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ABSTRACT
Today, nano-medicine promotes new therapeutics and diagnostics tools, including sensing of biomole-
cules as a biosensor, cancer chemotherapy and drug or gene delivery. Because of small size and bio-
compatibility of gold nanoparticles (GNPs), they become a good candidate for biological application.
Also, thanks to their biological and chemical properties, they can mimic function of some enzymes
including super oxide dismutase (SOD), esterase, etc. Also, biomaterials and bioengineering have grown
so fast since the last decade for many therapeutic applications such as tissue regeneration. Among
these cutting edge technology, nanomaterials find the way to becoming a very powerful tool for using
in many fields of researchers including biosensing, gene therapy and chemotherapy. In this review, we
focused on some biological applications of GNPs in biology and medicine.
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Introduction

Gold nanoparticles (GNPs): an overview

It is accepted that some metal-based nanoparticles (NPs)
potentially mimic enzyme function [1]. Among all NPs,
GNPs are so believed because of enzymatic properties and
their application in biology [2]. Moreover, "hidden talents"
of GNPs revealed as artificial enzymes, including ability of
GNP to mimic the nuclease, esterase, silicatein, glucose oxi-
dase, peroxidase, catalase and superoxide dismutase [3] as
well as GNPs with either positive or negative surface
charges show peroxidase mimicking activity [4]. These
enzyme-like activities of GNPs are related to functional
groups. In fact, GNPs enzyme-like activities help scientist to
develop and design of biosensors, immunoassay, clinical
studies, detection and photothermal activity of micro-organ-
isms and cancer cells, targeted delivery of the drug, and as
well as in bioimaging according to this potential (Figure 1)
[3–7]. GNPs are biocompatible because of special properties
such as non-toxicity, facile synthesis, size and shape tenabil-
ity [7]. Besides, biological safety and user-friendly methods
for constructing GNPs, they have no toxic material after
degradation [8]. In this manner, it is possible that GNPs
combined to different parts of plants, fruits, microorganisms
and biomolecules [8]. For example, synthesis of GNPs from
Curcuma longa root extract by ‘exploiting’ the reduction
capabilities of varied phytochemicals present in was con-
firmed [9].

GNPs enzymatic potential

GNPs have enzymatic properties itself via surface-bound
ligands that derived them to catalytic reactions; it is a usual
method to mimic catalytic activity in synthetic aspects.
However, the GNP can also be designed as the catalytic
component as various enzyme mimics [10]. One of the
enzymatic aspects of GNPs is to act as glucose oxidase
mimic that the performance of GNPs is mentioned above
(Figure 2).

Glucose oxidase (GOx) mimic

GOx is an oxide-reductase enzyme that catalyzes the oxida-
tion of b-D-glucose to gluconic acid, by utilizing oxygen as an
electron acceptor with simultaneous production of hydrogen
peroxide (H2O

�) [10]. Notably, the GOx-like activities of Au-
NPs have been for simple and reliable detection of DNAs
[11,12]. Although other metal nanomaterials, such as Cu, Ag,
Pd and Pt, are tested, but did not show significant oxidase-
like activity under similar conditions [13]. A non-enzymatic
electrochemical method has been developed for the detec-
tion of glucose by using gold (Au) NPs self-assembled on a
three-dimensional (3D) silicate network obtained by using
sol–gel processes [14]. As well as, GNPs showed that the Au
NPs catalyze the oxidation of glucose at less positive poten-
tial (0.16 V) in phosphate-buffered solution (pH 9.2) and in
the absence of any enzymes or redox mediators [15,16].
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In addition to glucose sensing, nano-gold-aggregation
(NGA) phenomenon has provided some other usages, such as
solution-based immune-assays and DNA-hybridization assay
[17]. In NGA reaction, two macromolecules, such as antige-
n–antibody, should be bounded together [18]. Notably, GNPs
were used as a novel ultrasensitive multiplexed immunoassay
method by combining alkaline phosphatase (ALP)-labelled
antibody-functionalized GNPs (ALP-Ab/Au NPs) and GNP as
an enzyme catalyzed in the presence of silver NPs at a dis-
posable immune-sensor [19,20]. Also, Weijie et al. fabricated a
self-catalyzed and self-limiting growth of glucose oxidase
mimicking GNP. They showed that AuNP catalyzed glucose
oxidation and produced H2O2. However, size-dependent activ-
ity decreases have a great impact to control enzymatic activ-
ity [21]. Self-limiting or smart nanomaterial fabricates
according to shape and size, and having fewer toxicity.

