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REVIEW

Overview of genetic testing in Prader-Willi syndrome
Ying Gaoa,b, Mian-Lin Zhongb, Yang-Li Daib, Yong-Hui Jiangb and Chao-Chun Zoub

aNingbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China; bChildren’s Hospital, Zhejiang University School of Medicine, Hangzhou, 
China

ABSTRACT
Introduction: Prader-Willi syndrome (PWS) is a complicated neurodevelopmental genetic disorder 
stemming from the loss of expression of imprinted genes within the 15q11-q13 region. It is character-
ized by impaired hypothalamic development and function. Infants with PWS typically present hypotonia 
and feeding difficulties, which in later stages of childhood progress to hyperphagia, obesity, and 
endocrine dysfunctions. However, early diagnosis and treatment have proven effective in mitigating 
obesity and related co-morbidities in patients with PWS. Moreover, the precise molecular classification 
of PWS is crucial to tailor the appropriate treatment strategies and provide valuable genetic counseling.
Areas covered: This review contains various conventional and novel PWS diagnostic methods, assessing 
each method’s underlying mechanisms, advantages and disadvantages. Furthermore, our review presents 
a genetic testing workflow for PWS diagnosis and explores promising techniques for newborn and prenatal 
screening, which facilitate early diagnosis and intervention. This review synthesizes pertinent studies from 
1990 to 2022, gathered from databases including PubMed, Web of Science, EBSCO, and Cochrane.
Expert opinion: Starting with MS-MLPA is the most efficient way to detect underlying genetic 
mechanisms. However, it is essential to note that certain rare instances, such as balanced chromosomal 
rearrangements, may require complementary diagnostic techniques to identify accurately.
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1. Introduction

Prader-Willi syndrome (PWS) is a multisystem disorder caused 
by the absence of expression of the paternally active genes on 
chromosome 15q11-q13 region [1]. Conversely, Angelman 
syndrome (AS) is caused by the absence of the active maternal 
gene in chromosome 15 [2].

So far, Multiple genes have been identified and mapped 
within the PWS region, including MKRN3, MAGEL2, NDN, 
PWRN1, NPAP1, SNURF-SNRPN and small nucleolar RNA cluster 
(Figure 1). Due to genomic imprinting, SNRPN, MAGEL2 and 
NDN genes are differentially methylated in CpG islands of their 
promoter regions [3]. This CpG island at the 5’ end is exten-
sively methylated on the maternal chromosome and unmethy-
lated on the paternal allele, leading to the transcriptional 
silencing of the maternal allele [4,5].

PWS affects males and females equally, with prevalence 
rates varying between 1 in 10,000 births to 1 in 25,000 births 
[7]. Hypothalamus dysfunction and abnormal development 
are primarily responsible for most PWS phenotypes [8]. Miller 
et al. identified seven nutritional phases in PWS. Phase 0 is 
associated with intrauterine growth restriction. Phase 1 is 
characterized by hypotonia. In phase 1a (0–9 months), the 
infant presents feeding difficulty with or without failure to 
thrive. While in phase 1b (9–25 months), the infant has 
a normal appetite and weight increase rate. Phase 2 is char-
acterized by weight gain, with no significant change in appe-
tite in subphase 2a (about 2–4.5 years) but an increased food 

interest in subphase 2b (about 4.5–8 years). In phase 3 (from 8  
years to adult), the patients with PWS show marked hyper-
phagia and insatiable appetite. However, some adults may 
progress to phase 4, characterized by a return to normal 
appetite [9]. Additionally, characteristic craniofacial features, 
behavior problems, cognitive disabilities, spinal deformity, 
and hip dysplasia are also presented in PWS [2,10,11].

Due to hypothalamic dysfunction, most cases of PWS present 
endocrine dysfunctions, including growth hormone (GH) defi-
ciency (GHD), central hypothyroidism, glucose metabolism dis-
orders, corticotropin deficiency and hypogonadism. GHD is 
common in children with PWS (about 40–100%) and may be 
associated with short stature, excessive body fat, decreased 
muscle mass and energy expenditure [12,13]. Additionally, GHD 
and hypogonadism may cause a marked bone phenotype in 
PWS, including low bone mineral density, reduced bone mineral 
content, and a high frequency of osteoporosis and fractures [14].

