying and deepening the understanding 
how dietary aspects may influence the effects of 
uremic toxins on organs of vital importance.

In this review, we will concentrate on the pre-
sentation of less studied but important aspects of 
artificial sweeteners and red meat consumption in 
the gut microbiome, which may not only affect the 
processes of chronic disease development but also 
the direct effects of uremic toxins due to distur-
bances in microbiota composition. Further, we will 
elaborate on the effects of uremic toxins on kidney 
function and the accompanied presentation of 
EVA phenotype, impaired blood-brain barrier 
(BBB) function in CKD and how dietary interven-
tions may improve the maintenance of a balanced 
microbiome and ameliorate adverse health 
consequences.

Artificial sweeteners

To commence, this review addresses artificial 
sweeteners and red meat consumption to portray 
some of their impact on the gut microbiome and 
the consequential processes like increase in uremic 
toxins, before describing in more detail the asso-
ciated physiological impact thereof on CKD asso-
ciated EVA and their effects on the BBB.

Artificial sweeteners, widely popular as sugar 
substitutes, have been increasingly utilized for 
their apparent benefits in reducing calorie intake 
and managing blood sugar levels. However, emer-
ging research has started to shine a light on the 
potential consequences of artificial sweeteners on 
the gut microbiome and kidney health. Artificial 
sweeteners comprising non-nutritious sweeteners 
(NNS) like aspartame, sucralose, saccharin or ace-
sulfame potassium (K) and low-calorie sweeteners, 
which are polyols and sugar alcohols like xylitol, 
erythritol or sorbitol are widely used as sugar sub-
stitutes in a variety of foods, beverages and con-
sumables. The summary of the most widely used 
and in the European Union authorized sweeteners 
is shown in Table 1.

Artificial sweeteners were initially introduced as 
a healthy alternative due to their low or zero calorie 
content, which was thought to be beneficial for 
weight management and managing blood sugar 
levels. However, emerging research suggests that 
these artificial sweeteners cause or worsen the 
somatic state they were supposed to alleviate 
through unintended effects on, e.g. the post- 
ingestion pathway response and the gut 
microbiome.12 In fact, it has been shown in mice 
and humans that the consumption of NNS like 
aspartame and sucralose worsens glucose tolerance 

Table 1. List of authorized sweeteners in the European Union according to the European Food Safety 
Authority, with E-numbers11.

E-Number Name E-Number Name

E 420 Sorbitols E 960a Steviol glycosides from Stevia
E 421 Mannitol E 960c Enzymatically produced steviol glycosides
E 950 Acesulfame K E 960d Glucosylated steviol glycosides
E 951 Aspartame E 961 Neotame
E 952 Cyclamates E 962 Salt of aspartame-acesulfame
E 953 Isomalt E 964 Polyglycitol syrup
E 954 Saccharins E 965 Maltitols
E 955 Sucralose E 966 Lactitols
E 957 Thaumatin E 967 Xylitol
E 959 Neohesperidine DC E 968 Erythritol
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and insulin sensitivity, which are precursors to 
more serious conditions like metabolic syndrome 
and type 2 diabetes.13 Most artificial sweeteners are 
a hundred times sweeter than sucrose and used in 
small amounts, nonetheless they are able to activate 
the heterodimeric G-protein coupled sweet taste 
receptors taste receptor type 1 member 2 (T1R2) 
and taste receptor type 1 member 3 (T1R3) in the 
oropharynx, triggering a hormonal response, 
anticipatory or cephalic-phase insulin release, 
from the amygdala and hypothalamus in anticipa-
tion of nutrition.14 In the intestine, duodenal neu-
ropod cells synapse with vagal neurons to convey 
sugar stimuli to the brain. Those cells are able to 
differentiate between sugar and sweeteners by also 
employing sweet taste receptors and sodium glu-
cose transporters.15,16 Sugars stimulate glutamater-
gic neurotransmission and sweeteners stimulate 
purinergic neurotransmission.15,17,18 But artificial 
sweeteners are of no or little caloric value and the 
hormonal feedback of the post-ingestion pathway 
is lacking or dampened.19 Eventually, the lack of 
metabolic energy intake through the NNS dampens 
the hormonal response and effectiveness of satiety 
and energy metabolism, leading to increased sugar 
cravings, appetite, caloric consumption and 
hyperglycemia.12,20

Whereas low-calorie sweeteners like xylitol and 
erythritol, in a clinical study, have been suggested 
to be able to bind the taste-receptors on enteroen-
docrine cells since their ingestion caused glucagon- 
like peptide 1 (GLP-1) and incretin release, while 
no change in insulin secretion or gastric emptying 
was seen compared to the glucose control group. 
This implies therefore that those low-calorie sweet-
eners do not trigger increased appetite and are 
stipulated as a potential health alternative for 
obese and diabetic patients.21 Xylitol mostly passes 
through the small intestine and gets fermented by 
bacteria in the large intestine, while erythritol is 
mostly absorbed by the epithelial cells of the intest-
inal wall and then excreted by the kidneys.22

Several studies have suggested that artificial 
sweeteners can alter the composition and function 
of the gut microbiome.12,23–26 The analysis of the 
gut microbiome by 16sRNA sequencing of 172 
NNS consuming individuals, assessed through 
a dietary questionnaire, showed a positive correla-
tion between NNS consumption and taxonomic 

entities, including the Enterobacteriaceae family, 
the Deltaproteobacteria class and the 
Actinobacteria phylum.12 Additionally, in the 
same cohort, consumption of NNS was associated 
with increased fasting blood glucose, higher weight 
and waist-to-hip ratio and elevated glycosylated 
hemoglobin.12 Comparably, in male rats, 
a significant decrease of commensal microbes 
Bifidobacterium, Lactobacillus and Bacteroides was 
described after 12-week exposure to sucralose and 
maltodextrin.12,27 This indicates that repetitive 
consumption of artificial sweeteners can affect the 
microbial composition in humans and rodents.

A diverse microbial ecosystem in the gut is gen-
erally associated with good health. Some artificial 
sweeteners have been observed to reduce this 
diversity, which may contribute to conditions like 
obesity and diabetes. Reduced bacterial diversity 
can also result in decreased production of short 
chain fatty acids (SCFAs), which are essential for 
colon health.27,28 However, a recent clinical trial 
with 17 healthy patients between the ages of 18– 
45 suggested that daily consumption of aspartame 
or sucralose in doses reflective of typical high use 
caused no obvious differences in the microbiota 
community structure or in the amounts of fecal 
short chain fatty acids (SCFAs).29

In a recent study, Sihl et al. demonstrated the 
pathogenicity inducing effects of saccharin, sucra-
lose and aspartame on Escherichia coli and 
Enterococcus faecalis, two model gut bacteria.30 In 
in vitro experiments, they showed that all three 
artificial sweeteners significantly increased the abil-
ity to form a biofilm for E.coli, whilst only aspar-
tame had a significant effect on E.faecalis biofilm 
formation. Moreover, in co-culture with intestinal 
epithelial Caco-2 cells, aspartame, sucralose and 
saccharin, to an extent, promoted the pathogenic 
effects of both model bacteria. E.coli and E.faecalis 
showed increased adherence ability and invasion 
index when pre-exposed to the sweeteners, plus 
heightened excretion of soluble bacterial factors 
after sweetener exposure. Caco-2 cell viability was 
decreased when co-cultured with either the artifi-
cial sweeteners-exposed bacteria or addition 
thereof soluble bacterial factors to the culture 
media.30