Peroxidase mimic

Previously, researchers proved that ferromagnetic NPs occupy
the intrinsic peroxidase-like activity. Since then, many studies
have been developed to design of various GNPs with a great
potential of peroxidase-like activity. Peroxidases are a large
family of enzymes that typically catalyze the oxidation of

horseradish peroxidase (HRP). However, GNPs are optimized
in pH ¼3 and in vitro condition, but not in biological condi-
tion and pH ¼7.4 [22]. Glucose detection is a well-known bio-
logical activity of GNPs [23]. Colorimetric detection of H2O2

and glucose was performed according to intrinsic peroxidase-
like activity and catalyzes the oxidation of the peroxidase
substrate 3,3,5,5-tetramethylbenzidine (TMB) by [24]. GNPs as
a peroxidase mimetic were first developed for the enzymatic
spectrophotometric analysis of uric acid via detection H2O2

that was generated by uric acid [25]. Notably, GNPs are a
promising method for uric acid analysis in human serum
[23,24]. A novel immunoassay technique designed thanks to
peroxidase-like activity and GNPs for detecting of a-fetopro-
tein, by enhanced ultrasensitive chemiluminescence enzyme
immunoassay for the determination of a-fetoprotein [26]. The
method was based on 4-(40-iodo) phenyl-phenol (IPP) as a
new potential signal enhancer and double-codified GNPs (DC-
Au-NPs) that are labelled with HRP-conjugated anti-AFP
which is used for further signal amplification [27]. According
to the protocol, antigen in the sample was captured by the
immobilized primary antibody on the surface of magnetic
beads and recognized by the second antibody labelled with
DC-Au-NPs consequently [28]. Also, it is possible to design
peptides on GNPs to give nanomaterial with some chemical
properties that are analogous to those of proteins [29].

Superoxide dismutase (SOD) mimic and catalase mimic

SOD is an important antioxidant defence against free radicals.
It catalyzes the dismutation of superoxide (O2�) into O2 and
H2O2 [30]. Also, catalase is an enzymatic group supporting
the cell from oxidative damage by reactive oxygen species
[29]. Markedly, GNPs have received a great deal of interest
because of their unique properties of optical and in biomed-
ical applications [31,32]. There is growing evidence that GNPs
can catalyze then rapid decomposition of hydrogen peroxide
that is followed by the formation of hydroxyl radicals at lower
pH and oxygen at higher pH. These results strongly demon-
strated that GNPs can act as SOD catalase mimetic [33,34].
However, these challenges thank to chemical synthesis of NPs
that are proposed in toxicology [35]. In a study, these
synthesized biocompatible GNPs (Tu-AuNPs) are used as an
antioxidant against 1-methyl-2-phenyl pyridinium ion (MPPþ)
which induced cytotoxicity and cell death in PC-12 cells
[36,37]. Incubation of PC-12 cells with Tu-AuNPs prevented

Figure 2. The schematic view of gold nanoparticles (GNPs) enzyme mimicking
properties.

Figure 1. The schematic view of gold nanoparticles (GNPs) biological activity including gene and drug delivery, enzyme mimicking, molecular imaging and thermal
therapy.
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MPPþ -induced loss in cell viability and enhanced LDH. In
addition, reduction in the level of non-protein thiol, glutathi-
one (GSH), activities of the antioxidant enzymes, superoxide
dismutase (SOD), catalase (CAT) and glutathione-S-transfer-
ase (GST) as well as the increased MDA levels have also
been found to be prevented by this NP in cancerous cells
[38,39].