GH treatment could improve growth body composition, 
muscle strength, motor function and cognitive level [15]. 
Early GH therapy has more favorable outcomes in body com-
position without increasing adverse effects. In addition, early 
treatment has been proven to improve learning and speech 
problems [16–18]. Thus, early diagnosis and treatment are 
necessary for patients with PWS. The diagnosis of age has 
recently dropped significantly, with most cases diagnosed in 
the first year of life [19]. However, misdiagnosis and missed 
diagnoses are still noted in some countries [20]. This review 
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aims to evaluate each method’s underlying mechanisms, 
advantages and disadvantages, and explore an effective diag-
nostic strategy for PWS.

2. Literature search

This review comprehensively assessed relevant studies from 
1990 to 2022, sourced from PubMed, Web of Science, EBSCO, 
and Cochrane databases, using the keywords: ‘Prader-Willi 
syndrome’ OR ‘PWS’ AND [‘diagnosis’ OR ‘diagnose’ OR 
‘genetic analysis’ OR ‘molecular analysis’].

3. Genetic typing

There are three main molecular classes in PWS. Approximately 
70–75% of cases of PWS result from the deletion of paternal 
15q11.2–13. The typical deletion is subdivided into two main 

subgroups, which involve a common distal breakpoint (BP3) 
and two proximal breakpoints (BP1, BP2) (Figure 1). Longer 
type I, approximately 6Mb in size, extends from BP1 to BP3. 
While shorter type II, about 5.3MB in size, spans from BP2 to 
BP3 [21,22]. Patients with deletion more frequently present feed-
ing problems, hypopigmentation, sleep disturbance and speech 
articulation defects (Table 1) [23]. Furthermore, patients with 
type I deletion present more behavior and cognitive problems 
than type II due to the loss of four genes from BP1 to BP2 [24]. In 
addition, about 8% of the deletion subjects with PWS are caused 
by unique or atypical deletions (neither type I nor type II). 
A smaller or larger deletion could lead to a milder or more severe 
phenotype than the typical deletion [25].

About 25–30% of cases of PWS arise from maternal unipar-
ental disomy (mUPD) of chromosome 15 (mUPD15) [26]. 
According to the pathogenetic mechanism, mUPD15 has 
three types: maternal heterodisomy, maternal isodisomy and 
segmental isodisomy [27]. Compared with typical deletions, 
PWS with mUPD have higher verbal IQ scores and better social 
skills but are more prone to autism [28]. However, hundreds of 
recessive genes are located on chromosome 15. If the mother 
carries some recessive disease genes on chromosome 15, 
individuals with mUPD15 have a higher risk of having other 
genetic diseases, including cardiac abnormalities, seizures, 
hearing loss, or metabolic defects [27]. Furthermore, the 
remaining cases of PWS are mainly due to imprinting defects 
(IDs), accounting for about 1–3% [29]. The most common 
cause of ID is epimutation, with a small recurrence risk [30]. 

Article highlights

● The importance of early diagnosis and treatment for Prader-Willi 
Syndrome.

● Advantages and disadvantages of each method.
● Genetic testing strategies for Prader-Willi syndrome.
● Prenatal and newborn screening is a promising prospect to be further 

studied.
● Measuring the expression of sno-lncRNAs in the blood is a novel tool 

to screen or diagnose PWS

Figure 1. Overview of the critical region for PWS. Blue spots represent biallelically expressed genes, orange boxes/vertical lines represent paternally expressed 
genes, and green vertical lines represent maternally expressed genes. It is adapted from [6].

Table 1. Genotypes and phenotypes in PWS.

Genotypes Incidence Mechanism Phenotypes

Deletions 70–75%

Type I: BP1-BP3 1. Type I deletion present more behavior and cognitive problems than type II 
2. Atypical deletion leads to a milder or more severe phenotype than the typical deletion 
3. More frequently present feeding problems, hypopigmentation, sleep disturbance and 

speech articulation defects than UPD

Type II: BP2-BP3
Atypical deletion

mUPD 25–30%
Maternal heterodisomy 1. Highly associated with advanced maternal age 

2. Higher verbal IQ scores and better social skills but more prone to autismMaternal isodisomy
Segmental isodisomy

ID about 3% Epimutation 1. ID epimutation has a small recurrence risk 
2. ID microdeletion has a 50% recurrence risk 
3. The phenotype is similar to mUPD15

Microdeletion in the imprinting 
center

Rearrangements <1% Unbalanced Chr 15 rearrangements 
cause deletion

1. Possibly have a 50% recurrence risk 
2. Have a higher risk of having other genetic diseases

Balanced Chr 15 rearrangements
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However, about 15% of IDs result from microdeletion in the 
imprinting center (IC), which is regulated by epigenetic mod-
ification and located at gene SNRPN and promoter. The recur-
rence risk in this situation is 50% [31,32]. The clinical features 
in ID are similar to mUPD15 [28].

