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ABSTRACT
The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the 
Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops 
covering topics in BCI and brain–machine interface research. Topics included BCI for specific 
populations or applications, advancing BCI research through use of specific signals or technological 
advances, and translational and commercial issues to bring both implanted and non-invasive BCIs 
to market. BCI research is growing and expanding in the breadth of its applications, the depth of 
knowledge it can produce, and the practical benefit it can provide both for those with physical 
impairments and the general public. Here we provide summaries of each workshop, illustrating the 
breadth and depth of BCI research and highlighting important issues and calls for action to support 
future research and development.

Introduction

Brain–computer interfaces (BCI) (also referred to as 
brain–machine interfaces; BMI) are, by definition, an 
interface between the human brain and a technological 
application. Brain activity for interpretation by the BCI 

can be acquired with either invasive or non-invasive meth-
ods. The key point is that the signals that are interpreted 
come directly from the brain, bypassing sensorimotor 
output channels that may or may not have impaired func-
tion. This paper provides a concise glimpse of the breadth 
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the other who tested a BCI for walking. The Asilomar 
Conference Grounds supports the interactive nature of the 
BCI Meetings by providing common meals, housing for 
all BCI attendees, and a beautiful environment for casual 
conversation and networking.

With a theme of ‘BCI: Past, Present, and Future,’ this 
Sixth BCI Meeting built on the knowledge of past BCI 
research and the accomplishments of the established 
researchers who clear their calendars to attend the BCI 
Meetings. The Meeting provides a detailed overview of the 
present state of BCI development, and the workshops and 
interactions fuel the future of BCI research, development, 
and translational efforts.

Organization of workshop summaries

The workshops of the BCI Meeting have evolved since the 
first Meeting, when each participant was part of a single 
multi-day workshop on one of six topics (Definitions, 
Components, Invasive Methods, Signal Analysis, Signal 
Translation, and Applications). Workshops now occupy 
three time slots so that each attendee can participate in 
workshops on multiple topics. Each workshop is still 
intended to be an interaction between attendees, but most 
now seek to provide in-depth knowledge on a specific 
topic instead of the comparisons or competition between 
diverse methods that was often the focus of the broader 
workshops of the earliest meetings.

At the first BCI Meeting, BCI applications were limited 
to communication/computer access, control of prosthet-
ics, robotics or functional electrical stimulation, moni-
toring alertness, and controlling a flight simulator. While 
maintaining these applications, major BCI applications 
now include stroke rehabilitation, entertainment, assess-
ment of disorders of consciousness, and research tools 
for study of neuroscience. Many BCIs are now intended 
not only as tools for people with physical impairments, 
but also as treatments for physical or cognitive impair-
ments. Further, the ever-growing variety of BCI applica-
tions increasingly includes applications for those without 
disabilities.

All workshops were proposed by members of the BCI 
community. The Program Committee helped to merge the 
more common topics, at the same time promoting newer 
or under-discussed topics to produce a workshop list 
that covers a wide breadth of BCI research and develop-
ment. This report contains summaries of these individual 
workshops, grouped by themes. Each summary lists the 
organizers and all additional presenters. The summaries 
provide an introduction to each topic, key points of the 
presentations and discussion, and resources for further 
study. Active participation by attendees in workshop 
discussion is one of the most valued aspects of the BCI 

of BCI research and development topics covered by the 
workshops of the 6th International Brain–Computer 
Interface Meeting.

History and distinctives of the BCI Meeting Series

The individual meetings of the International Brain–
Computer Interface Meeting Series have occurred 
approximately every three years, with a goal of bringing 
together BCI researchers from around the world. The 
first International BCI Meeting was held in 1999, with 
50 scientists from 22 laboratories attending [1]. The 
growth of the BCI Meetings has paralleled the astonishing 
growth of BCI research itself, with ever larger meetings 
in 2002 [2], 2005 [3], 2010 [4], and 2013 [5–7]. The Sixth 
International BCI Meeting was held 30 May–3 June 2016 
at the Asilomar Conference Grounds in Pacific Grove, 
California, USA. The 2016 BCI Meeting was attended 
by 400 participants from 26 countries, representing 188 
laboratories and organizations. The 2016 Meeting was 
the first to be organized under the direction of the newly 
established BCI Society and offered a registration discount 
for BCI Society members. Approximately one-third of 
the BCI Meeting registrants were BCI Society members, 
with many more opting to join the Society after the BCI 
Meeting.

In the opening session, Dr Jon Wolpaw, the president of 
the BCI Society, spoke about the mandate from NIH that 
led to the creation of the First International BCI Meeting 
in 1999. The BCI Meeting was to be held at an isolated 
location to keep participants together, it was to have a 
large number of young people to grow the field, and it 
was to have a highly interactive format. These characteris-
tics, along with the diverse background of attendees, have 
become distinctive of the BCI Meeting series. The BCI 
Meetings seek to bring together representatives of all the 
diverse fields required for successful BCI research, devel-
opment, and translation into commercial products. The 
BCI Meeting is attended by engineers, physicians, com-
puter scientists, federal funding representatives, clinical 
rehabilitation specialists, neuroscientists, psychologists, 
speech-language pathologists, BCI users, caregivers, 
entrepreneurs, and many others. Progress in BCI research 
and development, and especially the creation of useful, 
appropriate applications, requires interaction and, indeed, 
close collaboration between people from many of these 
backgrounds. While BCI sessions are becoming common 
at many conferences, the diversity of disciplines at the BCI 
Meetings is unique.

The 2016 BCI Meeting registrants identified themselves 
as 40% students, 12% postdocs, 12% early career, and 37% 
established researchers. There were also two BCI users, 
one of whom assisted in testing a BCI for communication, 
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Meeting Series experience, and is, of course, impossible to 
capture in print. But the summaries do present the con-
clusions and consensus opinions reached through such 
discussion, as well as calls for action and future research.

The breadth and diversity of the workshops made 
grouping by topic difficult since overlapping themes run 
through many of the workshops, yet each has its distinct 
focus and flavor. Overlap was both common and desirable 
to create the greatest interest among attendees. For exam-
ple, the workshops ‘Restoration of Upper Limb Function 
through Implanted Brain–Computer Interfaces’ and ‘Non-
invasive BCI-control of FES for Grasp Restoration in High 
Spinal Cord Injured Humans’ demonstrate workshops on 
different approaches to restoration of limb function.

Three themes were selected for organizing this report, 
though other groupings could easily be proposed. The 
first theme presented here contains workshops focused 
on BCIs for specific applications or treatment groups. This 
theme reflects the greater awareness that has developed 
of the diverse populations that can benefit from BCI. 
This theme is first represented by a workshop on BCIs 
for assessment of disorders of consciousness, followed 
by a set of workshops on recovery of function through 
therapeutic intervention after stroke or through control 
of robotics or functional electrical stimulation systems. 
Several additional workshops cover BCIs for unique pop-
ulations – ranging from children with motor or neurode-
velopmental disorders to the healthy adult population.

The next theme presented here contains a group of 
workshops that enabled attendees to concentrate on spe-
cific signals or technology for advancement of BCIs, show-
ing that signals and technology are still a popular topic. 
The first workshop included in this section explored spe-
cific types of brain signals whose intricacies can present 
challenges as well as opportunities for BCI research. This 
workshop is followed by workshops that discussed specific 
algorithms and emerging signal analyses that can lead to 
improved BCI function. The theme ends with the con-
sideration of specific hardware considerations for future 
BCI developments.

Translational and commercial issues in BCI devel-
opment encompass the final theme for the workshop 
summaries. Communication applications predominate 
in this section. They were a major discussion topic in 
the Applications workshop at the first BCI Meeting and 
seem closest to being translated commercially. However, 
the workshops of this theme show the greater interest and 
awareness in practical translational issues and pathways 
to commercial success that have developed as the field 
of BCI research matures. Several workshops also consid-
ered the translational issues embodied in deployment of 
implanted BCI systems. Many of the challenges faced by 

non-invasive BCIs and implanted BCIs are remarkably 
similar as we seek to create practical, usable devices that 
can be deployed for effective and affordable use within 
the health care system.

Overall, the varied workshops present the startling 
and ever-growing breadth of BCI applications and user 
populations, with common themes emerging to inform 
advancement of BCI performance and applications via 
active collaborations across disciplines.

BCIs for specific populations/applications

BCIs for assessment of locked-in and patients with 
disorders of consciousness (DOC)

Organizer: Christoph Guger
Presenters: Christoph Guger (g.tec medical engineer-

ing GmbH); Damien Coyle (Ulster University); Donatella 
Mattia (Fondazione Santa Lucia); Marzia De Lucia 
(Lausanne University Hospital); Leigh Hochberg (MGH/
Brown University/Providence VAMC); Betts Peters (Oregon 
Health & Science University); Chang S. Nam (North 
Carolina State University); Quentin Noirhomme (Brain 
Innovation BV); and Jitka Annen (Université de Liège).

The cognitive function of patients with DOC are 
currently diagnosed with tools like the Coma-Recovery 
Scale Revised (CRS-R) [8] which categorized patients as 
in (1) coma, (2) vegetative state (VS)/unresponsive, (3) 
wakefulness state (UWS), or (4) minimally consciousness 
state (MCS). Both patients with DOC and those who are 
locked-in (LIS) or completely locked-in (CLIS) experi-
ence variations in cognitive functions, making an objec-
tive system to describe their functions desirable. BCIs 
have the potential to provide objective descriptions of 
remaining brain functions based on the classification of 
recorded EEG, evoked potentials and EEG analysis maps. 
Furthermore, BCIs can provide communication for some 
of these patients.

BCIs for this type of application use either motor imagery 
or evoked potentials. For a motor imagery design, patients 
are asked verbally to perform certain imagined motor 
movements that will produce different event-related desyn-
chronization (ERD)/event-related synchronization (ERS) 
patterns. The BCI system classifies the associated EEG data 
and reports the accuracy with which it can separate the 
EEG associated with different motor imagery instructions. 
For an evoked potential design, an auditory oddball par-
adigm is used to produce a P300 response or a mismatch 
negativity (MMN). Semantic paradigms can also be used 
to produce an N400 or P600 response. Because most DOC 
patients lack reliable vision, BCIs using vibro-tactile dis-
plays for an odd-ball task are also important.
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EEG-based BCIs can support neuronal plasticity after 
stroke in both the sub-acute and chronic stages. While 
positive effects on post-stroke motor rehabilitation have 
been demonstrated, there have been only a few rand-
omized controlled trials. The increasing synergy between 
rehabilitation medicine and neuroscience is producing 
a radical change in neurorehabilitation, consisting of a 
‘copernican’ revolution from a patient-centered to a brain 
activity-centered perspective in designing rehabilitation 
interventions. For this perspective, BCIs can provide an 
instantaneous window into brain activity and mechanisms 
which underpin functional recovery. The vision is that 
BCIs can not only enable direct control of a device (e.g. 
robot) to restore or improve patient performance, but 
also feedback (to patients and therapists) about the ongo-
ing brain changes associated with BCI-driven exercises. 
Accordingly, BCIs can fill two roles: as a device to reha-
bilitate; and as a decision-making guide for intervention.

Several non-invasive BCI-based approaches are cur-
rently being studied to promote functional motor and 
cognitive recovery after stroke. A sensorimotor rhythms-
based BCI combined with realistic visual feedback of the 
upper limb supports hand motor imagery practice in sub-
acute stroke patients [14, 15]. Following a randomized 
control trial at the Santa Lucia Foundation in Rome on 
efficacy [16], this BCI-assisted rehabilitative intervention 
is being used in a rehabilitation ward for a large clinical 
trial. Trial goals are to determine duration and frequency 
of intervention, follow-up of clinical and neuroplastici-
ty-related benefit, and standardization of neurophysio-
logical intervention outcome measures. An ‘associative’ 
BCI for lower limb motor rehabilitation provides timely 
coupling between brain commands and afferent response 
signals through detection of movement-related cortical 
potentials (MRCP) combined with functional electri-
cal stimulation (FES) [17]. Clinical efficacy in a cohort 
of chronic stroke patients has been shown [18] and this 
BCI is now being tested in acute patients. Preliminary 
data also show promising results for cognitive (attention 
and memory function) rehabilitation assisted by BCI-
mediated neurofeedback in chronic and sub-acute stroke 
patients [19].