In another study, Markus et al. showed that 
aspartame, sucralose and saccharin, commonly 
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used sweeteners, have significant inhibitory effect 
on the Gram-negative bacteria N-acyl homoserine 
lactone-based (AHL) bacterial cell-to-cell commu-
nication system, also called quorum sensing. While 
not being bactericidal, the artificial sweeteners are 
suggested to compete with the native ligands on 
docking at the ligand-binding site of the AHL- 
receptors and thus further hinder protein folding 
and quorum sensing communication, affecting 
numerous molecular events of intestinal microbial 
function and subsequent the host metabolism.31 In 
another recent study, through in vitro experiments 
and complementary proteomic analysis, artificial 
sweeteners saccharin, sucralose, aspartame and 
acesulfame K have been shown to stimulate the 
transfer of antibiotic resistance genes via natural 
transformation in Acinetobacter baylyi ADP1 and 
Gram-positive Bacillus subtilis. Additionally, artifi-
cial sweeteners could stimulate antibiotic resistance 
gene transfer in an in vitro model of a mouse fecal 
microbiome in which B. subtilis was added. 
Exposure of the bacteria to artificial sweeteners 
increased their cell envelop permeability, causing 
an upregulation of genes encoding DNA uptake 
and translocation machinery and prolonged plas-
mid resistance in transformants.32 This could also 
have an environmental impact, since artificial 
sweeteners to a huge extent pass through the diges-
tive tract and urinary excretion system unaltered 
and the wastewater treatment plants are not 
equipped to retrieve artificial sweeteners properly, 
which causes them to end up polluting many aqua-
tic environments.33 With rising antimicrobial resis-
tance as a global public health burden, generating 
hundred thousands of deaths annually, a field 
recognized to be further investigated.34

Artificial sweeteners do not just affect the micro-
biota, they also interact with receptors of their 
hosts, like taste receptors, including us humans. 
Besides, triggering the G-protein-coupled T1R2/ 
T1R3 heterodimer receptor in the oropharynx, it 
has been demonstrated that artificial sweeteners 
aspartame and sucralose increased intestinal 
epithelial barrier permeability and down- 
regulation of claudin 3 at the cell surface in Caco- 
2 cells through taste receptor T1R3. The knock- 
down of T1R3 in Caco-2 cells attenuated the men-
tioned effects of aspartame and sucralose. 
Additionally, claudin 3 overexpression rescued 

the aspartame induced reactive oxygen species 
(ROS) and artificial sweeteners induced barrier 
permeability.35

Artificial sweeteners appear to have the ability to 
affect the metabolism and the commensal gut 
microbiome in humans and rodents eliciting draw-
backs, like increased weight, fasting blood glucose 
and glycosylated heamoglobin.11,23–25 28 Increased 
biofilm forming capability, enhanced antibiotic 
resistance gene-plasmid transfer, higher invasion 
index of intestinal epithelial cells and affected 
quorum sensing through artificial sweeteners expo-
sure can change the balance of the gut microbiome 
and may cause dysbiosis, which is connected to 
various chronic diseases. However, it is important 
to note that the effects of artificial sweeteners on 
the gut microbiome vary depending on the type of 
sweetener, the amount consumed and individual 
differences in gut microbiome 
composition.21,31,32,36

Artificial sweeteners and the kidneys

To date, reports on how artificial sweeteners affect 
the kidney are still limited and contradictive and 
more research is needed to investigate those effects. 
The consumption of artificial sweeteners may 
increase the workload on the kidneys as they filter 
out many of these compounds from the blood. 
Over time, this heightened workload can cause 
structural and functional changes in the kidneys, 
making them less efficient at filtering waste.37 Farid 
et al. performed an experiment with healthy BALB/ 
c albino female and male mice, in which they were 
given over a period of 8 or 16 weeks for 5 h daily ad 
libitum access to water enriched with either 
sucrose, sucralose, stevia or no additive as the con-
trol group. The biochemical investigations showed 
that sucralose and even natural sweetener stevia 
significantly reduced the hemoglobin A1c level, 
hematocrit percentage, red and white blood cell 
count in male and female mice. On top of that, 
elevated serum levels for immunoglobulins IgG, 
IgE and IgA and pro-inflammatory cytokines inter-
leukin (IL)-6 and −8 were measured in both male 
and female groups administered with sucralose or 
stevia, accompanied by a reduction in anti- 
inflammatory cytokine IL-10 serum level, suggest-
ing a potential for proinflammatory effects in both 
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sexes. Furthermore, increased urea and creatinine 
was measured in sucralose-exposed males and 
females, whereas stevia had this effect more pro-
nounced in females. Histopathologically, no sex 
differences were detected in the kidney, but sucra-
lose-exposed animals exhibited smaller sized glo-
meruli with enlarged Bowman’s capsules, areas of 
hemorrhage and loss of brush border in the prox-
imal tubules. Stevia exposure showed a few areas of 
inflammation and the appearance of congested 
blood vessels.38

Interestingly, in a study by Enuwosa et al., arti-
ficial sweeteners aspartame, saccharin and sucra-
lose are described to exhibit protective effects on 
the glomerular microvasculature against vascular 
endothelial growth factor (VEGF)-induced barrier 
disruption. However, their mechanistic studies 
using an in vitro model of primary human glomer-
ular microvascular endothelial cells failed to iden-
tify T1R2/T1R3 activation and subsequent release 
of intracellular cyclic adenosine monophosphate as 
signaling mode of action, hypothesizing an 
unknown alternative signaling pathway since no 
sucralose was detected within the cytosol of glo-
merular endothelial cells.39 Further, no major 
effects of saccharin on the glomerular filtration 
rate (GFR) or urine flow in the kidney were seen 
in an in vivo experiment on 30 male Wister rats, 
which have been administrated with an acute sac-
charin infusion, suggesting that any reported 
change in renal function with artificial sweeteners 
must depend on chronic consumption.40

Aspartame has been described as a nephrotoxin, 
its metabolites phenylalanine, aspartic acid and 
methanol, which gets metabolized to formalde-
hyde, have detrimental effect on the kidney and 
cause oxidative stress.41–43 Daily oral administra-
tion of aspartame in male Wistar rats over a period 
of 42 days resulted in increased urea, creatinine and 
potassium in serum, while blood hemoglobin, 
sodium and calcium levels were significantly 
decreased. Additionally, aspartame treatment 
decreased glutathione and the activities of glu-
tathione peroxidase and catalase in kidney tissue 
with a simultaneous increase of thiobarbituric acids 
reactive substances, known as a byproduct of lipid 
peroxidation and increased oxidative stress. Co- 
treatment with folic acid and N-acetyl cysteine 
alleviated the observed effects of aspartame in the 

Wistar rats.43 In a different study, female albino 
Wistar rats were through orogastric administration 
exposed on the 9th, 10th and 11th day of pregnancy 
to either at room temperature or heated to 40°C 
dissolved aspartame. Heating causes aspartame to 
form free phenylalanine and diketopiperazine, see-
mingly a carcinogen. The experiment showed that 
the administration of aspartame during pregnancy 
led to alterations in the fetal renal structure, stereo-
logical parameters showed significantly increased 
cell volume and decreased numerical cell density in 
the tubules and glomeruli of the aspartame exposed 
fetal kidneys for both temperature conditions.44,45

In summary, increasing evidence suggest that, at 
least based on animal experiments, the usage of 
artificial sweeteners has an effect on the kidney 
through structural changes in the glomeruli and 
congested blood vessels, on inflammation, blood 
hemoglobin, sodium and calcium levels.