Chromosome 15 rearrangements (translocation or inver-
sions) are also reported in some sporadic cases [33]. In addi-
tion, about 1% of PWS deletion patients are caused by 
unbalanced chromosome 15 rearrangements, which could 
lead to a 50% recurrence risk when the rearrangement is 
paternally inherited [21].

4. Clinical diagnosis

Consensus clinical diagnostic criteria for PWS were established 
in 1993 before the availability of genetic diagnosis, as shown 
in Table 2 [34]. However, with the availability of genetic tests, 
the purpose of clinical diagnosis has gradually changed into 
raising diagnostic suspicion. Thus, Meral et al. proposed 
a revised criterion (Table 3) with a lower threshold to prompt 
DNA testing for PWS [11]. However, genetic methods are still 
necessary to diagnose PWS.

5. Cytogenetic diagnosis

5.1. High resolution cytogenetics

Before the availability of genetic tests, high resolution cytoge-
netics provided the first laboratory diagnostic test for PWS. 
However, it is less used nowadays. Deletions of paternal 

15q11.2–13 were reported in about 60% of patients with PWS 
with high resolution cytogenetic techniques. In addition, about 
3–5% of patients showed other chromosomal abnormalities 
involving chromosome 15. However, one-third of patients with 
PWS presented a normal karyotype in high resolution cytoge-
netics due to submicroscopic deletions and mUPD [35,36].

5.2. Fluorescence in-situ hybridization (FISH)

The fluorescence in-situ hybridization (FISH) technique is 
used to detect the absence of the PWS region on chromo-
some 15. It is based on the hybridization of single-stranded 
DNA to a complementary sequence of the PWS region. It 
can be performed on cells after routine cytogenetic ana-
lyses or fresh preparations. The probe labeled with fluoro-
chrome hybridizes to the complementary site. Thus, 
a colored signal at the hybridization site can be visualized 
by fluorescence microscopy [37]. For unaffected individuals, 
signals show on both chromosomes 15, while in PWS 
patients with deletions, the signal shows only on one chro-
mosome 15 [38]. In addition, FISH can distinguish type 
I from type II deletion with appropriate probes [39,40]. 
However, it could not be performed in a high throughput 
manner and fails to detect UPD or differentiate between 
PWS and AS deletions.

5.3. Chromosomal microarray analysis (CMA)

Chromosomal microarray analysis (CMA) detects microdele-
tions and microduplications effectively, which can distinguish 

Table 2. Consensus clinical diagnostic criteria for PWS.

Major criteria (1 point each) Minor criteria (1/2 point each) Supportive Findings (not score)

1 Hypotonia with poor suck Decreased fetal movement/infantile lethargy/ 
weak cry

High pain threshold

2 Feeding problems and poor weight gain/failure to 
thrive

Characteristic behavior problems Decreased vomiting

3 Excessive weight gain at 1–6 years and central 
obesity

Sleep disturbance Temperature instability/altered temperature 
sensitivity

4 Characteristic facial features Short stature Scoliosis/kyphosis
5 Hypogonadism Hypopigmentation Early adrenarche
6 Global developmental delay Small hands/feet Osteoporosis
7 Hyperphagia Narrow hands with straight ulnar border Unusual skill
8 Abnormality of the Prader-Willi chromosome region Eye abnormalities Normal neuromuscular studies
9 Thick viscous saliva
10 Speech articulation defects
11 Skin picking

For children ≤3 years of age: 5 points are necessary, and at least 4 points come from major criteria. For children >3 years of age: 8 points are required, and at least 
5 points come from major criteria.

It is adapted from Yang-Li D et al [20]. 

Table 3. Revised criteria to prompt DNA testing for PWS.