Group discussion produced priority directions for fur-
ther BCI development for stroke rehabilitation. Future 
efforts should not concentrate exclusively on either the 
development of more effective decoding algorithms or the 
integration of evidence-based clinical principles to har-
ness brain plasticity through task-dependent experience. 
A ‘hybrid’ approach pursued by multidisciplinary teams 
will best fulfill the complexity of the rehabilitation require-
ments. Further, the development of new algorithms to 
decode motor/cognitive ‘intentional’ signals should be 

University Hospital Liége is using fMRI, EMG, and 
EEG with auditory/vibro-tactile paradigms to assess DOC 
and LIS patients. The University of Ulster uses auditory 
guided motor imagery, having developed auditory feed-
back to improve accuracy [9]. The Oregon Health and 
Science University is running motor imagery BCIs with 
LIS patients to enable communication, and also devel-
oped a BCI-based screening test for vision. g.tec devel-
oped a system called mindBEAGLE that runs AEP-P300, 
VT-P300, and motor imagery based BCI paradigms for 
assessment and also for communication. The system is 
currently being tested at 10 sites with acute, sub-acute and 
chronic patients [10, 11]. Cliniques Center Hospitalier 
Universiteire Vaudois developed an AEP-based method to 
predict the outcome of acute TBI patients with above 80% 
accuracy [12] that is being evaluated with four partners 
in Switzerland. Massachusetts General Hospital is using 
AEP-P300, VT-P300 and motor imagery in acute-TBI 
patients in the intensive care unit to test if patients are 
able to understand conversations and to enable them to 
communicate. Fondazione Santa Lucia is using AEP-based 
paradigms to test MMN, P300, N400, and P600-based 
paradigms [13]. North Carolina State University is devel-
oping BCI algorithms for assessment and communication 
with DOC and LIS patients.

BCIs have the potential to provide an objective marker 
of whether DOC and LIS patients can perform certain 
experimental paradigms. If the BCI system gives 100% 
accuracy, then the patient both understood the instruc-
tions and performed the task correctly. Therefore, the 
patient is assumed to be able to follow conversations. 
However, if the accuracy is 0%, then the situation is not 
clear. The patient might not have understood the instruc-
tions, might have been unable to do the task or the BCI 
interpretation of the brain activity involved in the task 
may not be accurate. Repetition of the assessment pro-
vides insight into daily fluctuations or medication effects 
and helps to plan treatment or visiting schedules. The 
assessment also provides a first step to understanding 
whether patients will be able to communicate. A positive 
assessment leads to a next step in which a BCI can be 
used to answer Yes/No questions or as a spelling system.

Brain–computer interface based motor and 
cognitive rehabilitation after stroke

Organizer: Donatella Mattia
Presenters: Dr Donatella Mattia (Fondazione Santa 

Lucia); Dr Floriana Pichiorri (Fondazione Santa Lucia); 
Dr Natalie Mrachacz-Kersting (Aalborg University – 
AAU); Dr Sonja Kleih (University of Würzburg); and 
Andrea Kübler (University of Würzburg).
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restoration of normal brain function or a relocation of 
the functional control to undamaged areas of the brain.

UHT developed an ERD/ERS-based BMI system that 
triggers a real hand movement using an orthosis, and 
could show significant improvements in a group study 
[20] as further data is collected. FSL is using a virtual 
BCI-controlled avatar to provide visual feedback, and has 
shown improvements [16]. EPFL uses a BCI-FES device 
to produce motor movements [21]. g.tec uses a combina-
tion of a first-person view avatar with FES stimulation of 
the corresponding body parts (hand or leg) in a system 
called recoveriX [11]. UWM enables motor movement via 
a BCI-FES device and also triggers a tongue stimulator for 
enhanced feedback [22]. KU uses a BCI-robotic device 
to generate the movements and showed effectiveness in a 
group study [23]. AMU uses the BCI system for recovery 
after stroke, but also after neurosurgery in acute patients. 
AAU [18] showed improvement with an MRCP-based 
system with peripheral nerve stimulation.

Successful rehabilitation of chronic or sub-acute 
patients requires pairing attempted or imagined motor 
movement with feedback based on brain activity to form a 
closed-loop system. The usage of a virtual avatar activates 
the mirror neurons that are tightly coupled with the sen-
sorimotor cortex. The actuator produces limb movement 
which also activates proprioceptive feedback when the 
patient imagines or attempts the movement, which also 
activates the motor cortex. Finally, the BCI picks up all 
these changes in the EEG signal and triggers in real-time 
the next movement.

Further studies will show the degree and speed of 
motor improvements. Especially for acute patients, it is 
important to show that BCIs provide additional or faster 
improvement as compared to conventional therapies. 
BCIs also provide numeric feedback on accuracy that can 
be used to motivate and coach the patient.

Therapeutic applications of BCI technologies

Organizer: Dennis McFarland
Presenters: Dennis McFarland (National Center for 

Adaptive Neurotechnologies); Janis Daly (University of 
Florida); Chadwick Boulay (Ottawa Hospital Research 
Institute); Muhammad Parvaz (Icahn School of Medicine at 
Mount Sinai); and Michael Luhrs (Maastricht University).

BCI technology can restore communication and con-
trol to people who are severely paralyzed. There has been 
speculation that this technology might also be useful for 
a variety of diverse therapeutic applications [24]. This 
workshop considered possible ways that BCI technology 
can be applied to motor rehabilitation following stroke, 
Parkinson’s disease, and psychiatric disorders. These 

physiologically driven instead of data driven. This will 
enable incorporation of the growing knowledge on brain 
reorganization after stroke damage. Such development 
will synergistically advance neuroscience questions rele-
vant to translation of BCI into practice, such as identify-
ing determinants of response-to-treatment and tailoring/
shaping interventions according to patients’ clinical and 
neurophysiological characteristics.

Crucial questions affecting clinical use of successful 
BCI systems include the timing of intervention delivery, 
adaptability (without harm) to patient compliance, inte-
gration/interactions with conventional treatment, and 
intervention efficacy. The consensus was that individ-
ual sessions should be relatively short, with an intensive 
rehabilitation regimen preferred over long sessions. Future 
clinical trials should use individualized rehabilitative goals 
and establish sensitive efficacy metrics (e.g. minimally 
clinically relevant differences) instead of typical BCI per-
formance metrics.

BCIs for stroke rehabilitation

Organizer: Christoph Guger
Presenters: Christoph Guger (g.tec medical engineering 

GmbH); José del R. Millán (École polytechnique fédérale 
de Lausanne – EPFL); Donatella Mattia (Fondazione Santa 
Lucia – FSL); Junichi Ushiba (Keio University – KU); Surjo 
R. Soekadar (University Hospital Tübingen – UHT); Vivek 
Prabhakaran (University of Wisconsin-Madison – UWM); 
Natalie Mrachacz-Kersting (Aalborg University – AAU); 
and Kyousuke Kamada (Asahikawa Medical University –  
AMU).

Worldwide, stroke is the leading cause of long-term 
disability and 30–50% experience very limited recovery. 
In just the USA alone, there are 800,000 new stroke cases 
annually, and the numbers are increasing. This workshop 
featured presenters from eight worldwide institutions 
(acronyms in the presenter list above). All of them have 
either an international or national BCI-based stroke reha-
bilitation program.

Motor imagery-based BCIs are well suited for stroke 
rehabilitation because these systems are able to capture 
movement imagination or movement attempts and imme-
diately trigger a real movement via an actuator: functional 
electrical stimulation (FES), nerve stimulation, prosthetic 
device or exoskeleton). BCI systems for stroke rehabilita-
tion measure either the event-related desynchronization 
(ERD)/even-related synchronization (ERS) (EPFL, FSL, 
UHT, g.tec, UWM, KU, AMU) or use motor-related corti-
cal potentials (MRCP) (AAU). Closing the brain activity/
physical response loop through use of the BCI produces 
central nervous system (CNS) plasticity that leads to 
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There was a general consensus that it is not known at 
present what specific neural signals might be employed 
and how best to use these. This area is only just begin-
ning to be explored, and at this point it may be best for 
researchers to explore many different possibilities.

Clinical applications of brain–computer interfaces in 
neurorehabilitation

Organizers: An H. Do; Marc Slutzky; and Zoran Nenadic.
Presenters: An H. Do (University of California, Irvine); 
Marc Slutzky (Northwestern University); Surjo Soekadar 
(University Hospital Tübingen); Zoran Nenadic 
(University of California, Irvine); and Charles Liu 
(University of Southern California, Los Angeles).

A significant challenge for clinical neurorehabilitation 
of conditions such as stroke, spinal cord injury (SCI), and 
traumatic brain injury (TBI) is the lack of a satisfactory 
means to restore lost motor functions [25, 26]. New and 
effective techniques are needed to fill this gap and pro-
vide meaningful functional restoration to the affected 
patient population. BCIs have increasingly been stud-
ied as one such means. In particular, BCIs may serve as 
neuroprostheses to replace lost motor function in those 
with complete paralysis. Alternatively, BCIs may act as 
tools that facilitate neural repair mechanisms to improve 
residual motor functions in patients with partial paralysis. 
However, BCI systems are not yet used in mainstream 
rehabilitation. This workshop examined the means by 
which BCIs can eventually be deployed in clinical practice.

BCI-controlled neuroprostheses decode neural sig-
nals into control signals for external prosthetic devices 
(e.g. FES, robotic exoskeleton, etc.) [27–31]. Several BCI-
controlled neuroprosthetics for both upper and lower 
extremities have been developed using both invasive and 
non-invasive recording methods. Although there are pre-
clinical studies in humans and early phase clinical tri-
als of BCI-controlled neuroprosthetics, there are still no 
Phase III/pivotal trials for these systems to demonstrate 
safety, efficacy at reducing disability, and reliability. High 
system complexity and the potential need for human 
implantation present significant challenges to definitive 
large-scale clinical trials. Neurosurgeons specializing in 
neurorehabilitation and functional neurosurgery will be 
critical partners in the design, maturation, and clinical 
testing of such systems.

BCIs can also be used as tools to elicit neural repair 
mechanisms. The underlying biological mechanisms are 
still incompletely understood and are generally believed 
to center around Hebbian learning. For example, applying 
sensory feedback as a part of BCI operation can upregu-
late input into the post-stroke sensory and motor corti-
ces, and subsequently enhance motor cortex output [32]. 

diverse applications all share a reliance on state-of-the-
art neuroimaging and signal processing technologies. At 
the same time, each presents a series of unique challenges.

Dennis McFarland described several ways that BCI 
technologies have been used for development of therapeutic 
applications. These include the traditional neurofeedback 
paradigm, EEG-based imagery enhancement, closing the 
sensorimotor loop, training task preparation, and state-
dependent training. While several of these paradigms 
have been designed for rehabilitation of motor disorders, 
others, such as state-dependent training, potentially have 
broader application. Even for the well-characterized motor 
system, much remains to be learned about the role of its 
various parts in terms of the signals generated and their 
potential relevance for rehabilitation. At the same time, 
there is great potential for modifying the activity of brain 
regions that could result in therapeutic benefit, provided 
that we acquire the necessary knowledge.

Janis Daly described the process of rehabilitation of 
motor function post-stroke. She noted that methods that 
appear to work in some patients are ineffective in others, 
a phenomenon that requires explanation. This will require 
a better understanding of the brain signals we use and the 
nature of individual differences.

Chadwick Boulay described his research that shows 
how Parkinson’s patients undergoing deep brain stimu-
lation surgery can learn to control the amplitude of their 
subthalamic beta oscillations (a biomarker for disease 
severity) using a virtual reality BCI. He discussed how 
BCI technologies might be used to improve function in 
this group by down-conditioning pathological signals to 
induce adaptive plasticity in the underlying networks. It 
should not be taken for granted that the best signals to 
use in a therapeutic BCI are those with the strongest cor-
relation with disease state. Similarly, we should be careful 
not to choose signals simply because they enable accurate 
volitional control.