However, the evidence of how this affects sugar 
control is contradictory based on levels of glycated 
hemoglobin for some of the artificial sweeteners. 
Figure 1 illustrates the interplay of artificial sweet-
eners with the gut microbiome and the following 
endocrine responses.

Red meat and uremic toxins

The planet’s consumption of red meat has doubled 
since the 1960s and above all, it is in China that the 
consumption of red meat is increasing.46 The dra-
matic increase in red meat consumption not only 
increases greenhouse gas emission but will also 
impact our health.47,48 Robust scientific evidence 
links increased consumption of red meat intake 
with increased risk for CVD as well as metabolic 
syndrome, type 2 diabetes, diverticulitis and can-
cer, leading to a negative perception of the role of 
high intake of red meat for health.49–51 High con-
sumption of red meat results in an increased intake 
of saturated fat, cholesterol, iron and salt, as well as 
an excessive acid load. Although red meat is the 
best source of essential amino acids that are more 
nutritionally efficient than are those provided by 
vegetables, recent data suggest that red meats have 
multiple negative effects on our health. Red meat is 
rich in sodium and phosphate and can promote 
acidosis.49 Consumption of red meat in humans is 
also associated with an elevation in inflammatory 
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biomarkers and the promotion of oxidative 
stress.52

The influence of diet on human health is 
mediated at least in part by the gut microbiota. 
Gut dysbiosis is understood as the altered compo-
sition and function of the gut microbiome, which 
refers to the community of microorganisms, 
including bacteria, viruses and fungi, which live 
in our digestive tract. These commensal microbes 
play a crucial role in our health, aiding in digestion, 
immune function and even mental health.23 The 
entrance of bacteria into the blood circulation can 
be seen as an intrinsic factor of gut leakiness and 
may reflect the gut health.53 Increasing evidence 
suggests that different socioeconomical positions 
may play an important role in gut microbial com-
position. For example, when analyzing the periph-
eral venous blood using 16SRNA sequencing, 
differences in the circulating microbiota were 
seen in the Glasgow community groups depending 
on their socioeconomical status linked to poor 
nutrition and accelerated biological aging.54 

Indeed, those that were characterized as most bio-
logically aged exhibit a significantly higher abun-
dance of circulatory pathogenic bacteria, including 
Neisseria and Porphyromonas, while those less bio-
logically aged possess more circulatory salutogenic 
or commensal bacteria, including Lactobacillus.54

A recent review of 85 eligible articles concludes 
that there is a paucity of research in this area and 
that the directionality and magnitude of changes in 
the gut microbiome varied with inconsistent 
pattern.50 Thus, although red meat intake tended 
to increase the population of some bacterial species 
and decrease population sizes of other genera, 
however robust data are lacking. Part of the incon-
sistencies in the literature could be linked to the 
fact that “meat” is not a single food but includes 
a wide variety of muscle food from mammalian, 
aquatic, avian and other sources of flesh and other 
tissue food. Even though there are varying reports 
about bacterial changes, the food source affects the 
production of bacterial metabolites like uremic 
toxins. It was recently reported that red meat shifts 

Figure 1. Artificial sweeteners affect the gut microbiota and endocrine response. Artificial sweeteners from different dietary products 
can affect the microbial gut composition via activation of taste receptors linked to the modulation of, eating behavior, glucose 
tolerance and handling insulin sensitivity and inflammation. AS: artificial sweeteners; T1R2/T1R3: taste receptor type 1 member 2 and 
3; HbA1C%: glycosylated hemoglobin.
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the gut microbiome to produce more trimethyla-
mine (TMA), the precursor of trimethylamine- 
N-oxide (TMAO) and a uremic toxin, via 
a microbial gene cluster.49,55 Dysbiosis in turn 
compromises intestinal barrier function, making 
it more permeable to an influx of bacterial frag-
ments from gut to blood.56 By analyzing microbial 
DNA signatures within the blood circulation, we 
recently confirmed that TMAO along with one 
carbon metabolism had significant impact upon 
both inflammatory burden and the composition 
of the microbiome in CKD.57 Our findings demon-
strate that TMAO acts as the key toxin shaping the 
uremic microbiome and therefore this polyamine 
might be exploited to enable dietary intervention 
strategies that restore the microbiome in CKD.

High consumption of animal protein sources, 
especially red meat, increases the production of 
several uremic toxins, including p-cresyl sulfate 
(PCS), indoxyl sulfate (IS) and TMAO.49,57 

Although the physiological impact of this remains 

to be fully elucidated, a lot of interest has been 
focused on TMAO, which appears to be an under-
lying feature of inflammatory diseases associated 
with aging.58 Red meat, compared to other protein 
sources, is specifically high in substrates such as 
carnitine that promote TMAO production. 
Emerging evidence suggests that frequent red 
meat consumption may also speed up the aging 
process.59 In CKD, impaired solute clearance 
causes their accumulation in the body, resulting 
in a condition called “uremia”. Uremia occurs 
when the kidneys are unable to eliminate metabolic 
waste products known as uremic toxins, leading to 
retention of substances that are normally excreted 
in urine.60 Uremic toxins have been implicated in 
the disruption of the intestinal wall barrier, leading 
to increased permeability. Individuals with renal 
dysfunction often end up in a state of dysbiosis, 
where the altered composition of gut microbiota 
produces an abundance of uremic toxins that accu-
mulate in the bloodstream and further harm the 

Figure 2. Simplified illustration of uremic toxins, specifically IS, PCS, TMAO and PAG and their association with increased allostatic load 
and early vascular aging (EVA) in the context of CKD. The diagram outlines the pathways through which these toxins contribute to the 
increased EVA with a focus on major impact related to vascular function and structure, such as endothelial dysfunction, calcification, 
cellular senescence and arterial stiffness among others. IS: Indoxyl sulfate; PCS: p-cresyl sulfate; TMAO: Trimethylamine N-oxide; PAG: 
Phenylacetylglutamine; CKD: chronic kidney disease; EVA: early vascular aging; RAA: renin-angiotensin-aldosterone; NO: Nitric oxide.
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vasculature and the kidneys.36,61 Gut derived ure-
mic toxins were shown to negatively impact vascu-
lar health by inducing endothelium and smooth 
muscle cell dysfunctions through the modulation 
of oxidative stress, inflammatory responses and 
cytokine activity.62,63

Even though numerous uremic toxins have been 
identified and many are believed to contribute to 
the progression of CKD and cardiovascular disease, 
only a few have been thoroughly investigated. Most 
studies fail to consider the potential synergistic 
effects of multiple toxins on organ damage, despite 
it being likely that a combination of various toxins 
contribute to the development of complications in 
CKD patients. While much research has focused on 
the systemic effects of uremic toxins, the following 
review’s chapters will concentrate on their detri-
mental effects on the vasculature and BBB.64–66