Age at Assessment Clinical Features of Prompt DNA Testing

<2 years 1. Hypotonia with poor suck
2–6 years 1. Hypotonia with a history of poor suck 

2. Developmental delay
6–12 years 1. History of hypotonia with poor suck 

2. Developmental delay 
3. Excessive eating with central obesity

≥13 years 1. Cognitive impairment 
2. Excessive eating with central obesity 
3. Hypothalamic hypogonadism/typical behavior problems

It is adapted from Gunay-Aygun et al [11]. 
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changes as small as 100 to 200 kb [41]. It has two main 
techniques: comparative genomic hybridization (CGH) and 
single nucleotide polymorphisms (SNP). The array CGH 
(aCGH) compares the patient’s DNA sample to the reference 
sample to identify copy number changes. The fragment of the 
patient’s and control DNA samples, labeled with distinct fluor-
escent colors such as green and red, are mixed in equal 
proportions and hybridized to the probe on the array. By 
digital imaging software, the fluorescence intensity of every 
probe would be measured. Thus, deletion or duplication will 
be differentiated by the ratio of the fluorescence intensities. In 
addition, the resolution of aCGH depends on the number, 
type, and distribution of probes [42].

In the SNP array, the patient’s sample is labeled and hybri-
dized into the probe, which is selected from the known DNA 
locations distributed across the human genome. The copy 
number changes and single nucleotide polymorphism will be 
detected by comparing the absolute fluorescence probe inten-
sities to the normal control. In addition, the SNP array can 
detect long contiguous stretches of homozygosity (LCSH) to 
distinguish UPD [43].

CMA is proficient in detecting deletion size and additional 
chromosomal anomalies. However, balanced chromosomal 
rearrangements (such as balanced translocations or inversions) 
cannot be identified [44].

6. Molecular genetic diagnosis

6.1. Southern blotting

In Southern blot methylation analysis, it is necessary to choose 
probes to assess the differential methylation status of the 
gene SNRPN rather than any other locus. The DNA sample 
was digested with restriction endonucleases, followed by gel 
electrophoresis for separation. Subsequently, the mixture 
would be transferred to the porous membrane. Specific 
sequences would be detected by hybridizing with labeled 
probes [45]. Thus, Southern blot analysis can identify large 
deletions and UPD for PWS and AS. However, the site of 
restriction endonucleases could be affected by a rare restric-
tion fragment length polymorphism, which leads to false posi-
tive results [4]. In addition, it is time-consuming and gradually 
replaced by polymerase chain reaction (PCR).

6.2. Polymerase chain reaction

6.2.1. Reverse transcription-polymerase chain reaction 
(RT-PCR)
RT-PCR is a sensitive method to detect low-abundance RNA 
and analyze gene expression. Rachel and Francke used RT-PCR 
to test the expression of the SNRPN gene to diagnose PWS. 
The SNRPN expression could be detected in unaffected people 
while negative in whatever forms of patients with PWS [46]. 
However, Muralidhar et al. reported weak SNRPN expression in 
two PWS subjects, and no noticeable clinical features were 
identified between the weak and negative gene expression 
[47]. Except for the SNRPN gene, many RNA transcripts exist in 
the PWS region. Nevertheless, unreliable RNA extraction and 
unstable RNA limit its application.

6.2.2. PCR after restriction endonuclease digestion
Based on differential digestion of expressed SNRPN sequences, 
Chotai and Payne developed a novel PCR test to diagnose 
PWS and AS. The methylation requiring nuclease McrBC 
digests methylated sequences. While the methylation- 
sensitive endonuclease NotI digests unmethylated DNA. 
Following treatment with either NotI or McrBC, the DNA sam-
ples are amplified by PCR. After McrBC digestion, the SNRPN 
sequence is absent in patients with PWS. Conversely, the 
SNRPN sequence is absent in AS patients after NotI digestion. 
The potential advantages of this method are rapid, simple and 
cost-effective. However, a false negative is the most critical 
problem in this method because of partial digests. In addition, 
this method misses PWS or AS patients with chromosomal 
abnormalities and fails to distinguish between deletions, UPD 
or ID [48].