Muhammad Parvaz described the altered response 
to emotion-provoking stimuli that occurs in cocaine 
addiction. These individuals have a blunted reaction to 
normally positive stimuli and a reaction to cocaine stim-
uli which actually intensifies during the initial period of 
abstinence. He discussed how BCI technologies might be 
applied to facilitate addiction recovery. There is a criti-
cal need to compare the outcomes of this intervention 
with those from mainstream pharmacological and cog-
nitive-behavioral interventions to provide comparative 
metrics that will further guide evidence-based clinical 
decision-making.

Finally Michael Luhrs described how feedback during 
fMRI imaging can be used to alter the activity of well-
localized structures that may not be readily assessable to 
non-invasive electrophysiological recordings.
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humans confirmed that goal, trajectory, and hand shape 
information can be decoded during motor imagery [41, 
42]. Future participants will have arrays in both posterior 
parietal and motor cortex for direct comparison of the 
potentially complimentary contributions of the two areas.

Two primary methods of restoring limb function 
include reanimation of a person’s own arm through func-
tional electrical stimulation (FES), or replacement of arm 
function using a robotic prosthetic arm. Ultimately, peo-
ple with spinal cord injury would prefer to have function 
restored to their own limb [43]. However, for others, a 
prosthetic arm may be more appropriate. Robotic arms 
enable repeatable and reliable output, allowing develop-
ment to focus on the BCI. An intracortical BCI has ena-
bled an individual with tetraplegia to control a robotic arm 
in 10 simultaneous and continuous dimensions (including 
translation, orientation, and hand-shape) that led to sig-
nificant improvements in upper limb function [27, 38]]. 
Others have shown use of an intracortical BCI for tasks 
such as drinking from a cup lifted by a robotic arm [28].

Integration of BCI with FES has a number of challenges, 
including variable end effector dynamics that can be pos-
ture or time-dependent, particularly as muscles fatigue. 
Previous work has shown that intracortical BCI can enable 
control of a realistic, dynamic arm model [44], and also 
that single joint movements can be decoded from motor 
cortical activity [45]. In parallel, an implanted FES system 
for restoring hand and arm movement is in development 
[46, 47]. Preliminary results from an investigation of BCI 
control of implanted FES were also discussed.

Electrocorticography (ECoG) BCIs record neural 
activity from electrodes placed on the surface of the cor-
tex. ECoG has enabled classification of different hand pos-
tures [48, 49] and control of endpoint velocity [50] during 
real-time prosthetic control. Although ECoG provides less 
detailed information about movement than intracortical 
recordings, it may be more stable [51]; however, longer-
term studies are needed.

A number of challenges must be solved to move the 
technology forward. First, most BCIs lack somatosensory 
feedback, which will be essential for restoring natural 
upper limb function. Current clinical trials using intra-
cortical or mini-ECoG stimulation of the somatosen-
sory cortex suggest that sensations can be generated in 
hand-related areas and that stimulation parameters can 
modify the intensity of the sensation [52, 53]. Another 
challenge is developing decoding models that account for 
neural changes during object manipulation [38]. Object 
manipulation requires control of fingertip force in addi-
tion to the kinematic parameters typically decoded by the 
BCI. We also discussed the potential of computer vision 
or autonomous robotics to assist BCI users and improve 
performance [54, 55]. Many challenges remain in the 

Alternatively, Hebbian learning may also be elicited by 
simultaneously activating the primary motor cortex (via 
BCI control) and lower motor neurons (via functional 
electrical stimulation) [33, 34]. Some Phase I/II studies 
have demonstrated that BCI-based rehabilitation is poten-
tially safe and may be efficacious in reducing disability 
[33, 35].

Despite the potential for clinical application, the lack of 
definitive Phase III clinical trials confirming that BCIs are 
safe and effective at mitigating disability after neurological 
injury has prevented the use of BCIs in clinical neuro-
rehabilitation practice. Further, once successful Phase III 
trials have been completed, it will still be necessary to 
obtain regulatory approval. In addition, it will be critical to 
secure interest amongst physicians and patients, as well as 
the willingness of medical insurance payers to reimburse 
for their use. Without a reimbursement scheme, the 
likelihood that BCI systems will be adopted in clinical 
practice will be low.

BCI devices for inducing neural repair mechanisms 
and BCI-controlled neuroprostheses are not yet well 
defined, and work is needed to develop appropriate device 
designs and operating protocols for clinical deployment. 
Nevertheless, the BCI research community should con-
sider these clinical science gaps, as well as regulatory and 
commercialization challenges, while developing BCI sys-
tems. Incorporation of regulatory and deployment strate-
gies in long term BCI research plans will speed adoption 
into clinical practice.

Restoration of upper limb function through 
implanted brain–computer interfaces

Organizer: Jennifer Collinger
Presenters: A. Bolu Ajiboye (Case Western Reserve 
University, Louis Stokes Cleveland VA Medical Center); 
Richard Andersen (California Institute of Technology); 
Jennifer Collinger (University of Pittsburgh, VA Pittsburgh 
Healthcare System); Robert Gaunt (University of 
Pittsburgh); and Takufumi Yanagisawa (Osaka University 
Medical School).

This workshop brought together various research 
groups currently conducting clinical trials of implanted 
BCIs with the goal of restoring upper limb function 
lost after injury or disease. Most are operating under 
Investigational Device Exemptions (NCT00912041, 
NCT01849822, NCT01964261, NCT01364480, and 
NCT01894802). To date, most studies have used intracor-
tical microelectrodes implanted in motor cortex to extract 
velocity-based information to control computer cursors or 
robotic arms [27, 28, 36–38]. Posterior parietal cortex is an 
alternative cortical target that contains information about 
movement goals [39] and trajectories [40]. Recent work in 



10   J. E. HUGGINS ET AL.

neuroprostheses with SCI. The lessons from clinical work 
with neuroprosthetic users were of greatest interest. Most 
patients have a C4 or C5 level incomplete lesion, resulting 
in partly preserved arm motor functions. This points to 
the need for hybrid-BCI approaches to merge BCIs with 
traditional user interfaces. For half of the patients, func-
tional electrical stimulation does not activate the hand 
and arm muscles because of muscle denervation caused 
by damage of spinal cord motor neurons. Finally, the tech-
nical and neurophysiological concept of a neuroprosthesis 
with surface electrodes was introduced and a workshop 
participant volunteered to be involved in a nice demon-
stration of the neuroprosthesis showing two grasp pat-
terns, the palmar and lateral grasp respectively.

Future research will elaborate on the possibility of 
decoding intended complex movements of the whole 
arm and hand from non-invasive EEG. Studies already 
show that individual portions of complex movements 
can be decoded, e.g. the intention to move to a goal, the 
movement itself, or single grasps. The challenge will be 
combining these decoders and transitioning to attempted 
or imagined movement. Showing feasibility in individuals 
with SCI is another major challenge. The combined con-
troller could either operate an FES-based neuroprosthesis 
or a robotic arm, depending on the degree of lower motor 
neuron damage and the capabilities of future FES-systems.

BCI research and development for children

Organizer: Disha Gupta
Presenters: Disha Gupta (Burke Medical Research 
Institute/Weill Cornell Medical College); Patricia 
Davies (Colorado State University); William Gavin 
(Colorado State University); Scott Makeig (Swartz 
Center for Cognitive Neurosiene, UCSD); Walid Soussou 
(Wearable Sensing LLC); and Jewel Crasta (Colorado State 
University).

Established BCI applications largely focus on neuro-
logical disorders [72, 73], traumatic brain injuries [74], 
or strokes [35, 75, 76] in adults. Emerging applications 
generally engage healthy adults to showcase working BCI 
systems [75, 77, 78]. The focus on adults is natural because 
of their well-characterized EEG and the relative simplicity 
of acquiring robust data from them. However, BCIs may 
also be useful for children – for treating neurodevelop-
mental disorders (e.g. autism, attention deficit hyperactiv-
ity disorder [ADHD]), neurodegenerative disorders (e.g. 
spinal muscular atrophy [SMA]) or orthopedic injuries 
given limited alternative avenues for therapeutic interven-
tion. BCI-based replacement or enhancement of impaired 
function has the possibility to improve the quality of life of 
these children and even to prevent the progression of the 
disorder. Indeed, BCI has been shown to be effective as a 

transition of such implanted BCI technology out of the 
laboratory and into the homes of patients.

Non-invasive BCI-control of FES for grasp 
restoration in high spinal cord injured humans

Organizers: Gernot Müller-Putz and Rüdiger Rupp.
Presenters: Gernot Müller-Putz (Graz University 
of Technology); Joana Pereira (Graz University  
of Technology); Patrick Ofner (Graz University of 
Technology); Andreas Schwarz (Graz University of 
Technology); Rüdiger Rupp (University Hospital in 
Heidelberg);and Matthias Schneiders (University Hospital 
in Heidelberg).

The bilateral loss of hand-grasp function associated 
with a complete or nearly complete lesion of the cervi-
cal spinal cord severely limits an individual’s ability to 
live independently and retain gainful employment. Any 
functional improvement is highly desirable not only 
from the patient’s viewpoint, but also economically. 
Neuroprostheses for motor function based on Functional 
Electrical Stimulation (FES) provide a non-invasive option 
for improvement of upper extremity function [56]. In par-
ticular, hybrid-FES systems consisting of FES and active 
orthotic components are effective in restoration of every-
day manipulation capabilities [57].

EEG-based BCIs offer a valuable component of a neu-
roprosthetic user interface with the major advantage of 
operation independent from residual motor functions. 
Further, motor imagery (MI)-based BCIs have enormous 
implications for providing natural control of a grasping 
and reaching neuroprosthesis, especially for individuals 
with high spinal cord injury (SCI), by using volitional sig-
nals from brain areas directly involved in upper extremity 
movements.

The workshop first summarized the state of the art 
in non-invasive grasp neuroprosthesis and hybrid BCI  
[58–60]. Subsequently, the current possibilities of non-in-
vasive BCI-controlled neuroprostheses were presented 
[61–65], with an emphasis on application for everyday 
activities in individuals with high SCI [66, 67]. Many 
motor imageries currently used for BCI control are 
unintuitive and therefore impractical for real-life appli-
cations. A major workshop focus was therefore the iden-
tification of more realistic control commands. Research 
results on this topic were presented, and we discussed 
neural correlates behind goal-directed movements [68], 
recent progress in non-invasive movement decoding  
[69, 70], and time domain classification of different reach 
and grasp movements [71]. The workshop then covered 
the steps necessary for successful neuroprosthetics use, 
including the characteristics of the neurological status 
of the innervation of muscles of potential end users of 
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create artifacts. Although often not available for 
pediatric head sizes, dry, active, and/or wireless 
headsets [98–100] could mitigate some of these 
obstacles, and may be more robust to movement 
and electrical artifacts [101]. Software could also 
provide real-time artifact rejection and subspace 
decomposition [102–104].

In summary, the challenges of BCI use are increased 
for younger children, especially those with brain injury or 
neurodevelopmental disorders. Pediatric BCI applications 
cannot be direct translations of adult studies, and can only 
achieve success with active and collaborative attention to 
the above challenges. Scientific and funding communities 
should nurture pediatric BCI R&D in parallel with adult 
applications.

Passive BCI and neuroadaptive technologies

Organizer: Thorsten O. Zander
Presenters: Patrick Britz (Brain Products GmbH); Martijn 
Schreuder (ANT Neuro); Mike Chi (Cognionics); Laurens 
R. Krol (Technische Universität Berlin); Lena Andreessen 
(Technische Universität Berlin); and Thorsten O. Zander 
(Technische Universität Berlin).

Today’s interaction with technology is asymmetri-
cal in the sense that (1) the operator has access to any 
and all details concerning the machine’s internal state, 
while the machine only has access to the few commands 
explicitly communicated to it by the human, and (2) while 
the human user is capable of dealing with and working 
around errors and inconsistencies in the communication, 
the machine’s flexibility in that regard is still very limited 
[105]. With increasingly powerful machines, this asym-
metry has grown and is still growing, but our interaction 
techniques have remained the same. This presents a clear 
communication bottleneck: users must still translate their 
high-level concepts into machine‐mandated sequences 
of explicit commands, and only then does a machine act 
[106].