Uremic milieu and EVA phenotype

The uremic milieu that accompanies CKD has been 
linked to a clinical model of premature aging, 
which is characterized by persistent low-level 
inflammation, muscle loss, osteoporosis, frailty 
and a significantly higher risk of cardiovascular 
mortality.67,68 Individuals with end-stage kidney 
disease (ESKD) have a cardiovascular mortality 
rate above ten times higher than that of the general 
population.69 Although the precise pathological 
mechanisms leading to the heightened cardiovas-
cular mortality are not fully understood, the pre-
sence of EVA appears to be one of the primary 
factors.8 The dissociation between chronological 
and biological age in individuals with uremia is 
a typical feature of EVA. The buildup of uremic 
toxins contributes to an overall increase in allo-
static load, the cumulative wear and tear on the 
body’s physiological systems due to chronic stress, 
which can accelerate the aging process and contri-
bute to the development of EVA.70

Gut-derived uremic toxins like IS and PCS can 
promote inflammation, oxidative stress and 
endothelial dysfunction, which are key contribu-
tors to EVA.71 The toxins activate inflammatory 
pathways and increased production of ROS, 
which leads to damage of the endothelial cells lin-
ing the blood vessels and impairment of the normal 
regulation of vascular tone, promoting the 

formation of atherosclerotic plaques and increased 
cardiovascular risk. Uremic toxins can directly 
affect the structure and composition of the arterial 
wall, promoting collagen deposition and calcifica-
tion, which contribute to the development of arter-
ial calcification and stiffness, a hallmark of EVA.72

Abnormalities in the regulation of calcium and 
phosphate play a crucial role in the maintenance 
and development of vascular calcification.73 At 
a cellular level, advanced glycation end-products, 
PCS, IS, TMAO, phosphatidylinositol (Pi) and 
phosphaturic hormones facilitate endothelial dys-
function and phenotypic changes in vascular 
smooth muscle cells (VSMCs).74,75 Notably, dys-
biosis coherent with increased uremic toxin pro-
duction can contribute to vascular calcification as 
gut microbiota are the most significant source of 
PCS, IS and TMAO.76

Trimethylamine-N-oxide (TMAO)

So far, the precise role of TMAO in the develop-
ment of calcification and its mechanisms contri-
buting to vascular calcification are not fully 
understood. Zhang et al. conducted a study using 
a rat model, confirming that TMAO induces vas-
cular calcification by causing a dose-dependent 
increase of calcium in VSMCs cultured in 
a calcifying environment. TMAO additionally sti-
mulated the expression of runt-related transcrip-
tion factor 2 (Runx2) and bone morphogenetic 
protein 2 (BMP2), genes involved in the osteoblas-
tic differentiation of VSMCs. Furthermore, in both 
in vivo and ex vivo experiments, TMAO led to an 
accumulation of mineral content and upregulated 
genes responsible for the transdifferentiation of 
VSMCs into osteoblast-like cells. In the same 
study, TMAO increased the serum levels of IL-1β 
of CKD rats and caused activation of the NLR 
family pyrin domain containing 3 (NLRP3) inflam-
masome and upregulation of nuclear factor kappa 
B (NF-κB), both factors involved in the transcrip-
tion of IL-1β.77 Another study by Yazdekhasti et al. 
in mice lacking apolipoprotein E (apo-E) suggested 
a possible role of TMAO in atherogenesis. 
Interestingly, a diet based on fish-derived protein 
resulted in more advanced atherosclerosis in the 
aorta with increased calcification of atherosclerotic 
lesions. The concentration of TMAO was 
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approximately six times higher in mice receiving 
the fish-based protein diet, suggesting that TMAO 
originating from fish protein metabolism may be 
the key factor responsible for these observed 
differences.78 Whereas human studies have pro-
duced conflicting results. One observational study 
involving 4,007 patients undergoing elective cor-
onary angiography found a relationship between 
fasting plasma levels of TMAO and the occurrence 
of major adverse cardiovascular events (death, 
myocardial infarction or stroke) over a three-year 
follow-up period.79 This study, however, did not 
investigate the prevalence and progression of vas-
cular calcification. Further, the Coronary Artery 
Risk Development in Young Adults (CARDIA) 
study did not find any influence of TMAO on the 
onset or progression of coronary artery calcifica-
tion score or common carotid artery intima-media 
thickness during a ten-year follow-up period.80 

However, additional reports revealed detrimental 
effects related to high serum TMAO levels, specifi-
cally in white patients on dialysis, without the same 
effect being observed in black patients.81–83

Studies have indicated that elevated levels of 
TMAO consequently accelerate the progression of 
kidney dysfunction by influencing the develop-
ment of tubular-interstitial fibrosis and deposition 
of collagen, likely through increased activation of 
Smad3 and downstream target genes.84,85 Smad3 is 
known as a critical mediator of transforming 
growth factor-β1 (TGFβ1) signaling and plays 
a driving role in both renal inflammation and 
fibrosis.86,87 Findings from meta-analyses and sys-
tematic reviews have linked TMAO to an increased 
risk of hypertension, as well as adverse cardiovas-
cular events and all-cause mortality across the gen-
eral population, elderly individuals and patients 
with CKD.88–91 Recently, Bang-Gee H et al. 
reported that TMAO may serve as a significant 
upstream regulator in the development of periph-
eral arterial stiffness among individuals in 
advanced CKD stages 3–5.92 Inhibition of TMAO 
using choline TMA-lyase mechanism-based inhi-
bitor, iodomethylcholine, in a murine model of 
CKD has been found to reduce serum cystatin 
C levels, as well as alleviate the severity of renal 
tubular-interstitial fibrosis and collagen 
deposition.93 In rats with 5/6 nephrectomy, 
TMAO along with superoxide and 

proinflammatory cytokines was significantly ele-
vated, while endothelial nitric oxide production 
was reduced, collectively contributing to endothe-
lial dysfunction.64 A study conducted by Brunt 
et al. revealed a positive correlation between 
plasma TMAO levels, aortic pulse wave velocity 
and systolic blood pressure in aging humans and 
mice.94 Furthermore, they indicated that TMAO 
has detrimental effects on intrinsic mechanical 
stiffness by influencing the formation of advanced 
glycation end-products and ROS. This study 
yielded findings showing that CKD patients with-
out diabetes mellitus, regardless of hypertension or 
hyperlipidemia, had a significantly higher risk of 
peripheral arterial stiffness in relation to TMAO 
levels. However, in diabetic CKD patients, TMAO 
did not correlate with arterial stiffness, suggesting 
a potential influence of diabetes mellitus in mod-
ulating the role of TMAO in peripheral arterial 
stiffness.94

Indoxyl phosphate (IS)