6.2.3. Methylation-sensitive polymerase chain reaction 
(MS-PCR)
MS-PCR is considered a rapid and analytically sensitive techni-
que. By treating DNA with sodium bisulfite, unmethylated 
cytosine converts to uracil, while methylated cytosine remains 
non-reactive. Thus, the differential methylation status of gene 
SNRPN is converted into sequence differences, followed by 
amplification with primers specific for methylated and 
unmethylated DNA in PCR reactions [49]. Zeschnigk et al. 
developed a method with one common primer binding to 
parental alleles and two different primers specifically binding 
to paternal or maternal alleles [50]. Compared with Southern 
blotting, this approach is economical and avoids restriction 
enzymes. It detects deletions, UPD and ID and correctly 
detects more than 99% of suspected cases, although it does 
not provide more information on molecular mechanisms, and 
further molecular genetic tests are necessary to distinguish the 
underlying molecular cause. However, Morandi et al. reported 
that a mosaic mUPD 15 girl with incomplete PWS presented 
a negative result of MS-PCR [51]. Thus, Baumer et al. used MS- 
PCR followed by denaturing high performance liquid chroma-
tography (DHPLC) to detect low cell mosaicisms [52]. Due to 
single base variants or small deletions, DNA sequence analysis 
is needed for negative MS-PCR results. In addition, allelic 
dropout due to the rare presence of polymorphisms could 
cause a false-positive result, while the competition for 
reagents contributes to false-negative results [53,54].

6.3. Pyrosequencing

Pyrosequencing technology is a robust, high-throughput 
sequencing method that analyzes short- to medium-length 
DNA sequences. The sequence of methylated and unmethy-
lated alleles is different after treating with bisulfite. 
Pyrosequencing distinguishes sequence differences by 
detecting the signal of pyrophosphate release, which was 
produced by incorporating nucleotides into the template 
strand [55,56]. Thus, White et al. used pyrosequencing 
assays to quantify CpG islands within the SNRPN gene to 
identify PWS and AS. This method could be used individu-
ally and in combination to diagnose PWS and AS. In 
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addition, it could also detect cases of mosaicism, and the 
cost and time are similar to the MS-PCR [57]. However, 
absolute quantification is affected by DNA concentration, 
PCR amplification bias, and bisulfite treatment.

6.4. Melting curve analysis

The melting curve analysis is a powerful method based on 
PCR. The difference in nucleic acid melting temperature 
(Tm) highly depends on the sequence variants. Thus, 
Worm et al. first described the methylation-specific melting 
curve analysis (MS-MA) that integrates bisulfite-treated DNA 
amplification and melting analysis to detect PWS and AS 
[58]. Bisulfite-treated unmethylated cytosine is converted to 
uracil, decreasing the stability of the heteroduplex structure 
and Tm. Methylated alleles had high Tm than the unmethy-
lated alleles. Therefore, characteristic melting curves of PWS 
and AS are acquired. Compared with normal individuals 
with two marked peaks, PWS individuals only show 
a single peak at the higher melting temperature (corre-
sponding to the maternal allele) [59,60].

To detect the deletion and non-deletion genotype, Wang 
et al. used the LIS1 gene as a reference gene for PWS 
melting curve analysis. The LIS1 gene is located on chromo-
some 17p13.3. The copy number changes of LIS1 are rare, 
and the clinical phenotypes are distinct from PWS. Thus, 
deletion or non-deletion PWS could be identified by com-
paring relative peak height ratios of maternal SNRPN: LIS1. 
The non-deletion patients with PWS had a higher ratio than 
the deletion patients with PWS. However, peak height ratio 
variants were observed within each genotype in the repli-
cate assay run, and positive control samples are recom-
mended to be set for each assay run [61]. In addition, 
Hung et al. used real-time PCR with melting curve analysis 
to distinguish between deletion and non-deletion PWS indi-
viduals [59].

In MS-MA, DNA binding dye SYBR Green is unsaturated and 
inhibits PCR amplification. While EvaGreen is a saturated con-
centration dye and can be used at much higher dye concen-
trations without inhibiting PCR amplification. Thus, White et al. 
established a methylation-sensitive high-resolution melting- 
curve analysis (MS-HRM) with EvaGreen to distinguish PWS, 
which detected a lower abundance of methylated DNA. In MS- 
HRM, mutation or mosaicism may cause unusual melting curve 
shapes for PWS and AS samples. However, one PWS sample 
with a variant melting curve was not detected as mosaicism or 
mutation [62,63]. Thus, samples that cannot be unambigu-
ously assigned to three diagnostic categories should be 
further investigated.

HRM is a nondestructive test that other techniques can 
subsequently analyze. In addition, as a post-PCR technique, 
HRM could decrease the risk of PCR contamination and dis-
pense electrophoresis gel analysis [64].