However, during such asymmetrical interaction, the 
human brain is continuously and automatically processing 
information concerning its internal and external context, 
including the environment and ongoing events. Passive 
BCIs can access the information in this brain activity in 
real time so that the machine can interpret it and thus gen-
erate a model of its operator’s cognition [107, 108]. This 
model can serve as a predictor to estimate the operator’s 
intentions, situational interpretations, and cognitive state, 
e.g. emotions, enabling the machine to adapt to them, 
essentially responding to the user without having received 
any form of explicit communication. Such adaptations can 
even replace standard input entirely [109].

potential treatment in ADHD [79]. However, translating 
adult BCI applications to pediatric applications [80] is 
not straightforward, especially in neurologically impaired 
groups, with challenges characteristic to pediatric neu-
rophysiology research. Workshop discussion focused on 
defining and addressing challenges to effective and suc-
cessful pediatric BCI applications.

•  Brain reorganization: The ongoing development 
[81, 82] of a child’s brain makes it more likely to 
undergo extensive brain circuit reorganization 
depending on timing and location of brain injury 
[83–85].

•  EEG signals: Injury may produce spatially and/or 
spectrally atypical evoked responses and oscillatory 
data features, with limited age-specific normative 
EEG data available. Neurodevelopmental conse-
quences of injury may arrest, delay, or eliminate 
specific EEG features [86–89], with heterogeneous 
effects [90–92].

•  Source localization: Subspace-decomposition and 
source-localization methods could be valuable tools 
for objectively reducing data dimension, augment-
ing signal-to-noise ratio, reducing spatial overlaps, 
and identifying weak and atypical features [93, 94]. 
Age-specific generic head-models, perhaps from 
the NIH pediatric MRI initiative [95, 96], could be 
useful. Subject-specific head-models could increase 
accuracy and information value, but also pose chal-
lenges to combining data across children.

•  Experimental paradigms: Obtaining responses 
time-locked to stimuli can be challenging in 
younger children with cognitive and behavioral dis-
orders. Passive ERP paradigms and advanced sig-
nal processing methods will be required to achieve 
maximum efficacy. Communicating experimental 
paradigm requirements and behavioral expecta-
tions to children with specific impairment/age/
cognitive abilities may be difficult or impossible. 
Engaging children’s attention may require pack-
aging cue, stimulus, and feedback presentations 
within a game with rewards designed to maintain 
focus. In children, EEG features can also be affected 
by the modality and nature of the stimulus, the 
child’s psychological and physiological state at the 
time of testing, and individual developmental dif-
ferences in cortical maturation, as per the additive 
model [97].

•  EEG acquisition: For these children, high-density, 
wet, wired EEG systems involving long training 
sessions are not ideal. Sensory sensitivities to gel, 
abrasion, and headgear may require extensive 
desensitization. Wires may pose risk of injury and 
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Tim Mullen (QUSP Lab); Grace Leslie (MIT Media Lab); 
Jose Contreras-Vidal (University of Houston); Angela 
Riccio (Fondazione Santa Lucia); Chang S. Nam (North 
Carolina State University); and Anton Nijholt (University 
of Twente).

Artists have been using BCIs for artistic expression 
since the 1960s [110]. Both interest and opportunities to 
explore BCI creativity are now increasing because of the 
availability of affordable BCI devices and software that 
eliminates the need to invest extensive time in getting the 
BCI to work or tuning it to their application. Designers 
of artistic BCIs are often ahead of more traditional BCI 
researchers in ideas on using BCI in multimodal and  
multiparty contexts, where multiple users are involved, 
and where robustness and efficiency are not the main 
matters of concern.

This workshop was intended for BCI researchers who 
are interested in non-clinical BCI applications, in particu-
lar applications that invite users to play and to be creative 
with a BCI. The workshop addressed an audience that 
is interested in research to investigate non-traditional, 
challenging, and entertaining interactions and in research 
on using BCI as a channel that allows artistic expression 
of creativity, moods, and emotions. This workshop pre-
sented current (research) activities in BCIs for artistic 
expression and identified research areas of interest for 
both BCI researchers and artists/designers of BCI appli-
cations. The workshop originated from a special issue of 
the journal Brain–Computer Interfaces devoted to ‘Arts 
and Brain–Computer Interfaces’ [111]. Both the special 
issue and this workshop highlighted that users of artis-
tic BCI technology can be the artists who compose art 
in real time using BCI signals, performers, audience 
members or even full audiences using BCI technology 
together. Often this is done in a multimedia, multimodal 
and multi-brain context [112, 113]. Current artistic BCI 
environments allow users to play with and modify ani-
mations and musifications, and there are examples of BCI 
control of instruments and tools for artistic expression 
and exploration [114].

The workshop included short talks, a perfor-
mance, questions and answers, and general discussion. 
Presentations described providing ALS patients with 
painting tools for home use [115], an initiative to organize 
a design competition, and a neuro-catwalk fashion show 
displaying designs of attractive and artistically satisfying 
BCI headsets. Research was presented on what goes on in 
the brain of a juggler and whether that information can be 
visualized or sonified to make a performance even more 
attractive [116]. What goes on in the brains of readers of 
fiction? Can we distinguish between reading ‘neutral’ texts 
versus reading ‘emotional’ texts [117]? Interactive fiction 
where a reader’s emotional state is used to select the next 

This neuroadaptive technology is specifically relevant 
to auto‐adaptive experimental designs, but also opens up 
paradigm-shifting possibilities for technology in general, 
addressing the issue of asymmetry in human–technology 
interactions and relieving the above‐mentioned commu-
nication bottleneck.

In a moderated discussion, workshop participants 
from academia and industry reflected on how and where 
this technology could and should be applied. In particu-
lar, since neuroadaptive technology promises to support 
general human–technology interaction, the discussion 
focused on applications of general interest. Applications 
suggested included adaptive learning environments, audio 
and video tagging, and adaptive automation. Emotion 
detection could provide a particularly powerful basis for 
neuroadaptivity: systems with real-time access to what 
the user experiences positively or negatively can use that 
information to, for example, learn what makes the inter-
action more enjoyable, and adapt accordingly.

Common obstacles for general-purpose BCI and thus 
general-purpose neuroadaptive technology, are hard-
ware limitations and the need for calibration. Larger 
amounts of cross-context data may help in finding ways 
to reduce calibration times, perhaps even to zero. Because 
of this, and also to stimulate the work in this young field, 
workshop participants agreed that data and algorithm 
repositories are part of the way forward. Several such 
repositories already exist, including one at http://www.
bnci-horizon-2020.eu and one hosted by the Community 
for Passive BCI Research (http://www.passivebci.org), 
which includes both a repository, as well as a communi-
cation platform for researchers to exchange experiences.

Furthermore, given the likely presence of i.a. muscle 
activity and external noise sources during non-experi-
mental BCI use, it is all the more important to make exist-
ing BCI models robust against such non-brain influences, 
and to validate them neuroscientifically. We should link 
the correlated cognitive processes identified by the model 
to known neuroscientific findings. Such approaches may 
also provide new (e.g. interaction-related) neuroscientific 
findings themselves.

Finally, it was noted that ethical questions must also 
be considered: what are the ethical consequences of the 
generation and storage of short- and long-term cognitive 
and emotional user models?

BCIs for artistic expression

Organizers: Anton Nijholt and Chang S. Nam.
Presenters: Femke Nijboer (Leiden University); Loic 
Botrel (University of Wuerzburg); Vojkan Mihajlovic 
(Holst Center /imec, Wearable Health Solutions); Anne-
Marie Brouwer (TNO Behavioral and Societal Sciences); 

http://www.bnci-horizon-2020.eu
http://www.bnci-horizon-2020.eu
http://www.passivebci.org
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cognitive learning, including adaptation, exploration, 
rapid re-learning, interference, and skill learning [120]. 
In this workshop, we discussed insights into the neural 
mechanisms of learning that arise from BCI control.

Monkeys can rapidly learn to control the activity of 
a small group of neurons. In one study [121], up to four 
neurons were selected to control the vertical position of a 
cursor on a computer screen. Remarkably, monkeys could 
rapidly find ways to co-modulate the neurons whether or 
not the neurons had similar or different ‘preferred direc-
tion’ tuning, and whether or not they were situated near 
each other within the motor cortex. In a more recent study 
[122], a monkey learned to use 16 arbitrarily selected neu-
rons to control four different grasp shapes of a virtual 
hand. To some extent, monkeys thus can learn to combine 
the activity of arbitrarily selected motor cortex neurons 
for BCI control.

Some new BCIs can be learned more rapidly than  
others [123]. The key difference is whether good control 
of the BCI requires the monkey to exhibit new patterns 
of neural activity (these are learned slowly) or whether 
the animal can control the BCI simply be re-using pre- 
existing patterns of neural activity in new ways (these can 
be learned more rapidly.)

In now-classic studies of BCI learning [124, 125], it 
was found that animals can learn to control arbitrary BCI 
mappings. A closer analysis of those data is revealing the 
neural strategies at play during BCI learning. Initially, ani-
mals modulate the activity of individual neurons inde-
pendently while they search for neural activity patterns 
that provide them with good control of the BCI. As skill 
develops, further refinement involves the coordinated 
modulation of the components of neural activity that are 
shared among many neurons.

Rodents that engage in BCI learning will ‘replay’ the 
newly learned neural activity patterns while they sleep 
[126]. This replay occurs during the slow-wave portion of 
sleep, and it is highly predictive of learning, in that when 
it occurs, the animal is more likely to improve its task 
performance the following day.

In new studies by Ben Engelhard, Elion Vaadia, and 
their colleagues, they showed that when animals learned 
to modulate the activity of a single neuron, there were 
changes both in the activity of other neurons, and in the 
interactions among pairs of neurons, even though those 
changes were not required for the learned behavior. These 
effects were well-explained by a neural network model in 
which plasticity is modulated by a global reward signal.

Taken together, these four examples show that by 
recording the activity of populations of individual neu-
rons, and providing ‘neurofeedback’ via a BCI paradigm, 
we are beginning to see the neural population changes 
that underlie learning.

episode in a narrative is one of the possible application 
areas.

Another presentation reported on the emotional and 
esthetic processes produced in the brain while observing, 
experiencing, and producing art. Many examples, often 
taken from the annual Mozart & the Mind festival in San 
Diego, were presented in which musicians and researchers 
from cognitive neuroscience and neurotechnology team 
up to create BCI music performances [118]. Workshop 
participants also experienced a music improvisation by 
Grace Leslie incorporating flute, electronics, and brain 
activity, introducing and illustrating her concept of ‘intro-
spective expression’ (e.g. http://www.graceleslie.com/
Vessels).

The role of intention and the role of control during 
artistic expression using BCI [119] emerged as an area 
for future discussion. Can lack of robustness and the pres-
ence of artifacts play a positive role in creation, perfor-
mance and experience of an artistic BCI? Should BCI be 
considered as a tool, similar to a paintbrush, or can it be 
used to create new forms of artistic expression? Further 
investigations of such questions are included in plans for 
a follow-up workshop on ‘BCIs for Artistic Expression’ at 
the 7th BCI Meeting.

Studying learning with BCIs

Organizers: Aaron Batista; Steven Chase; Jose Carmena; 
and Byron Yu.
Presenters: Marc Scheiber (University of Rochester); Ben 
Engelhard (Hebrew University and Princeton University); 
Aaron Batista (University of Pittsburgh); Karunesh 
Ganguly (University of California San Francisco); and 
Vivek Athalye (University of California, Berkeley and 
Champalimaud Institute).

The neural mechanisms whereby we gain new knowl-
edge and expertise are still largely unknown. We particu-
larly lack information about how synaptic plasticity can 
lead to new patterns of activity among a network of neu-
rons that control behavior. BCIs offer distinct advantages 
for studying the neural basis of learning. In a BCI, we 
record directly from all the neurons that impact behavior 
(that is, the movement of a computer cursor or a robotic 
device), and we can trigger learning simply by provid-
ing animals with novel mappings from neural activity to 
behavior. Learning is a widespread neural phenomenon, 
affecting many brain areas and pathways. Current tech-
nologies do not allow us to directly monitor all learn-
ing-related changes, but using the BCI approach, the 
effects of those changes must be observed in the activity 
of the neurons that we record because only those neu-
rons impact behavior. Thus, a BCI can provide new insight 
into the neural basis of classical phenomena in motor and 

http://www.graceleslie.com/Vessels
http://www.graceleslie.com/Vessels


14   J. E. HUGGINS ET AL.

[140]. Alternatively, they have been recently used as a way 
of teaching different devices how to solve motor tasks via 
reinforcement learning algorithms [141, 142].