Esterase mimic

An esterase is a hydrolase enzyme that ruptures esters into
an acid and an alcohol in a chemical reaction in water. The
reaction is called hydrolysis [40]. According to evidence, the
first example of peptide-functionalized GNPs is hydrolytically
active against carboxylate esters. The active units are consti-
tuted by His-Phe-OH terminating thiols [41,42]. A highly sensi-
tive and selective fluorescent assay for the detection of
acetylcholine (ACh) was developed based on enzyme mimics
of Au/Ag NPs [43]. This mechanism involved is the following:
reacting ACh with acetylcholinesterase (AChE) to form choline
that is in turn oxidized by choline oxidase (ChOx) to produce
betaine and H2O2, which reacts with Amplex UltraRed (AUR)
in the presence of bimetallic NPs catalyst to form a fluores-
cent product [44].

Other biological usages

Gene delivery
GNPs with synthetic microRNAs can enter cells without the
aid of cationic co-carriers [45]. MicroRNAs belong to non-cod-
ing RNA family and regulate multiple proteins in interactions
with the 3 prime untranslated regions of the target messen-
ger RNA and control cell behaviour at post-translational level
[46]. The GNPs–microRNA conjugation is a new tool for
microRNA delivery and is candidates for the microRNA
replacement delivery system [47].

It is demonstrated that polyvalent DNA-functionalized
GNPs (DNA-Au NPs) selectively enhance Ribonuclease H
(RNase H) activity while inhibiting most biologically relevant
nucleases. Then, high RNase H activity results in rapid mRNA
degradation and general nuclease inhibition results in high
biological stability [48,49]. Selective RNase H activity in the
high DNA density of DNA-Au-NPs is responsible for this
unusual behaviour [50]. Also, polyvalent DNA-Au-NPs regulate
gene expression as a new model for selectively controlling
protein�NP interactions [51]. The potential of a single
molecular nanoconjugate is to intersect with all RNA path-
ways including gene-specific down-regulation such as siRNA
and miRNA pathways [52]. Gold-nano-beacons are capable of
silencing gene expression and endogenous miRNAs, while
yielding a quantifiable fluorescence signal directly propor-
tional to the level of silencing [53,54]. Also, GNPs have a
great role in tissue regeneration as a scaffold [53]. Human
mesenchymal stem cells (hMSCs), is critical for the develop-
ment of effective cellular therapies for tissue engineering
[53]. Developing bioengineering as a multidisciplinary field of
research helps scientists to fabricate different stem cells by GNPs.

One of the main advantages of this method is the induction
of immune tolerance [54].

Drug delivery
Another application is cancer-targeted drug delivery. GNPs
conjugated with chemotherapeutics drugs such as doxorubi-
cin may overcome side effect of chemotherapy like nausea or
cardiac toxicity [55]. In 2009, gold nanoshells Aurora's took
FDA approval in chemotherapy [56]. However, other GNPs are
still using in research [57–60].

Immunoassays
Au nanorodes were employed for immunoassays. For
example, sandwich ELIZA for IL-2. Integrin specific peptide
was engineered by Au NP to mimic peroxidase mimics. This
protein is used as a probe to detect cancer [21]. Glucose
have been detected by Au-based nanomaterial. According to
evidence, AuNPs mimics glucose oxidase to detect glucose.

Anti-bacterial properties
AuNPs encapsulated within mesoporous silica demonstrated
antibacterial activity. AuNPs have exhibited both oxidase and
peroxidase mimicking activities and end material of reactions
is reactive oxygen species. Antibacterial properties proved
against both Gram-negative and Gram-positive bacteria [61].

Conclusions

All in all, because of many advantages that GNPs including
small size, flexible synthesis and biocompatibility, they have
wide applications in biology and medicine. However, they
mimic some biological effects of functional proteins such as
enzymes. Also, they are used in drug delivery and gene deliv-
ery system. Thanks to the fast growing of this technology,
great varieties of GNPs synthesize in different shapes and
size. It is useful for promoting NPS biological applications and
it is necessary to continue research on nanomaterial safety in
parallel.
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