6.5. Methylation sensitive multiplex ligation-dependent 
probe amplification (MS-MLPA)

MS-MLPA could simultaneously detect methylation status and 
copy number changes of the 15q11-q13 region. The reactions 

were divided into two parts. One is treated with probe ligation 
and HhaI endonuclease for methylation detection, and the 
other is only treated with probe ligation for copy number 
changes [65]. The HhaI enzyme only digests paternal 
unmethylated genomic DNA, and no PCR product will be 
generated. In contrast, the methylated sequences will prevent 
the digestion and amplify in the subsequent PCR. In addition, 
additional methylation-sensitive control probes outside chro-
mosome 15 are needed to ensure complete digestion [60]. 
Therefore, the methylation status and copy number changes 
could be detected by comparing probe-height ratios. In unaf-
fected individuals, the probe-height ratio in Hhal digested 
samples is half that in undigested samples (0.5/1). However, 
PWS samples with typical deletions show a half reduction for 
probes within the 15q11-q13 region, whether digested or not 
(0.5/0.5). For type I deletions, the number of probes decreases 
in the region from BP1 to BP3. While for type II deletions, the 
copy number is normal from BP1 to BP2 [66]. Patients with 
PWS with UPD have two methylated allies. Thus, the number 
of probes in undigested samples is similar to that in digested 
samples (1/1). Furthermore, IC microdeletion can also be 
detected with appropriate probes [67]. If probes could not 
detect the microdeletion in IC, however, MS-MLPA will not 
distinguish UPD from ID, and further microsatellite analysis is 
necessary to perform. In addition, single-base variations in the 
probe-binding regions or the restriction enzyme recognition 
site would lead to false positive or negative results [60].

6.6. Microsatellite analysis (MSA)

Microsatellites, also named short tandem repeats (STR), are 
short, highly polymorphous and tandemly repeated simple 
sequences ranging in size from 1 to 6 base pairs. With the 
occurrence of PCR, the high sensitive microsatellite analysis 
has been widely used in discovering genes and diagnosing 
diseases, which is fast and requires less DNA [68]. STR markers 
are located in the typical PWS and AS deletion region and the 
distal region near the telomere. Microsatellite loci are identi-
fied by primers labeled with fluorescence and amplified with 
PCR. However, the proband and parental DNA samples are all 
required, which is impractical in some cases [69,70]. In addi-
tion, an interpretation of the result should build on more than 
one informative marker. Microsatellite analysis is a time- 
costuming method that could distinguish between UPD het-
erodisomy and deletion. Nevertheless, it failed to identify 
deletion and UPD isodisomy.

6.7. RNA

Due to the unreliable and unstable extracted RNA, it is uncom-
monly used for PWS diagnosis. However, Yin et al. discovered 
long non-coding RNAs (lncRNAs) with small nuclear RNAs 
(snoRNAs) ends and named snoRNA-related lncRNAs (sno- 
lncRNAs), which were processed from intron. Moreover, the 
PWS critical region encodes five classes of sno-lncRNAs, which 
are highly expressed in unaffected individuals while not 
expressed in patients with PWS [71]. Depletion of PWS region 
sno-lncRNAs not changes gene expression but leads to altered 
alternative splicing of several hundred mRNAs [72]. In 

20 Y. GAO ET AL.



addition, sno-lncRNAs are reliable and have slow degradation 
compared to other RNAs. These findings suggest that measur-
ing the expression of sno-lncRNAs in the blood is a promising 
tool for diagnosing PWS.

7. Prenatal screening

Prenatal screening for PWS is a promising prospect, which may 
lead to early treatment with improved quality of life. In addi-
tion, it is essential for those PWS families with high recurrence 
risks.

Prenatal characteristics associated with PWS include abnor-
mal fetal growth, polyhydramnios, and notably decreased fetal 
movements [73,74]. While these features are nonspecific, the 
simultaneous presence of abnormal fetal growth alongside 
decreased fetal movements or polyhydramnios should raise 
high suspicions for PWS.

Chorionic villus sampling and amniocentesis are the most 
common sources of genetic testing in prenatal diagnosis. 
However, these samples are more hypomethylated than 
other tissue, which makes methylation analysis difficult in 
PWS prenatal screening. Glenn et al. found that the SNRPN 
gene maintains the imprint throughout a wide range of tissue 
(including chorionic villus and amniocentesis) and is suitable 
for methylation analysis [75].