Asynchronous signals during motor planning are 
another option. Neural activity preceding actions in motor 
tasks predicts the onset of self-paced movements [143, 
144]. For example, it can provide a more natural control 
of neuroprostheses by providing a quicker response to 
the user’s desire to move. In a different scenario, these 
cognitive processes can also be exploited in applications 
for able-bodied users such as improved response time for 
self-paced decisions of braking and steering during car 
driving [144].

Implanted BCIs can also exploit cognitive processes, 
such as neural spiking activity that encodes high-level 
information to improve interaction. In particular, several 
studies have demonstrated how the parietal cortex not 
only decodes the motor imagery of body limbs [145], but 
also goal locations [146] or hand shape representation (i.e. 
grasping types) [42].

Decoding speech processes using intracranial 
signals

Organizer: Christian Herff
Presenters: Tanja Schultz (University of Bremen); Dean 

Krusienski (Old Dominion University); Jon Brumberg 
(University of Kansas); Emily Mugler (Northwestern 
University); David Conant (University of California, 
San Francisco); James O’Sullivan (Columbia University); 
Zac Freudenburg (University Medical Center Utrech); 
Christian Herff (University of Bremen); and Stéphanie 
Martin (EPFL).

Speech provides a natural and fast means of commu-
nication that is mostly unharnessed by current BCIs. 
As a communication method, direct decoding of brain 
activity related to intended speech would be a massive 
breakthrough for BCI research. Advantages of intracranial 
recordings over scalp recordings include high spatial and 
temporal resolution recordings of cortical activity dur-
ing the speech process without contamination by motion 
artifacts. This enables in-depth analysis of the complex 
dynamics of speech processes. High-gamma activity, 
which can be reliably measured by intracranial recordings, 
provides localized information about cognitive processes 
[147], including speech production and perception [148].

This workshop presented the current state-of-the-art 
in decoding of speech processes in intracranial signals. 
Using regularized Linear Discriminant Analysis seg-
mental features can be classified with high accuracies in 
overtly produced continuous speech [149]. Analyzing 
the utilized classification models enables the investiga-
tion of the spatial topography and temporal dynamics for 

Advancing BCI research through specific signals 
or technology

Exploiting cognitive processes for brain–machine 
interaction

Organizers: Iñaki Iturrate (École polytechnique fédérale 
de Lausanne – EPFL) and Ricardo Chavarriaga (EPFL).
Presenters: Benjamin Blankertz (Technische 
Universität Berlin); José del R. Millán (EPFL); and Richard 
Andersen (California Institute of Technology).

BCIs often rely on neural correlates of motor processes 
for the direct control of external devices. These systems, 
however, can also rely on other cognitive processes natu-
rally elicited during the interaction with the device such 
as attentional processes [127], conscious processing [128] 
and mental workloads [129].

These signals are linked to the task being executed, and 
thus provide a natural way of boosting the interaction with 
the machine [130]. Furthermore, they may also increase 
the user’s sense of embodiment with the machine; that 
is, their sense that the BCI is an extension of their own 
body [130]. In the field of human–machine interaction, 
this embodied interaction has been shown to decrease the 
task workload while simultaneously increasing the user’s 
acceptance of the system [130]. Furthermore, the decoding 
of these signals can provide high-level information crucial 
to solving the task in a more efficient way, assuming the 
low-level execution of the task is dealt with by the device. 
Like embodied interaction, this concept of shared-con-
trol strategies [131] has been shown to decrease the task 
workload by relieving users of the effort of dealing with 
low-level planning.

A classic example of a cognitive signal is the P3 compo-
nent of event-related potentials (ERP). Since its advent as 
an interaction signal in the late 1980s [132], recent works 
have pushed forward its use under more complex cognitive 
tasks. Rapid serial visual presentation (RSVP) is one such 
example, where several images (both distractors and tar-
gets) are sequentially shown in a central location to avoid 
gaze shifts [133]. Recently, P3 signals have also been corre-
lated with different levels of cognitive processing [134] and 
the successful detection of such levels in single trials opens 
the door for BCIs for out-of-the-lab applications [134].

Another promising ERP-like cognitive process for BCIs 
is that of error processing [135]. Error-related signals are 
evoked after the device executes incorrect commands, and 
recent studies have shown how they can be decoded in 
single trials [136, 137]. Furthermore, they are present in 
a wide range of contexts and seem to share a common 
neural generator, despite their variability across different 
tasks [138]. A natural way of including these signals, also 
termed error-related potentials [139], is that of using them 
as a way of canceling incorrect selections made by the BCI 
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Novel application fields for auditory BCIs

Organizers: Michael Tangermann and Martin G. Bleichner.
Presenters: Michael Tangermann (Universität 

Freiburg); Martin G. Bleichner (Universität Oldenburg); 
Disha Gupta (BURKE Rehabilitation & Research, USA); 
and and Benjamin Blankertz (TU Berlin).

Real-time decoding of brain signals is one of the 
strengths of BCI systems. Auditory BCIs can not only 
establish communication and control for patients [159], 
but also support basic research on auditory perception and 
auditory processing. Thus, auditory BCIs can be valuable 
tools to investigate spatial and temporal auditory atten-
tion, music-, word-, and language-processing. Further, 
auditory BCIs can serve as a building block for novel 
developments in hearing aids or for cognitive training 
and rehabilitation for an aging society.

Most workshop participants stated a background in 
basic BCI research (47%) while the other participants had 
either a clinical background, worked in industry/R&D or 
in neuroscience research. The purpose of the workshop 
was to discuss opportunities and challenges of novel appli-
cations for auditory BCIs.

The two most widely used auditory BCI experimen-
tal paradigms are steady-state auditory evoked potential, 
SSAEP [160], and auditory event-related potentials par-
adigms, aERP [161, 162], and both paradigms benefit 
when spatial auditory attention is utilized. Brain signals 
collected under these paradigms can be decoded through 
standard machine learning approaches for oscillatory 
[163] and ERP signals [164]. Auditory BCIs support a 
variety of applications beyond communication and con-
trol of devices.

Auditory BCIs can serve as a building block for enhanc-
ing the spatial selectivity of hearing devices to identify 
the audio target of interest to the hearer [158, 165] and 
selectively amplify those signals. This novel research 
field builds upon new developments in (mobile) ear EEG 
recordings [166, 167], which allow for single trial decod-
ing of spatial attention with a small number of electrodes 
that are located at or around the ear. Dr Gupta has a novel 
clinical research application using auditory BCI with ear 
EEG as a tool for cognitive assessment and rehabilitation 
of autistic children. In-ear EEG is used here as an undis-
turbing way to record EEG in children to increase their 
compliance. Auditory BCIs have recently been proposed 
as a tool to support the rehabilitation of language deficits 
after stroke [168]. For aphasic stroke patients, a spatial 
auditory BCI [169] can help patients overcome naming 
deficits. Auditory BCIs can also bridge between BCI and 
music research, as they enable a continuous analysis of 

the manner and place of phoneme production. Another 
study demonstrated that these articulatory gestures are 
insensitive to within-word context [150], while the clas-
sification of phonemes is influenced by co-articulation. 
Despite the influence of within-word context, consonant 
phonemes can still be decoded from electrocorticographic 
(ECoG) activity with accuracies up to 36% (chance level 
7.4%) [151]. To investigate speech production further, 
another group recorded ECoG activity in parallel with 
videos of the mouth and ultrasound imaging of the tongue 
[152]. After extracting parameterized features such as lip 
opening and the position of specific points on the tongue 
surface, a direct mapping between motor cortex activ-
ity measured with ECoG and articulator movement was 
calculated. Besides articulator control, it was also shown 
that the duration of words strongly influenced the high 
gamma response in ECoG recordings [153]. This finding 
emphasizes the importance of equal word lengths for com-
parisons and classification studies. Another study showed 
that automatic speech recognition technology [154] can 
decode ECoG activity during continuous speech into a 
textual representation [155]. The generative models used 
in this approach are also useful to investigate spatio-tem-
poral regions of high discriminability between different 
phonemes. This decoding is not entirely based on the 
speech perception of one’s own voice. Neural activity 
only from temporal offsets prior to phone voicing and 
thus associated with speech planning and production 
yielded phoneme accuracies up to 40% (chance level 6%). 
Reinforcing these findings that speech perception might 
not be necessary for decoding of speech, another study 
showed that the spectral dynamics of imagined speech can 
be reconstructed from ECoG activity [156]. Additionally, 
discrimination between imagined word-pairs during 
speech imagery was presented [157].

In addition to interpretation of speech production, 
ECoG also enables in-depth analysis of speech percep-
tion. A study investigating the cocktail-party phenome-
non [158] showed that deep-neural networks can decode 
the attended speaker in a multi-speaker listening task. 
This finding has direct applications in hearing-aids, which 
could then amplify only the attended speaker instead of 
the entire acoustic scene.

In conclusion, it was shown that intracranial signals are 
ideally suited for the investigation of speech processes and 
might therefore be a promising new direction to restore 
communication. In the following vivid discussion, the 
group decided to establish a mailing list to foster future 
collaboration and the exchange of findings, experiments, 
and data. Participation is invited on https://mailman.zfn.
uni-bremen.de/cgibin/mailman/listinfo/neurospeech.

https://mailman.zfn.uni-bremen.de/cgibin/mailman/listinfo/neurospeech.
https://mailman.zfn.uni-bremen.de/cgibin/mailman/listinfo/neurospeech.
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control has been achieved with promising performance 
levels (85% and 75% correct hits respectively). Further, 
a 64-channel BCI implant for patients with tetraplegia 
(‘WIMAGINE, [178]) will soon be ready for testing. This 
system, consisting of ECoG electrodes on the body of a 
transcranial device with epidural recording and wireless 
transfer capabilities, allows for continuous processing of 
brain signals, and is intended for control of an exoskeleton.

Overall, decoding limb trajectories and discrete ges-
tures using HFB signals and various electrode grid 
configurations from sensorimotor cortex yielded quite 
promising results. However, decoding ECoG for detailed 
hand or limb movements is not yet at a level that is needed 
for safe robotic arm control. Decoding sign language for 
communication may be feasible sooner (now at 75% cor-
rect classification of four gestures). Extensive discussions 
addressed the challenges lying ahead, which include (1) 
determination of the optimal electrode configuration and 
placement (only one third of cortical gray matter is acces-
sible at the surface), (2) improving decoding to a level 
minimally required for real BCI robotic arm control, and 
(3) the hardware required to handle large numbers of elec-
trodes and high-volume data flows. In addition, a barely 
touched upon critical issue is the performance of ECoG 
BCI when the user is not deliberately generating control 
signals. Preventing high rates of false positive detections, 
which would render an ECoG BCI implant almost useless, 
may prove to be a highly challenging endeavor. Progress 
is further expected with research on microwire grids, net-
work dynamics within and across regions (an advantage of 
ECoG over micro arrays), and better understanding of the 
exact nature of cortical movement representation in terms 
of biomechanics and sensorimotor integration, resulting 
in neurobiologically informed (constrained) decoding 
possibilities. Moreover, it is expected that inducing adap-
tive processes to sharpen the brain response (plasticity) 
will result in elevated system performance.

Understanding state change and its impact on BCI 
performance

Organizers: Brent Lance and Tzyy-Ping Jung.
Presenters: Brent Lance (US Army Research Laboratory); 
Li-Wei Ko (National Chiao-Tung University); Avinash 
Singh (National Chiao-Tung University); Yufei Huang 
(University of Texas, San Antonio); Dongrui Wu 
(DataNova, LLC); Vernon Lawhern (US Army Research 
Laboratory); and Tzyy-Ping Jung (University of California, 
San Diego).

The performance of BCI classification algorithms is 
strongly affected by variations in neural signals driven 
by changes in the state of the individual using the BCI. 
As a result, BCI performance tends to be highly variable 

the brain activity associated with the temporal dynam-
ics of music processing by individual human listeners 
[170–172].