IS, a potent uremic toxin, has been documented for 
its negative impact on kidneys and the vascular 
system playing a role in endothelial dysfunction 
and facilitating inflammation. IS accumulates in 
the circulation as a byproduct of dietary trypto-
phan metabolism by gut bacterial tryptophanases 
and the indole pathway.60,95 After being produced 
by intestinal bacteria like E.coli, lactobacilli or 
Bacteroides fragilis, indole is absorbed into the 
portal circulation and transported to the liver 
where indole undergoes hydroxylation mediated 
by cytochrome P450 2E1 (CYP2E1) resulting in 
the formation of 3-hydroxy indole.96,97 Following 
hydroxylation, indole is further metabolized by 
sulfotransferase 1A1 (SULT1A1), which catalyzes 
the sulfation of indole to produce IS. IS is involved 
in the pathophysiology of cardiovascular complica-
tions and has not only been linked to CKD fibrosis 
progression but also to changes in bone-mineral 
metabolism, insulin resistance and development of 
anemia. Several in vivo and in vitro experiments 
have described the induction of vascular calcifica-
tion caused by IS toxicity.98–100 Among its various 
mechanisms to trigger vascular calcification, IS 
enhances oxidative stress, upregulates the expres-
sion of transcription factor NF-κB, involved in 
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inflammation and downregulates transcription fac-
tor nuclear erythroid 2-related factor 2 (Nrf2), 
involved in anti-oxidative defense.101 

Epigenetically, IS has been suggested to influence 
microRNAs that regulate the transdifferentiation 
of osteoblastic VSMCs.102 Zhang and colleagues 
demonstrated that IS downregulates miR-29b, 
a suppressor of vascular calcification, in radial 
arteries from ESKD patients and human aortic 
VSMCs.77 In a CKD mouse model, Nakano et al. 
found that IS can accelerate atherogenesis and vas-
cular calcification by stimulating proinflammatory 
macrophages.98 Opdebeeck et al. showed that both 
IS and PCS induce vascular calcification in rats 
with adenosine-induced kidney injury when reach-
ing serum concentrations comparable to those 
observed in CKD patients.99 Experimental models 
of chronic kidney injury have demonstrated that IS 
and PCS can activate the renin-angiotensin- 
aldosterone axis, upregulate angiotensin II type 1 
(AT1) receptors and downregulate angiotensin II 
type 2 (AT2) receptors, which are stipulated to 
have similar effects on vascular damage, remodel-
ing and potentially vascular calcification.63 Shimizu 
et al. discovered that IS, at concentrations similar 
to those found in CKD patients, potentiates the 
detrimental effect of angiotensin II (AngII) on 
VSMCs in CKD rats, primarily through IS- 
induced oxidative stress.103 CKD patients with 
higher serum IS levels are prone to aortic calcifica-
tion and high mortality, suggesting that IS acts as 
a procalcifying toxin.104

Furthermore, in vitro and in vivo studies 
demonstrated that IS-treated human aortic smooth 
muscle cells could promote aortic calcification and 
aortic wall thickening and enhance the expression 
of osteoblast specific proteins, senescence and cal-
cification due to oxidative stress resulting from 
nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase upregulation.105,106 AST-120 is 
an orally administered drug and works as an intest-
inal absorber of IS, reducing the level of IS in blood 
and urine, improving uremic symptoms.107

In vitro studies have revealed that endothelial 
cells incubated with IS exhibited impaired prolif-
eration, delayed wound repair, reduced nitric oxide 
production, increased cell senescence and heigh-
tened oxidative stress, all of which indicate the 
adverse effects of IS on endothelial function.108 

Studies on CKD patients have demonstrated nega-
tive correlations between baseline IS levels and 
vascular reactivity index, as well as a positive asso-
ciation between IS levels, carotid-femoral pulse 
wave velocity and aortic calcification.104,109 Earlier 
research has demonstrated a significant positive 
correlation between serum IS and aortic calcifica-
tion in CKD patients.110 This phenomenon has also 
been observed in hypertension rat models, where it 
was further demonstrated that the aortic wall thick-
ened and showed an increased expression of osteo-
blast-specific proteins.111 

p-cresyl sulfate (PCS)

PCS, another uremic toxin, that is produced by gut 
microbiota like Bacteroides fragilis and Bacteroides 
caccae, which increases in serum levels as GFR 
decreases, has been associated with cardiovascular 
damage in CKD.96 In a CKD rat model, Opedebeek 
et al. showed that sustained exposure to PCS or IS 
leads to significant calcification in the aorta and 
peripheral vessels, ranging from moderate to severe 
levels. Either PCS or IS was administered through 
the drinking water with a concentration set to 
achieve a daily intake of 150 mg/kg starting from 
week 3 until euthanasia at week 7. The excess 
calcification primarily accumulated in the media 
layer, when observed in cross-sections of calcified 
vessels. Both IS and PCS were found to promote 
the migration and proliferation of VSMCs, which 
are crucial cellular events in the development of 
vascular calcification.99 Exposure to PCS of ather-
osclerosis-prone mice lacking ApoE on a high-fat 
diet resulted in heightened formation of athero-
sclerotic plaques compared to control animals. 
Furthermore, PCS disrupted the balance between 
matrix metalloproteinases and tissue metallopro-
teinase inhibitors, contributing to plaque instabil-
ity. Gross et al. conducted an animal study in 
mouse thoracic aorta, revealing that PCS triggers 
oxidative stress in endothelial cells and VSMCs and 
it induces the contraction of smooth muscles in the 
aortic wall when exposed to phenylephrine. This 
process leads to inward eutrophic remodeling of 
the aortic wall, a sign of uremic vasculopathy, 
which is characterized by the reduction of the 
area of both lumen and media.112
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Serum PCS has been identified as a predictor of 
arterial stiffness in patients undergoing 
hemodialysis.113 As renal function declines, PCS 
progressively accumulates and is considered 
a detrimental factor in renal fibrosis due to its 
ability to increase the production of ROS, activate 
TGFβ, stimulate the renal-angiotensin-aldosterone 
system and induce renal tubular damage.63,114,115 

PCS has also been associated with image-proven 
vascular calcification and carotid-femoral pulse 
wave velocity, while showing an inverse relation-
ship with estimated (e)GFR in CKD patients.116 

Recently, Opdebeeck et al. demonstrated that 
short- and long-term exposure to PCS promotes 
aortic inflammation and calcification, respectively, 
through the acute-phase response and coagulation 
signaling pathway.99 In a cross-sectional study, 
Rossi et al. reported that serum PCS was indepen-
dently associated with IL-6 and pulse wave velocity, 
highlighting its role in inflammation and its con-
tribution to cardiovascular damage in CKD stages 
3–4.117 PCS has been linked to endothelial dysfunc-
tion, arterial stiffness, vascular calcification, cardi-
ovascular events and all-cause mortality in patients 
with CKD and on hemodialysis.108,116,118

Phenylacetylglutamine (PAG)

Another microbial toxin that has gained atten-
tion is PAG, a colonic microbial product result-
ing from the metabolism of dietary 
phenylalanine. In PAG synthesis gut bacteria 
transform dietary protein-derived phenylalanine 
into phenylpyruvic acid through widespread 
deamination, facilitated by microbial enzymes 
like phenylalanine dehydrogenase and aromatic 
amino acid aminotransferase.119,120 Gut 
microbes then convert phenylpyruvic acid into 
phenylacetic acid.66 After being absorbed into 
the portal circulation, hepatic and renal enzymes 
of the host catalyze the conjugation of phenyla-
cetic acid with either glutamine, resulting in the 
formation of phenylacetylglutamine (PAGln), or 
glycine leading to the formation of phenylace-
tylglycine (PAGly).66 Symbiotic gut microbes in 
humans and vertebrates, capable of producing 
phenylacetic acid, have been identified in bac-
teria isolates as Bacteroidetes, Firmicutes and 
Proteobacteria.66,121–124 Notably, Poesen et al. 