Noninvasive prenatal testing (NIPT) could detect chromo-
some aneuploidies with high sensitivity and specificity, which 
utilizes cell-fetal DNA from maternal plasma or serum and is 
safe for the fetus. Wapner et al. utilized the SNP-based NIPT to 
detect five fetal microdeletion syndromes (including PWS and 
AS) [76]. However, a positive predictive value is expected to be 
low because of these rare diseases, and the application of NIPT 
is required to be further studied before it is widely adopted 
[77]. In addition, preimplantation genetic testing (PGT) could 
be used in some families with IC microdeletions.

If trisomy 15 or trisomy 15 mosaicism is detected, PWS with 
maternal UPD or AS with paternal UPD should be alerted due to 
the trisomic rescue event in early pregnancy. In this instance, 
DNA methylation or CMA should be highly considered [78]. If 
15q12 missing was detected, FISH, CMA, or MS-MLPA should be 
considered due to PWS/AS critical deletion [79].

8. Newborn screening

Whole blood is the most typical DNA source in many methods for 
detecting PWS and AS. However, it is difficult for whole blood to 
massively screen newborns. Dried blood spot (DBS), a part of 
newborn screening programs in many countries, is simple to 
collect and transport [80]. Thus, Mahmoud et al. used MS-PCR 
and MS-MLPA to diagnose PWS on DBS. This pilot study showed 
that PWS could be correctly identified once high-quality DNA 
was extracted successfully. However, some samples extracted 
low DNA concentration and did not meet the requirements for 
methylation analysis. Although, these samples have a long sto-
rage time of 8–10 years, which may be affected by inappropriate 
storage conditions and bacteria containment [81]. In addition, 
Ferreira et al. used MS-HRM to screen PWS on DBS and assessed 
three different DNA isolation methods from DBS (Qiagen-DBS, 
Mem-DBS, and Chellex-DBS). In MS-HIRM, none of the isolation 

methods significantly changed the melting temperature curve. 
Mem-DBS and Chellex-DBS methods provided high DNA con-
centration, while the Qiagen-DBS method showed high DNA 
purity and quality, which benefits high amplification in MS- 
HRM [82]. In addition, Godlier et al. used methylation-specific 
quantitative melt analysis (MS-QMA) to screen chromosome 15 
imprinting disorders in DBS [83]. The MS-QMA combines HRM 
and real-time PCR (RT-PCR) to provide quantification of DNA 
methylation [84]. Thus, it is an emerging field for PWS newborn 
screening.

9. Conclusion

Early diagnosis and treatment of PWS could effectively miti-
gate obesity and related co-morbidities, significantly improv-
ing life quality for patients with PWS and their families. In this 
review, we concluded the advantages and disadvantages of 
each method, as shown in Table 4. Furthermore, prenatal and 
newborn screening could potentially improve diagnostic age 
[85,86]. In addition, the discovery of sno-lncRNAs offers 
a novel approach for screening or diagnosing PWS due to 
their stability and slow degradation. Combining sno-lncRNA 
with neonatal screening is a promising prospect to be further 
studied.

10. Expert opinion

Recently, the age of diagnosis for PWS has significantly 
decreased, with most cases diagnosed within the first year of 
life, leading to early human growth hormone treatment and 
management for PWS. However, there are four keys to be 
considered in PWS clinical and laboratory diagnosis. Firstly, it 
is essential to distinguish the relatively few patients with PWS 
from the vast majority of laboratory referrals that present with 
similar symptoms, both at birth and later in life. Secondly, after 
diagnosing PWS, it is necessary to identify those few patients 
with a high recurrence risk (IC deletion) from most patients 
with a low recurrence risk (deletions and UPD). Thirdly, the 
testing process should be as ‘user-friendly’ as possible. It is 
notoriously difficult to obtain blood or tissues from probands 
and their families, and family members are not always avail-
able for additional genetic testing. Fourthly, the testing cost 
and time-consuming should be recognized. The fewer tests 
performed, the more cost-effective and time-efficient the diag-
nosis becomes [40].