The discussions among participants identified several 
challenges to be resolved to push auditory BCIs forward. 
General improvements in classification performance and 
paradigm effectiveness are desirable. These improvements 
would be facilitated by a better understanding of the 
neurophysiological basis of those processes exploited by 
auditory BCIs. Additionally, improvement of the clinical 
relevance and the reliability of auditory BCI systems will 
eventually be important problems, although other chal-
lenges must be overcome before they can be considered 
to be of the highest priority.

Overall, auditory BCIs are perceived as a rapidly grow-
ing research area within the field of BCI, not only for tradi-
tional communication applications, but with varied novel 
clinical and non-clinical application areas on the horizon.

ECoG decoding for BCI

Organizer: Nick Ramsey
Presenters: Nathan Crone (Johns Hopkins University); 
Mariana Branco (University Medical Center Utrecht); 
Alan Degenhart (University of Pittsburgh); and Tetiana 
Aksenova (Atomic Energy and Alternative Energies 
Commission).

In recent years, cortical surface electrodes, electrocorti-
cogram (ECoG), have become of great interest for BCI as 
an approach to provide permanent implantable electrodes 
for BCI. ECoG signals are being studied both from human 
participants (patients with epilepsy or paralysis) and some 
non-human participants.

Decoding hand movements requires adequate coverage 
of relevant cortex (M1 and/or S1 hand region) in terms of 
topography and electrode density. All the presented stud-
ies utilized the high frequency broadband (HFB) power 
as the most informative feature in ECoG signals [173] for 
extracting brain function. HFB from multiple electrodes 
enables decoding of individual finger movements for con-
tinuous movements of a robotic arm [50, 174, 175]. HFB 
can also enable decoding of discrete movements such as 
alphabet sign language gestures with a goal of developing a 
BCI for communication [176]. Moreover, gestures as well 
as hand trajectories can be decoded equally well from S1 
and M1, which suggests that even when M1 is affected by 
pathology (e.g. stroke), S1 may still provide a source of 
control signals for BCI decoding.

Research in people with paralysis [50] yields similar 
results to research with epilepsy patients, indicating the 
validity of BCI development studies in people with epi-
lepsy. In three paralyzed patients implanted with ECoG 
grids for a maximum of 30 days [177], 2-D and 3-D cursor 
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state change may provide a good starting point for iden-
tifying potential hypotheses and experimental confounds 
for studying naturally occurring state change.

In conclusion, it may be possible to increase the robust-
ness of BCIs during long-term usage through improved 
understanding of the variability of BCI-relevant neural 
signals over time and through improved BCI algorithms 
that are robust to that variability.

Improving BCI usability through transfer learning 
methods

Organizers: Michael Tangermann and Pieter-Jan 
Kindermans.
Presenters: Michael Tangermann (University of Freiburg); 
Pieter-Jan Kindermans (Technical University of Berlin); 
Hiroshi Morioka (Technical University of Berlin); and 
Alexandre Barachant (Burke Medical Research Institute).

Originating from the field of machine learning, the 
transfer learning (TL) concept [192] has recently been 
adopted by the field of BCI. The goal of transfer learning 
is to share information across related tasks. In the field 
of BCI, it typically describes the transfer of information 
either between sessions with the same user (session-to-ses-
sion TL), between different users (subject-to-subject TL), 
or between similar BCI tasks.

Transfer learning can (1) reduce the calibration time of 
an online BCI, (2) improve overall classification perfor-
mance, and (3) provide information to better understand 
the underlying data, the learning problem and the struc-
ture of the feature space (although this third application 
has not yet truly been utilized).

These three goals are linked by the question: ‘What 
exactly can successfully be transferred between users 
or sessions?’ The spectrum of transferable knowledge is 
rather wide. It ranges from traditional knowledge (exper-
imental design, parameters, and protocols), over machine 
learning knowledge (hyperparameters of machine learn-
ing methods and trained ML decoders), to the transfer of 
features or even raw data. Most TL discussions focus on 
transfer of machine learning knowledge, but the advent of 
deep learning and bigger data sets in BCI may soon make 
the sharing of raw data beneficial for our community.

Most workshop attendees had a background in machine 
learning. They met to (1) assess the state of the art in TL 
for BCI, (2) categorize existing TL approaches into a sys-
tematic framework, (3) discuss which TL approaches may 
be most appropriate for the specific BCI application the 
attendees work on, and (4) identify current bottlenecks 
preventing a wider application of TL concepts to BCI. 
Inspired by two overview presentations discussing the 
most common and best performing TL methods in BCI 
[193–196]; and two presentations on novel TL approaches 

from session-to-session, drastically limiting the utility 
and acceptance of BCIs in both medical and non-med-
ical domains.

This problem is compounded by a lack of appropriate 
data from subjects using BCIs over long periods. While 
there have been a few studies looking at the variabil-
ity of P300 ERPs over extended time frames [179], the 
long-term within-individual variability in many neural 
signals relevant to BCIs is unknown, as is how that vari-
ability affects BCI performance. The US Army Research 
Laboratory (ARL) is collecting long-term BCI data in 
collaboration with several universities and startups by 
developing a video game with embedded BCI paradigms 
[180]. These BCI paradigms will use a free-to-play-based 
model, where players are provided in-game rewards for 
attempting to use the BCIs. The project goal is to obtain 
200 hours of neural game-playing data over six months 
from each of 30 subjects. Another long-term BCI pilot 
study from National Chiao Tung University (NCTU) in 
Taiwan and the University of San Diego (UCSD) reports 
that preliminary results show significant changes in the 
EEG that correlate with subject-reported fatigue scales.

Novel classification algorithms may also create BCIs 
that are robust to state change over time. Deep Learning 
algorithms are a family of machine learning approaches 
based on stacked layers of neural networks that have 
recently shown drastically improved performance in 
domains including computer vision and language pro-
cessing. Deep Learning has shown promising potential 
for several BCI problems [181–188]. Another approach, 
Active Learning, is a method for training or adapting 
classifiers by identifying highly informative unlabeled 
data, requesting labels for that data, and incorporating 
the newly labeled data into the classifier. While many BCI 
paradigms are not amenable to active learning approaches, 
some event-related paradigms can incorporate these 
approaches [18–190].

An alternative approach focuses on extracting novel 
EEG feature representations to better distinguish and 
characterize neural states, enabling classifiers to bet-
ter adapt to changes in those states. Deep Learning can 
be used for learning feature representations from EEG 
[191]. An alternative representation would be to aggregate 
source-localized EEG data into regions of interest, then 
extract spatiotemporal features from each region.

The discussion identified as particular problems the 
difficulty of identifying and labeling underlying state from 
fluctuations in EEG data and of maintaining subject moti-
vation over the course of the experiment. One key sugges-
tion was to examine existing research on pharmacological 
EEG, i.e. studies which show significance differences in 
EEG when subjects are exposed to different pharmaco-
logical compounds. These studies of artificially induced 
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speech recognition and similarities between such data and 
EEG signals suggest that Deep Learning might contribute 
to BCI advances. In this workshop, classical approaches 
to EEG signal processing and classification were summa-
rized and compared with recent BCI methods using deep 
learning.

Signal processing methods for BCI have included 
spatial and frequency-based filtering, common spatial 
patterns, ways of selecting subsets of channels and time 
samples, averaging multiple trials, canonical correlation 
analysis, linear detrending, and common average ref-
erence [201]. Graph theory can also be applied to use 
data to estimate the functional connectivity in the brain. 
Methods based on undirected methods include coherence, 
correlation, phase, and directed models such as Granger 
causality and adaptive directed transfer functions. These 
methods have shown interesting results regarding brain 
functional connectivity pattern changes in several neu-
rological impairment models such as patients with ALS, 
a particular type of mice model of schizophrenia, and 
patients with Parkinson’s disease.

A motion trajectory prediction (MTP) based BCI 
can decode real and imagined 3-D hand movements to 
six targets from EEG. Most MTP BCI studies report the 
best decoding accuracy when a 0.5–2 Hz bandpass filter 
is applied to the EEG whereas recent results show that 
theta (4–8 Hz), mu (8–12 Hz), and beta (12–28 Hz) bands 
are more robust for MTP when the standard approach 
bandpass filtered time-series is replaced with time-varying 
bandpower values for a specified EEG band [201–203].

Nick Waytowich summarized applications of convo-
lutional neural networks (CNN) to data from five BCI 
paradigms. By performing minimal pre-processing of 
the data and using regularization techniques to limit the 
complexity of the trained neural networks, results were 
obtained that surpassed those of conventional methods in 
four of the five paradigms. Deep neural networks usually 
require lots of data, so there are possible advantages of 
training such methods using data from many subjects.

Chuck Anderson, from Colorado State University, 
illustrated a way to interpret what is learned by the first 
layer of a small CNN applied to P300 data. Finally, the 
performance of several classifiers, including CNNs, was 
demonstrated on an ipython notebook with EEG data 
from asynchronous mental tasks. The demonstration 
showed that the CNNs performed better than an autore-
gressive modeling approach and the common linear dis-
criminant analysis method.

Discussions following the presentations focused on 
potential advantages and limitations of Deep Learning 
methods for BCI. The need for lots of data could limit 
the applicability of Deep Learning, unless models can be 
trained on data from many subjects. The interpretation 

[197, 198], discussions in the plenum and in specialized 
subgroups revealed the following:

•  ERP-BCI paradigms benefit greatly from current TL 
concepts with many opportunities for increased use 
[199]. On the other hand, current TL approaches 
seem less effective for ERD/ERS-BCI paradigms.

•  TL can provide benefit not only through transfer 
of the actual signal of interest (e.g. the target ERP), 
but also through transfer of knowledge about typ-
ical background activity (noise, artifacts, etc.). 
However, little information is yet available on the 
situations and learning problems that will achieve 
the most benefit from the transfer of noise informa-
tion compared to the transfer of signal information 
[200].

•  Non-traditional data representations and feature 
spaces may provide additional benefit for TL. For 
example, the representation in covariance space 
or the information contained in subspace compo-
nents/sources may be especially suitable for TL.

•  Comparison of published TL approaches is impeded 
by differences in datasets, evaluation procedures, 
performance metrics, and terminology. The group 
discussed how a data repository for TL problems 
would need to be organized to allow for objective 
benchmarking of TL algorithms.

•  Interdisciplinary workshops between the machine 
learning and BCI research communities would 
accelerate the adoption of the rapidly increasing 
number and variety of TL algorithms by the BCI 
community.

Overall, realization of the great potential of TL, espe-
cially for ERP BCIs, will be accelerated by standardization 
of procedures and data formats to facilitate data sharing 
to maximize TL efficacy.

Deep learning and other machine learning and 
signal processing methods for analyzing EEG in BCI 
paradigms

Organizer: Chuck Anderson
Presenters: Chuck Anderson (Colorado State University); 
Elliott Forney (Colorado State University); Dean 
Krusienski (Old Dominion University); Yalda Shahiari 
(University of Rhode Island); Damien Coyle (Ulster 
University); and Nick Waytowich (Columbia University 
and US Army Research Lab).

Many advanced data analysis methods have been devel-
oped for EEG pattern recognition, but few have resulted 
in BCI performance that surpasses what is achieved 
with simple linear methods. The recent success of Deep 
Learning methods for difficult problems of image and 



BRAIN–COMPUTER INTERFACES   19

presented some recent experimental results on the 
nature of the information conveyed in various parts 
of the grasping network [20]. The results show a 
consistent change in the grasp representation across 
cortical brain areas, and suggest organizing princi-
ples by which information might be extracted from 
each.

•  Engineering robust control. The final talks of the 
session focused on engineering design principles 
that improve behavioral performance. First, ‘High-
rate control-theoretic BMIs’ presented evidence that 
feedback rates matter, and discussed techniques for 
enabling nearly continuous feedback control [208]. 
The final talk, ‘Intracortical Communication BMIs’ 
discussed recent work transitioning high-perfor-
mance decoding algorithms from the lab to the 
clinic [209, 210], and some differences between 
humans and macaques that might impact robust 
control. It is currently unknown whether these 
differences relate to overall differences in brain 
architecture between the two species, or to the par-
ticulars of an individual’s disease state. This will be 
an important point for the design of next-genera-
tion decoding algorithms.