reported that PAG is linked to overall mortality 
and CVD in patients with CKD.125 With sys-
tematic series of genetic loss-of-function studies 
and gain-of-function studies, as well as multiple 
corroborative pharmacological inhibitor and 
agonist studies, using human embryonic kidney 
cells and platelets, Nemet et al. demonstrated 
that PAGln signals through α2A, α2B and β2 
adrenergic receptors that are expressed on plate-
lets and linked to platelet activation toward 
thrombosis, ultimately suggesting their potential 
involvement in CVD. Their studies indicated 
a saturable and specific binding of PAGln to 
cells, indicative of a cell receptor – ligand 
interaction.66 In another study, Liu Y et al. 
found an independent association between 
plasma PAG levels and coronary atherosclerotic 
burden in patients with suspected coronary 
artery disease.126 Additionally, plasma PAG 
levels were shown to be associated with an 
increased risk of incident coronary artery dis-
ease and peripheral artery disease.127 Not con-
fined to CVD patients, clinical studies have 
established independent associations between 
PAG and CVD in the general population, as 
well as a link between PAG, CVD and mortality 
in patients with CKD.125,127 Understanding the 
association between gut-derived uremic toxins 
and EVA is of great importance, as it highlights 
the potential role of the gut-kidney axis in car-
diovascular health. Targeting the gut microbiota 
and reducing the production and absorption of 
these toxins may offer therapeutic opportunities 
to slow down or prevent EVA and its associated 
cardiovascular complications in individuals with 
kidney dysfunction. In figure 2 a schematic 
overview illustrates the above discussed uremic 
toxins and their association with EVA in the 
context of CKD.

It is well recognized that the gut microbiome 
constitutes a mechanistic link between CKD and 
uremic inflammation.128 Gut-derived uremic tox-
ins, including IS, PCS, TMAO and PAG accumu-
late when kidney function declines, activating pro- 
inflammatory and pro-fibrotic pathways.60 On top 
of this, functional and metabolic changes of the gut 
microbiota contribute to the age-associated 
chronic, low-grade inflammation termed inflam-
maging, which is implicated in the pathogenesis 
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of age-related diseases.129 Inflammaging, along 
with oxidative stress, genomic damage, cellular 
senescence and imbalanced pro-aging and anti- 
aging systems are suggested drivers of the prema-
ture aging phenotype, which is typical of CKD 
patients and associated with high risk of cardiovas-
cular complications, muscle wasting, osteoporosis 
and frailty.130–132 Thus, the microbiome is poten-
tially involved both in the progression of CKD as 
well as CVD, as inflammatory markers that are 
shown to predict CKD progression are to a large 
extent also associated with CVD risk.60, 133–137

Uremia, gut microbiota and CNS implications

In recent years, the scientific community has 
acknowledged the concept of the connection 
between the uremic environment, gut microbiota 
and the brain, also termed the “microbiota-gut- 
brain-axis”.138,139 As the understanding of the 

complex relationship between microbiome, gut, 
central nervous system (CNS) and CKD has 
expanded, it could be fitting to conceptualize this 
as the “microbiota-gut-kidney-brain axis” 
(Figure 3).138,140 In this axis, gut dysbiosis results 
in lower levels of saccharolytic microbes and 
increase in proteolytic microbes, producing meta-
bolites and toxic substances associated with the 
uremic environment.141 As described above, gut 
microbiota are involved in the metabolism of diet-
ary tryptophan into indole derivatives, like uremic 
toxin IS, which can activate aryl hydrocarbon 
receptor (AhR), a receptor for multiple physiologi-
cal ligands.142 The damaging effect of uremic tox-
ins on the vasculature and the impaired renal 
clearance in CKD patients leads to further accu-
mulation of these toxins in the circulation, which 
can impair the BBB integrity.96, 143–145

The gut microbiome and the CNS establish com-
munication via immune, endocrine and neural 

Figure 3. Diet, gut, brain and CKD. The relationship between the gut microbiota, kidney and brain is a circulatory process, which is 
influenced by the nutrients and metabolites from dietary choices. Increased bacterial changes lead to dysbiosis, which increases the 
release of uremic toxins into the circulation and activation of the AhR receptors and thereafter effects on the CNS. The amount of 
SCFAs from the gut microbiota influence renal renin release, heart rate and vasodilation and inflammatory cytokines through acting 
on the listed proteins. IS: Indoxyl sulfate; PCS: p-cresyl sulfate; TMAO: Trimethylamine N-oxide; PAG: Phenylacetylglutamine; CKD: 
chronic kidney disease; SCFAs: short chain fatty acids; CNS: central nervous system and AhR: aryl hydrocarbon receptor.
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pathways.146 The two-way communication 
between the gut and CNS is tightly regulated at 
important interfaces such as the intestinal epithe-
lium and the BBB.147 Enteroendocrine cells, enter-
ochromaffine cells and gut associated immune cells 
facilitate transmission of signals from nutrients, 
microbial metabolites, toxins and irritants from 
the gut to the CNS.147 This bidirectional commu-
nication extends even to the prenatal period, where 
the maternal gut microbiome exerts influence on 
fetal neurodevelopment through the bacteria 
Clostridiales, which is able to produce SCFAs that 
can enter the BBB.148 Additionally, Escherichia and 
Shigella, members of the proteobacteria phylum, 
which dominate the neonatal gut, influence neuro-
development through various mechanisms includ-
ing direct communication via vagal nerves, 
production of microbial metabolites, cytokine pro-
duction and BBB interaction via their lipopolysac-
charides eliciting immune response.148 This 
highlights the far-reaching impact of the gut micro-
biota not only in adult life but also during crucial 
developmental stages early in life.

As mentioned in earlier sections of this review, 
the gut microbiota composition is significantly 
influenced by dietary factors, with artificial sweet-
eners emerging as potential contributors to altera-
tions in microbial abundance and diversity. This 
influence potentially disrupts the balance of the 
microbiota-gut-brain axis, which then contributes 
to changes in metabolite production and toxin 
release, affecting the overall homeostasis of the 
microbiome and consequently the CNS. A rodent 
animal study has shown that bacterial metabolites 
like SCFAs possess the capacity to regulate the 
maturation and function of microglia, hence affect-
ing brain health.149 This interconnection, illu-
strated in Figure 3, is influenced by dietary 
choices leading to dysbiosis, increased release of 
uremic toxins, activation of AhR receptors and 
subsequently repercussions for the CNS.