Therefore, we present a genetic testing workflow for PWS 
diagnosis (Figure 2). The initial requirement is to identify or 
recognize suspected patients. Classic clinical features of 
abnormal growth, polyhydramnios, decreased fetal move-
ments, hypotonia with poor suck, excessive eating with obe-
sity, and global developmental delay could help to identify 
suspected patients. When patients are suspected to be PWS, 
starting with MS-MLPA is the most efficient way. This method 
could detect more than 99% of patients with PWS and 
exclude AS immediately. MS-MLPA could detect deletion 
(including large deletion and IC microdeletion), providing 
a definitive diagnosis for about 70%-75% of patients with 
PWS. If IC microdeletion is confirmed, deletion analysis 
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should be performed in families (especially for the father) to 
rule out familiar IC deletion.

If the result shows a normal copy number with abnormal 
methylation status, it may indicate UPD or ID. Then CMA, MSA, 
or DNA polymorphisms should be performed to distinguish 
UPD and ID. If PWS with mUPD is confirmed, the chromosome 
analysis should be performed both in probands and parents to 
rule out cytogenetic rearrangement. However, this instance is 
rare. If the ID is performed, the recurrence risk is small due to 
ID epimutation.

If the result of methylation analysis is normal, PWS is very 
unlikely. However, methylation analysis could not detect 
balanced chromosomal rearrangement and key gene 

mutation in PWS critical region (<1% PWS), which should be 
detected by chromosome analysis and DNA sequence [20].

In addition, PWS screening is increasingly being recog-
nized as a promising prospect for further study. In prenatal 
screening, prenatal features are critical for clinicians to 
conduct appropriate diagnostic analysis as soon as possi-
ble. In addition, there is a growing interest in expanding 
NIPT due to its safety in prenatal screening. However, NIPT 
is more demanding and requires further research before it 
is widely adopted. In newborn screening, the combination 
of methylation analysis and DBS gradually becomes an 
emerging field due to its convenience for sample collection 
and transportation. Pilot studies on neonatal screening 

Table 4. Advantages and limitations of PWS diagnosis.

Uses Limitations

Cytogenetic diagnosis
FISH Can detect deletion and chromosomal rearrangement, could detect about 65–75% of 

PWS
Cannot distinguish normal and UPD, ID 
Cannot distinguish PWS and AS deletions 
Cannot give information about the whole PWS critical 

region and the other chromosomes
CMA (CGH 

+SNP)
Can detect deletion (including deletion size), UPD isodisomy and additional 

chromosomal anomalies and could detect about 80–90% of PWS
Cannot identify chromosomal rearrangement 
Cannot distinguish UPD heterodisomy and ID 

epimutation 
Cannot distinguish PWS and AS deletions

Molecular genetic diagnosis
MS-PCR Can detect more than 99% of PWS (including deletion, UPD and ID) Cannot distinguish the underlying genetic mechanism 

Cannot identify chromosomal rearrangement
MS-MLPA Can detect more than 99% of PWS (including deletion, UPD and ID) 

Can distinguish PWS and AS deletion deletion 
Can distinguish deletion and nondeletion 
Can distinguish Type I and Type II deletion

Cannot distinguish UPD and ID 
Cannot identify chromosomal rearrangement

MS-MA/MS- 
HRM

Can detect deletion, UPD and ID 
Can distinguish deletion and nondeletion 
Can decrease PCR contamination risk and dispense electrophoresis gel analysis

Cannot distinguish the underlying genetic mechanism 
The melting curve that cannot be unambiguously 

assigned should be further investigated
Pyrosequencing Can detect including deletion, UPD and ID 

Can quantify SRNPN gene Methylation 
Can detect PWS with mosaic mUPD

Cannot distinguish the underlying genetic mechanism 
Affected by DNA centration, PCR amplification bias, 

and bisulfite treatment
MSA Can detect deletion (especially for microdeletion) and UPD heterodisomy Not a first-line test, performed after methylation 

analysis diagnoses PWS 
Cannot distinguish UPD isodisomy and ID 
Should require both proband and parents’ DNA 

samples

Figure 2. Genetic testing strategies for the Prader-Willi syndrome.
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could be carried out in countries with large populations 
first.

Due to the reliance and slow degradation of sno-lncRNAs, 
measuring the expression of sno-lncRNA in blood presents 
a novel tool for screening or diagnosis of PWS. However, the 
method of extracting sno-lncRNAs is technically demanding, 
requiring further research before it can be widely 
implemented.
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