The clinical efficacy of BCI technologies depends 
in large part on improvements in the algorithms that 
decode the user’s motor intent. Future work combining 
basic scientific studies of the motor system with engineer-
ing improvements in signal extraction will be required 
before the ultimate performance limits of these devices 
are reached.

Combining BCI with non-invasive brain stimulation 
techniques

Organizers: Aureli Soria-Frisch (Starlab Barcelona SLU) 
and Laura Dubreuil (Neuroelectrics Inc. USA).
Presenters: Giulio Ruffini (Neuroelectrics); Ricardo 
Chavarriaga (EPFL); Theodore Zanto (UCSF); and Surjo 
Soekadar (EKUT).

The combination of transcranial Current Stimulation 
(tCS) techniques with BMI is a topic of increasing interest 
for neurorehabilitation of motor and cognitive functions. 
While early works with tCS reported on a mere improve-
ment of BCI feature values without overall increase in 
communication performance [211], various later studies 
prove that adding tCS techniques can improve general 
BMI performance and therefore its value as a rehabili-
tation tool [32, 212, 213]. Hence,  neuroplastic changes 
strongly related to re-learning of impaired functions in 
rehabilitation become facilitated by non-invasive mul-
ti-level electrotherapy such as tCS when applied during 

of what deep neural networks learn from EEG data may 
lead to new hypotheses of brain function during complex 
cognition.

Algorithms and performance using implanted 
devices

Organizers: Steven Chase; Aaron Batista; Jose Carmena; 
and Byron Yu.
Presenters: Steven Chase (Carnegie Mellon University); 
Josh Merel (Columbia University); Hansjoerg Scherberger 
(German Primate Center); Yuxiao Yang (University of 
Southern California); and Paul Nuyujukian (Stanford 
University).

Even the simplest of movements engages millions of 
neurons across multiple brain regions. However, to date, 
intracortical neural prostheses base their actions on the 
activities of, at most, several hundred neurons, typically 
from a single brain area. Given this bottleneck in neural 
output, one might assume that the major limits on BCI 
control stem from limitations in the information avail-
able in the recordings themselves. However, impressive 
improvements in performance have been demonstrated 
over the past decade, despite relatively constant numbers 
of recorded neurons over this time. This suggests that 
decoding algorithm design may still be a limiting factor 
in device performance. What are the ultimate limitations 
on neural prosthetic control? What algorithms would 
allow those limits to be attained? In this workshop, we 
discussed our current understanding of the algorithmic 
principles that are critical for improved BCI control. These 
talks focused on three parallel directions.

•  Harnessing subject learning. Complementary talks, 
‘Provably optimal design of intracortical BCI decod-
ing algorithms’ and ‘Leveraging user and decoder 
learning for BCIs’ discussed formal methods for 
including subject learning as part of the design 
loop. The first emphasized that a physical control 
system standpoint can lend insight into the reasons 
that some decoding algorithms outperform others 
[204], and introduced a rigorous definition of BCI 
usability by linking to ideas from optimal control 
theory. The second talk presented a unifying frame-
work for considering decoder calibration and sub-
ject learning in parallel [205, 206]. Both agreed that 
an understanding of limitations in learning will be 
critical for optimizing BCI performance.

•  Information in the grasping network. Current state-
of-the-art BCI control is just beginning to tackle 
the control of high-degree-of-freedom robotic 
hands [27]. The talk ‘Decoding of grasping move-
ments from the primate parietal and frontal cortex’ 
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stimulation types, multi-site montages optimized to target 
particular areas, and correct parameterization of protocols. 
We expect the workshop to boost the design and, more 
important, the efficacy of studies and therapeutic inter-
ventions based on innovative tCS techniques in the near 
future. Long-term effects of tCS and its combination with 
BCI is an open research question. This question and the 
improvement of montages and protocols in general are the 
most challenging research questions for the future.

Haptic guidelines for BCI research

Organizer: Mounia Ziat
Presenters: Mounia Ziat (Northern Michigan 

University); Jan van Erp (TNO); Manuel Cruz and Darrel 
Rohit Deo (Stanford University); and Samir Menon 
(Stanford University).

Although some BCI studies have used the haptic 
modality [217–219], haptic-BCI research has received 
relatively little attention from the BCI community in 
comparison to visual or auditory BCI. This workshop 
was designed to provide guidelines for BCI researchers 
to include haptic modalities in their research by exposing 
them to the possibilities of haptic technology from sim-
ple cutaneous actuators to complex exoskeleton robots. 
After background presentations on the psychology and 
physiology of touch [220], the attendees had the oppor-
tunity to hear experts in the field present an overview of 
haptics actuation, state-of-the-art of haptics in BCI and 
neuroscience research, and live-demonstrations of some 
haptic devices. Two devices were brought to demonstrate 
the potential of haptic feedback for motor imagery and 
P300. One device uses the neck [221, 222] as a potential 
site for a tactile P300 speller paradigm. Several neurolog-
ical diseases and conditions such as ALS or LIS are often 
accompanied with ocular motility disorders [223] that can 
in some cases make the usage of a visual P300 speller tedi-
ous if not impossible. Using a free channel such as touch 
could be beneficial. Placement of haptics on the neck or 
the head could not only provide directional information 
but would still be present as an intact organ even when 
peripheral nerves had been damaged. Another device pro-
vides skin deformation feedback, which can potentially 
be interpreted as a substitute for proprioception in cases 
where natural proprioception is distorted or lost, such 
as in amputation and stroke. Skin deformation feedback 
provides cutaneous shear forces that tangentially stretch 
the skin and is often applied to the fingertip due to its 
high density of mechanoreceptors, which makes it highly 
attuned to tactile stimulus [224, 225]. It has the ability 
to communicate direction and magnitude information, 
which can be used to convey trajectory information of a 
BCI-controlled prosthesis. This may aid in motor imagery 

BMI-based rehabilitation [32]. In addition, tCS can selec-
tively enhance the activity of physiologically targeted 
brain areas, an interesting property for BCIs. However, 
use of tCS involves parameters including stimulation 
type, site, and session schedule [214] that have to be 
adapted in each therapeutic intervention to optimize the 
rehabilitation outcome. This workshop covered the main 
insights on the combination of tCS and BCI technologies 
for rehabilitation and cognitive improvement, including 
tCS principles, the combination of EEG signals with tCS, 
BCI–tCS rehabilitation protocols, and an overview of the 
benefits, disadvantages and difficulties of the BCI–tCS 
combination.

Ruffini’s presentation on the main principles of elec-
trical brain stimulation going from the neuron to the 
brain level can be downloaded from http://wiki.neuro-
electrics.com/index.php/Learning-materials (July 2016). 
Presentation of the main principles of tCS action [214] 
ensured a common basis among workshop attendees to 
explore more advanced topics in tCS like those related 
to its rehabilitation applications. In some work [211], a 
single-session use of tDCS appears to modulate individ-
ual neural correlates, but does not lead to a significant 
increase in the overall BCI communication performance. 
As discussed after the talk, possible causes of this might 
be the single intervention session and the simplicity of the 
particular protocol.

More advanced protocols have been used in later works 
with more successful outcomes. For example, the com-
bination of transcranial alternating current stimulation 
(tACS) and EEG in cognitive rehabilitation produced 
improvements through neuroplastic changes in differ-
ent neural regions. Specific brain rhythms are affected 
by tACS, mainly in the stimulation frequency, and these 
effects may be modified through the adjustment of the 
stimulation parameters [213]. One of the open issues 
remains the removal of the EEG artifact produced by 
the tACS. This issue has evolved from simple protocols 
to modern advanced approaches, in which the usage of 
amplitude-modulated tACS avoids the aforementioned 
artifact [215]. Advanced principles and methods for 
adjusting stimulation protocols include methodologies 
for targeting particular brain regions through the appli-
cation of optimized multi-site montages, which improve 
the tCS focality [216].

All invited talks were followed by vivid discussions. The 
participants underscored the workshop’s scientific depth 
and its practical value for researchers, clinicians, and reha-
bilitators. As a summary, the main message for attendees 
was that tCS protocols are more complex than the tradi-
tional tDCS at motor cortex and are worth exploring for the 
improvement of BCI, both in communication and rehabili-
tation applications. This involves the selection of alternative 

http://wiki.neuroelectrics.com/index.php/Learning-materials
http://wiki.neuroelectrics.com/index.php/Learning-materials
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the EEG time series or the EEG power density spectrum 
is decomposed (e.g. FORCe, [232] or by using principle 
component analysis [233]) into source components (SCs) 
and SCs with certain features are removed. One issue with 
this approach is that SCs are removed that do not fit the 
picture of ‘clean EEG’. Thus, the cleaning may become 
a self-fulfilling prophecy. A very successful approach to 
detecting artifacts is the use of covariance matrices and 
Riemannian geometry [234, 235]. Innovative hardware 
solutions include artifact suppressing mobile amplifiers 
[236] and flex-printed, unobtrusive electrodes such as 
the cEEGrid array [167], which can be combined with a 
wireless amplifier (SMARTING; http://www.mbraintrina.
com) and conventional mobile phones. First results and 
comparison with standard electrodes are very promising.

The second part of the workshop was focused on gain-
ing hands-on experience with hardware and software 
tools. Several mobile EEG systems from different manu-
facturers were available, providing hands-on experience 
with several applications, including smartphone-based 
readiness potentials during free walking, unobtrusive 
long-term EEG acquisition with cEEGrid electrodes, and 
wireless motor imagery neurofeedback.

The workshop concluded with a group discussion on 
hands-on experiences, open questions, and next steps. 
Next steps include data and code sharing, as well as 
‘crowd-scoring’. Crowd-scoring requires a web-based 
platform that allows experts from all around the world to 
score and annotate EEG signals and share their expertise. 
This will provide a sound basis to evaluate signal pro-
cessing methods. Recently, promising solutions for EEG 
data sharing (hppt://www.eegstudy.org) and standardized 
event labeling (http://www.hedtags.org) have been devel-
oped. To conclude, things are moving forward, and novel 
and innovative solutions for recording high quality EEG 
during mobile applications are being developed.

Translational and commercial issues

A framework for considering the voice of the users of 
BCI rehabilitation devices

Organizer: Denise Taylor
Presenters: Denise Taylor (Auckland University of 

Technology); Nada Signal (Auckland University of 
Technology); Mads Jochumsen (Aalborg University); 
Sylvain Cremoux (LAMIH (CNRS-UVHC)); and Imran 
Niazi (New Zealand College of Chiropractic).

Providing effective rehabilitation is a lynchpin in 
achieving independence for people with disabilities. With 
the significant investment in the development of medical 
technologies for rehabilitation, it behooves us to apply 
an understanding of rehabilitation processes alongside an 
understanding of the patient perspective in the design and 

techniques by using skin deformation as a substitute for 
proprioception to better envision intended movement.

The workshop concluded with a group discussion 
about possible alternatives and several specific challenges 
that face researchers who would like to combine haptics 
with BCI applications. Among these challenges are the 
cost of the hardware and the intimate nature of touch. 
For instance, an area such as the neck could be perceived 
as off-limits for tactile stimulation. Hands-on demonstra-
tions were very well received and helped to understand 
the current technological limitations and barriers exposed 
during the workshop. Attendees responded positively to 
the device around their neck, mentioning that the stimula-
tion is pleasant and similar to a neck massage, rather than 
being noxious and invasive, as some had expected. Finally, 
both wearable BCI and haptics technologies need to be 
discrete and not imposing to be socially acceptable, but 
also easy to use and connect. In summary, the workshop 
allowed the attendees to expand their knowledge of BCI 
to the area of haptics and try alternative technology that 
could help advance the field.

Out of the lab – acquiring high quality EEG during 
mobile application

Organizers: Reinhold Scherer (Graz University of 
Technology); Stefan Debener (University of Oldenburg); 
Martijn Schreuder (ANT Neuro); and David Ojeda 
(Mensia Technologies).