In the intestine, sensory neurons form connec-
tions with motor neurons, influencing the regula-
tion of intestinal motility and secretion of gut 
hormones.150 Gut dysbiosis has been associated 
with a range of diseases and disturbances in phy-
siological functioning.151 For example, alterations 
in the gut microbiota have been associated with 
neurological disorders such as autism spectrum 

disorders, depression, anxiety and neurodegenera-
tive diseases.146,152,153 Notably, male and female 
patients with major depressive disorders have 
been observed to have higher Actinobacteria and 
lower Bacteroidetes levels.154 CKD patients have 
a greater burden and risk of experiencing depres-
sive disorders and cognitive impairment, which is 
associated with adverse outcomes.155–158 The 
increased levels of pro-inflammatory cytokines 
and altered immune response in CKD, coupled 
with gut dysbiosis, may further contribute to neu-
roinflammation and neurodegenerative 
processes.159,160

In addition, gut microbes play a crucial role 
beyond intestinal functions. They not only influ-
ence the BBB permeability but also affect the 
hypothalamic-pituitary axis activity and vagus 
nerve stimulation.161–164 This results from the pro-
duction of both excitatory and inhibitory neuro-
transmitters and chemical signals. Certain gut 
bacteria have the capacity to produce and metabo-
lize neurotransmitters such as serotonin, dopa-
mine, y-aminobutyric acid (GABA), histamine 
and acetylcholine.165,166

Serotonin, implicated in emotional distress and 
irritable bowel syndrome can be produced by bac-
terial strains like Streptococcus spp., Enterococcus 
spp., Escherichia spp., Lactobacillus spp, Lactococcus 
spp, Klebsiella pneumonia and Morganella morga-
nii. Similarly, dopamine production has been 
attributed to Escherichia, Bacillus, Lactococcus, 
Lactobacillus and Streptococcus.167–169 GABA, can 
be efficiently produced from strains of 
Lactobacillus and Bifidobacterium, highlighting 
the probiotic potential of the gut bacterial strains 
Lactobacillus rhamnosus and Bifidobacterium 
longum in alleviating stress, anxiety, depression 
and withdrawal symptoms by aiding restoration 
of GABAergic activity in the brain.163,170–172 

These neurotransmitters, known regulators of 
mood, behavior and cognition underscore the gut 
microbiota’s significance in influencing the 
CNS.165,170,173

The impact of the bioactive molecules, including 
neurotransmitters, SCFAs and metabolites, pro-
duced by gut microbes is not limited to peripheral 
effects but can directly or indirectly impact the 
CNS by crossing the BBB, modulating neural activ-
ity and neuroinflammation.174 Germ-free mice 
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studies established the regulatory role of gut micro-
biota in BBB permeability, when upon re- 
introduction of gut microbiota BBB integrity 
improved and an up-regulation of tight junction 
protein expression was seen.175 AhR agonists such 
as IS, have the ability to cross the BBB indicating 
their important role in influencing and regulating 
the CNS function. 136,176 In CKD, where uremic 
toxins such as IS contribute to inflammation, meta-
bolic dysregulation and microvascular dysfunction, 
understanding the sex-specific differences in AhR 
expression and their relationship to BBB perme-
ability is increasingly becoming relevant.177–179 

Moon and colleagues have reported disparities in 
BBB integrity between males and females.180 An 
animal study showed 150% higher AhR mRNA 
expression in female rats compared to males.181 

Whilst Navar et al. reported a downregulation of 
AhR expression in aged female macrophages, 
coupled with an increase in phagocytic activity in 
estrogen treated cells, suggesting sex-differences in 
immune responses and inflammation.182 Thus, in 
the context of CKD, where inflammation plays 
a crucial role in disease progression, such findings 
may explain one of the factors influencing sex 
differences observed in CKD.

Traditional risk factors in CKD such as hyper-
tension, diabetes, age, smoking, sex and family 
history intertwine with non-traditional risk factors 
including gut dysbiosis, uremic toxins, environ-
mental stress, malnutrition, persistent inflamma-
tion, physical inactivity and somatic stem cell 
mutation, which all contribute to the multifactorial 
nature of CKD complications.130 Metabolites like 
SCFAs produced by the gut microbiota, play 
a regulatory role in blood pressure through inter-
actions with host G-protein-coupled receptors 
including GP41, GP43, GPR109A and olfactory 
receptor (Olfr) 78 in mice and OR51E2 in 
humans.183,184 SCFAs traverse the circulation, sti-
mulating receptors in the kidney to boost release of 
renin, activating inflammatory cytokines and pres-
sure response in the brain, influencing vasodilata-
tion and heart rate.185

The link between CKD and gut dysbiosis is con-
sidered a double-edged sword, the progression of 
CKD is influenced by gut-derived metabolites and 
toxins, simultaneously, the gut microbiota composi-
tion is affected by the uremic environment.186 One 

study investigated the gut microbial composition 
across various CKD stages and observed variations 
in bacterial abundance from CKD 1 to CKD 5.187 The 
abundance of Butyricicoccus spp, Clostridium difficule, 
Enterobacteriaceae, Escherichia coli, Lactobacillus spp, 
Roseburia spp and Streptococcus spp differed across 
different CKD stages and control group.187 

Additionally, the researchers identified gut bacteria 
capable of producing uremic toxins. The study noted 
several bacterial species from diverse genera including 
Bacteroidaceae, Clostridiaceae, Lachnospiraceae, 
Staphylococceae, Actinomycteae, Tannerellaceae, 
Enterococceae, Bacillaceae, Bifidobacteriaceae, 
Brevibacteriaceae, Coriobacteriacee, Corynebacteri 
aceae, Eggertheraceae, Microbacteriaceae and 
Micrococceae capable of generating uremic com-
pounds. Further, protein-bound uremic toxins in 
CKD patients were primarily produced by anaerobic 
bacteria, while both anaerobic and aerobic bacteria 
contributed to the production of indolic 
compounds.187 The EQUAL study identified specific 
uremic toxins linked to symptoms such as fatigue, 
constipation and shortness of breath, revealing sex- 
based variations.188 TMAO was associated with fati-
gue and PCS and PAG were linked to constipation 
with notable differences between males and females. 
Specifically, higher levels of TMAO, PCS and PAG 
were associated with symptoms in males compared to 
females.188

The relationship between CKD and gut micro-
biota may be influenced by factors such as nutri-
tional elements, medications and treatment 
strategies. CKD patients that are undergoing renal 
transplantation also have a substantial immunosup-
pressive therapy and antibiotic treatment to prevent 
infection, thus potentially triggering significant 
changes to their gut microbiota. While the topic on 
renal transplantation is indeed expansive, under-
standing the changes in microbiota diversity in 
renal transplant patients may offer insight into its 
broader implications in patients’ overall health.189 

The gut microbiome composition in kidney trans-
plant recipients notably differs from healthy indivi-
duals with pretransplant patients showing abundant 
Firmicutes, while post-transplant patients exhibit 
higher levels of Proteobacteria (Escherichia coli) 
and lower Actinobacteria (Bifidobacterium 
species).190,191 Notably, patients experiencing diar-
rhea post-kidney transplantation have been 
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observed to lack certain beneficial bacterial species 
such as Bacteroides, Ruminococcus, Coproccus and 
Dorea species.190 While the direct link between 
microbiota changes and uremic toxins remains to 
be fully understood, recognizing that there is an 
interplay between the two, highlights the complex 
nature of CKD and its impact on gut health.

CKD patients are prone to various complica-
tions like bone diseases, insulin resistance, renal 
fibrosis, CVD and brain-related conditions. 
Focusing on the latter, CKD-related CNS disorders 
may manifest as altered mental status based on two 
proposed hypotheses: the vascular hypothesis and 
the neurodegenerative hypothesis. The vascular 
hypothesis attributes CNS disorders to endothelial 
dysfunction influenced by both traditional and 
non-traditional risk factors. In contrast, the neuro-
degenerative hypothesis advocates the direct or 
indirect contribution of uremic toxins to CNS 
injury during CKD development, involving circu-
lating toxins that pass and impair the BBB, affect-
ing the brain.192

In relation to the neurodegenerative theory, tox-
ins can alter the secretion of neurotrophins, includ-
ing brain-derived neurotrophic factor (BDNF).193 

BDNF is produced by different cell types in the 
CNS, such as neurons, glial cells and microglia 
and it is vital to the processes of neurogenesis and 
differentiation, as well as neuronal plasticity essen-
tial for long-term memory.194 In a study involving 
germ-free mice, diminished BDNF levels were 
observed in the hippocampus and cortex brain 
areas compared to controls, which suggests 
a modulating involvement of the gut 
microbiome.195 Lower BDNF levels are also noted 
in CKD patients and individuals, especially females 
with major depressive disorder, compared to 
healthy controls.196,197 Furthermore, BDNF levels 
increase after kidney transplantation.198

It is worth noting that in patients with renal 
impairment, sleep quality can affect their physical 
and mental well-being and ultimately their overall 
quality of life. ESKD or CKD-5 patients have 
higher prevalence of poor sleep quality compared 
to those with CKD stages 1–4.199,200 Additionally, 
females and those undergoing dialysis also tend to 
have lower sleep quality.199,200 Insufficient sleep 
has been linked to metabolic disorders like obesity, 
diabetes, CVD and neurological and cognitive 

impairments and even cancer.201,202 Meanwhile, 
alterations in gut microbiome composition have 
been observed in individuals with these 
pathologies.203,204 Sleep quality and dietary prac-
tices can have a significant impact on the composi-
tion and function of the gut microbiome.3,4 The 
Mediterranean diet, typically rich in fruits, vegeta-
bles and whole grains, has been associated with 
higher sleep quality and an increased microbial 
diversity of the gut microbiome profile, seen by 
increased growth of Bifidobacteria, Bacteroides, 
Faecalibacterium prausnitzii and SCFA-producing 
gut bacteria Clostridium leptum and Eubactrium 
rectale, whereas lower growth of Firmicutes and 
Blautia species.205–207 Individuals experiencing 
sleep deprivation have been shown to exhibit 
a distinct gut microbial profile compared to those 
with normal sleep patterns. Notably, there was an 
observed increased Firmicutes:Bacteroides ratio in 
those with sleep disturbance.204 Conversely, CKD 
is associated with sleep disorders like obstructive 
sleep apnea that can induce gut dysbiosis, as 
obstructive sleep apnea-related hypoxia alters gut 
wall permeability and promotes inflammation.208

The gut microbiome not only influences sleep 
patterns but also plays a role in mental and cogni-
tive well-being. Studies have reported an associa-
tion between mild cognitive impairment in older 
adults and altered gut microbiota, as evidenced by 
changes in microbial composition, with increase in 
Bacteroides and Flavonifractor and decrease in 
Ruminococcus, Butricimonas and 
Oxalobacter.209,210 Between 16–38% of CKD 
patients in stages 3 to 5 experience cognitive 
impairment, with renal function correlating with 
the development of cognitive impairment and 
dementia.211,212 The primary contributor to cere-
bral dysfunction in CKD appears to be small vessel 
cerebrovascular disease, as indicated by the 
Rotterdam study linking dementia to reduced cer-
ebral blood flow and increased arterial stiffness 
associated with impaired executive 
functions.213,214 Cognitive impairment in CKD 
can also be influenced by dialysis modalities, parti-
cularly hemodialysis, which involves greater hemo-
dynamic changes and may not effectively filter out 
all uremic toxins, potentially leading to persistent 
cognitive deficits.215,216 Gut microbiota variations 
have been observed in CKD patients undergoing 
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hemodialysis and kidney transplantation.217 CKD 
can disrupt calcium homeostasis through concur-
rent hyperparathyroidism and vitamin 
D deficiency, potentially contributing to cognitive 
impairment. Hypercalcemia as a consequence can 
induce arterial calcification aligning with the vas-
cular hypothesis.218 Distinct cortical neural syn-
chronization in CKD dementia as opposed to 
Alzheimer’s one suggest unique cognitive domains 
affected by CKD.219

Dietary impact on health and environment

Throughout life, spanning infancy, adolescence 
and adulthood, the gut microbiome undergoes 
dynamic changes influenced by various factors 
both from the environment and the host. These 
factors include maternal health, age, delivery 
method, feeding practices, immune status, dietary 
habits, alcohol consumption, drug usage, psycho-
logical factors, ethnicity, geographical location and 
smoking habits.220,221 The impact of these factors 
may vary between males and females, contributing 
to sex-specific differences in gut microbiota com-
position and therefore overall health outcome.

The strong association between diet, the gut 
microbiome, overall health and environmental 
burden implies that modifying our dietary choices 
can improve our well-being. Understanding these 
interactions can have implications for the develop-
ment of personalized nutritional interventions in 
CKD patients and others. The interaction between 
the gut microbiome and disease can be linked to 
a cyclical relationship. Alterations in the gut micro-
biome such as those induced by sleep restriction, 
red meat or artificial sweeteners can potentially 
contribute to the development of certain patholo-
gic conditions through increased concentration of 
uremic toxins like TMAO, IS, PCS and PAG in the 
circulation. Conversely, the presence of certain 
medical disorders like CKD may also lead to altera-
tions in the composition of the gut microbiome. 
This bidirectional relationship between the gut 
microbiome and disease creates a feedback loop 
where changes in the microbiome can influence 
the uremic milieu and disease progression, while 
diseased states can in turn impact the composition 
of the gut microbiota. Understanding this interplay 

is indeed crucial for developing targeted interven-
tions and therapeutic strategies aimed at modulat-
ing the gut microbiome to promote health and 
mitigate disease progression.

Today, 700 million of the planet’s people are 
malnourished, while 2 billion people are 
overweight.222,223 If we should feed the 10 billion 
people who will live on the planet in 2050, the need 
for food will increase by more than 50%. Since 
2019, the number of people facing acute food inse-
curity has increased from 135 million to 
345 million. Agriculture already uses 50% of the 
planet’s vegetated land areas and livestock farming 
accounts for two-thirds of all agricultural land and 
half of all greenhouse gases in the atmosphere 
originate from food production. Food is the single 
strongest lever to optimize human health and 
environmental sustainability.2,224 A radical restruc-
turing of the food system is required for healthy 
people to live on a healthy planet. Recent research 
and the Eat Lancet commission show that the food 
that we eat today is neither good for our health or 
the environment.2,225 It is evident that the 
unhealthiest foods often have the highest environ-
mental impact and dietary transitions toward 
greater consumption of healthier foods improve 
environmental sustainability.226 If we could 
increase our intake of plant-based diets, grains 
and fermented nutrients and limit the intake of 
red meat and likely artificial sweeteners, this 
could not only reduce the risk of burden of lifestyle 
diseases but also reduce greenhouse gas emission 
and increase the resistance against environmental 
threats, such as air and water pollution.33,227

In summary, the future challenges are multidi-
mensional including environmental aspects, perso-
nal choices as well as advancements in health care 
providing aspects. Future studies should pay more 
comprehensive attention to how alterations in the 
microbiome can influence future health and if and 
how existing and future strategies related to dietary 
aspects could be successfully implemented to daily 
routines to ameliorate the burden of chronic diseases 
with the potential for novel treatment strategies.
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