‘Get out of the lab and into the real world!’ has become 
a major aim of BCI research and of EEG research in gen-
eral. There is a growing interest in using BCI technology 
for neurorehabilitation (e.g. stroke rehabilitation [16, 226, 
227]) or as assistive technology devices (e.g. for persons 
with cerebral palsy [228]). An aspect of vital importance in 
this context is signal quality. Recording high-quality data 
under ambulatory or mobile conditions is highly chal-
lenging, since (movement) artifacts, as well as dynamic 
environments, make it very difficult to analyze the data. 
Recent advances in EEG hardware [229–231] and soft-
ware development have pushed the boundary, allowing 
the acquisition of good-quality signals during movement. 
However, a vast number of BCI studies do not report on 
using online artifact removal or detection methods. These 
are, however, crucial to ensure that BCIs decode signals 
originating in the brain and not signals resulting from 
overt behavior or other correlated noise sources.

This workshop was split into two parts. The first part 
included presentations that introduced a minimum of 
common terminology, a review of available sensor tech-
nologies and some recent innovative hardware and soft-
ware techniques and technologies. A common approach 
to remove artifacts is blind source decomposition. Either 

http://www.mbraintrina.com
http://www.mbraintrina.com
http://www.eegstudy.org
http://www.hedtags.org)
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clinicians, use of tools such as the ICF, and interactions 
with people with disabilities.

Pathways to effective BCI communication and 
computer interaction for people with disability

Organizer: John Simeral
Presenters: Shangkai Gao (Tsinghua University); 
Theresa Vaughan (National Center for Adaptive 
Neurotechnologies); Beata Jarosiewicz (Brown University); 
Frank Willett (Case Western Reserve University); Chethan 
Pandarinath (Stanford University); and Vikash Gilj 
(University of California, San Diego).

Individuals with paralysis or communication disorders 
resulting from ALS, brainstem stroke, high cervical spi-
nal cord injury, or other neurological impairments may 
benefit from BCI-enabled human–computer interaction 
(HCI) and augmentative and alternative communication 
(AAC). BCI platforms relying on different human brain 
signals recorded through EEG, ECoG, or intracortical 
electrodes can provide command signals for these assistive 
devices [237, 238]. Other signal acquisition technologies 
such as fMRI [239, 240] and NIRS [241, 242] are possible, 
but are less well-characterized in individuals with motor 
disability.

This workshop promoted collaborative communication 
among investigators spanning traditionally disparate BCI 
domains to share best practices for clinical translational 
research, strategies for improving BCI performance, 
understanding user needs and expectations, and effective 
design and deployment of unattended in-home BCI sys-
tems for individuals with severe motor disability. Despite 
actual and inferred differences among BCI technologies 
and methods, investigators share common motivation and 
challenges in translation from investigational BCI systems 
to independent home use [243].

Maximizing online communication rates is a priority 
across domains. BCI communication performance has 
improved for BCIs using evoked potential SSVEP, P300, 
ECoG, and intracortical 2-D cursor-based spellers. 
An SSVEP BCI with a novel ‘joint frequency-phase 
modulation’ to detect evoked potentials in EEG [244] 
achieved 60 selections-per-minute in non-invasive online 
spelling tasks, surpassing rates previously reported for 
other BCIs. Although achieved by healthy subjects, this 
communication rate provides a challenging and motivating 
benchmark. Participants with ALS using an intracortical 
BCI at home have achieved average point-and-click 
virtual typing rates up to 30 correct selections per minute 
[245]. Further iBCI performance gains may result from 
incorporating neural dynamics models developed in non-
human primates [247] and confirmed in two people with 

development of such technologies. This workshop high-
lighted how clinician and user perspectives can and should 
influence the design and implementation of BCI devices 
for neurological rehabilitation. Discussions with engineers 
and clinicians revealed a gap between (1) the engineers’ 
understanding of disability, rehabilitation, and patient 
experiences, and (2) the clinicians’ understanding of the 
possibilities of engineering. This workshop challenged 
both engineers and clinicians to extend their under-
standings and consider how this might influence design 
and implementation of medical devices. Fundamental 
principles of rehabilitation, including motor learning, 
experience-dependent neural plasticity, intensity, dose, 
repetition, salience, specificity and the use of feedback 
were discussed. How these principles were expressed in 
a traditional rehabilitation setting was discussed, along 
with how they could be expressed in conjunction with a 
BCI rehabilitation device. It is clear that misconceptions of 
the principles of rehabilitation negatively influence device 
design. For example, engineers may fail to understand the 
complexities of movement repetition, which is not simply 
repetition of the same movement over and over again.

The importance of understanding the lived experience 
of users was highlighted. The International Classification 
of Functioning (ICF), Disability and Health Framework 
was presented, with a discussion around how this tool 
can help to consider the wider experiences of people with 
disabilities (http://who.int/classifications/icf/en/). Within 
the ICF framework, functioning and disability are con-
ceived as multi-dimensional concepts relating to the body 
functions and structures of people, the activities they do, 
the areas of life in which they participate, and the factors 
in their environment which affect these experiences. The 
underlying model is one where contextual (environmental 
and personal) factors interact with the individual with a 
health condition and determine the level and extent of 
that individual’s functioning.

A third strand of the workshop addressed the require-
ments for clinical trial-level evidence in rehabilitation 
devices. The importance of well-designed, appropriately 
powered trials that adhered to the highest level of qual-
ity control was emphasized. It is at this level of evidence 
that clinicians determine the effectiveness or otherwise 
of an intervention. The use of CONSORT guidelines for 
randomized control trials were discussed (http://con-
sort-statement.org/). The workshop concluded that a 
shared understanding was needed to facilitate the design 
of effective BCI devices for rehabilitation that will be 
implemented in rehabilitation practice and in the daily 
lives of those with disabilities. This shared understanding 
can be built through collaborations, interactions in work-
shops such as this, cross-training between engineers and 
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The first topic addressed health issues involved in 
implanting BCI systems in patients. The discussion 
included issues regarding temporary implant for research 
and permanent implant for restoration of communica-
tion and motor control (including robot limbs). Overall, 
the surgical risks were regarded as low, given modern 
surgical practices. Issues include risk assessment and 
approaches to minimize them. Accurate communication 
of risks to potential participants was acknowledged as an 
area of importance, since the understanding of the risks 
of implant can be both under- and over-estimated. The 
general consensus was that temporary implant research 
is needed for BCI to move forward, but that care must be 
taken to minimize the actual risks involved, and that those 
risks should be clearly explained to potential participants.

The second topic focused on when surgery is justi-
fied for acquiring a BCI. This topic dealt with the argu-
ments against and in favor of implanting. The questions 
addressed included when a person qualifies for an implant 
and what particular clinical populations are the target 
populations. The general notion was that the severity of 
a disability determines whether a non-invasive solution 
may suffice, or whether an implant would better meet 
the needs. Implants were considered most appropriate 
for those with the greatest impairment. Neither the panel 
nor the audience voiced principal objections to implants. 
However, it is clear that for this emerging field, regulations 
and guidelines need to be established to protect bene-
ficiaries of the multiple technologies being developed. 
Regarding the needs that can be met with implants and 
how they differ from non-invasive solutions, the benefits 
of invisibility of the system and permanent availability 
were emphasized. Permanent availability is most impor-
tant for those who are severely paralyzed and cannot setup 
a system themselves, but who have an ongoing need for a 
means of communicating and calling a caregiver.

Finally, the panel discussed what research is needed 
to bring implants to market. Clearly, research is required 
in terms of medical efficacy, clinical trials, and compar-
isons between implants [243]. Although it is early for 
multi-center research, it is highly important to conduct 
such endeavors once the opportunity arises. Issues that 
need to be resolved include required numbers of patients, 
duration of inclusion, and clinical implant indications. 
Activities relevant for promoting implantable BCI also 
concern regulatory and reimbursement hurdles. Engaging 
industry and identifying market parameters on which to 
base investments in implantable devices will be crucial for 
clinical application. BCI researchers will have a significant 
role in defining these issues.

BCI implants are still at an early stage and the path 
towards clinical application is not yet clear. However, les-
sons may be drawn from the evolutionary development 

ALS [248] into novel kinematic decoders. Performance is 
also sensitive to classification and decoding parameters 
that vary across users. A novel feedback simulator for 
cursor iBCIs optimizes critical kinematic parameters by 
modeling control characteristics of the user in addition to  
system noise and decoder behavior [248].

Translating BCIs for in-home unattended use is another 
common priority. The EEG P300 research community has 
broad experience with home use of BCI by disabled users 
in the USA and Europe [249–252]. This includes the EU 
BackHome project to develop, install, and evaluate EEG 
P300 BCIs in users’ homes [252] and the Wadsworth 
Center’s more than 60 evaluations and dozens of instal-
lations (not all ALS) of P300 BCIs ([250]; unpublished 
data). All BrainGate intracortical BCI research sessions 
are also performed in participants’ residences. An auto-
mated iBCI self-calibration method enabled trial partici-
pants with tetraplegia to achieve on-screen cursor-based 
letter selection rates of 15 selections-per-minute spanning 
more than a month, with no explicit recalibration required 
[251]. These diverse multi-patient, at-home BCI experi-
ences provide benefit across BCI research domains.

Ultimately, BCI effectiveness must be evaluated relative 
to user priorities and available alternative assistive tech-
nologies. A recent international survey evaluated inter-
est and acceptance regarding BCI technologies spanning 
EEG, ECoG and iBCI (and a commercial eye tracker) 
among 156 prospective users with quadriplegia from spi-
nal cord injury [254]. Irrespective of the underlying sen-
sor technology, survey respondents were concerned with 
esthetics and the burdens of daily maintenance and tech-
nician intervention. Respondents also prioritized auton-
omous, unobtrusive and safe BCI solutions, suggesting 
that pathways to effective BCI communication probably 
involve miniaturized wireless system implementations.

BCI implants: medical, ethical, regulatory and 
commercial issues

Organizer: Nick Ramsey (University Medical Center 
Utrecht)
Panel Participants: Jon Wolpaw (Wadsworth Center); Jane 
E. Huggins (University of Michigan); Leigh Hochberg 
(Brown University); Spencer Kellis (California Institute of 
Technology); Eran Klein (University of Washington); Scott 
Stanslaski (Medtronic PLC); and Takufumi Yanagisawa 
(Osaka University).

This workshop was designed around discussions with 
an expert panel on several linked topics, with active inclu-
sion of the workshop participants. Discussions were intro-
duced by 2–3 panel members briefly stating their stance 
on one of the three topics described below, and a lively 
discussion among audience and panel members ensued.
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done with lower functionality as evidenced by 
an emerging supply chain of companies provid-
ing such devices [257].

3.    The most desirable BCI functions for AAC: here, 
the group looked at the current state-of-the-art, 
described limitations based on the experience of 
the multi-disciplinary team of participants and 
practitioners, looked at what would be the most 
desirable functions, and the timeline that these 
would or could be available. Specific discussions 
about the uptake of non-invasive BCIs with 
high-functionality were explored.

Overall, the groups suggested a list of issues most likely 
to influence effective technology transfer: costs; stand-
ards and design for manufacturing; business aspects (e.g. 
venture capital, development, and marketing); regulations 
and norms; user values and establishing consensus meas-
ures across stakeholders; differences in healthcare systems; 
and the need to create a healthy innovation landscape for 
both invasive and non-invasive BCIs that deliver societal 
and economic value.

Technological implant developments

Organizer: Erik Aarnoutse
Presenters: Erik Aarnoutse (Brain Center Rudolf 

Magnus, University Medical Center Utrecht); Scott 
Stanslaski (Medtronic Neuromodulation); Masayuki 
Hirata (Osaka University); Fabien Sauter-Starace (CEA-
LETI Clinatec); and Arto Nurmikko (Brown University).

The advantages of using implant technology for BCI are 
clear (high-quality signal, permanent availability, minimal 
expertise for operation, self-agency, and esthetics), but is 
accompanied by strict requirements of technology, ethics, 
and regulation.

The field of BCI implants combines research from 
material science, electrical engineering, neuroscience, 
neurosurgery, but also regulatory affairs. These different 
levels of research were discussed by speakers from differ-
ent perspectives (academia, industry) and different parts 
of the world (Europe, USA, Japan) in presentations on 
four state-of-the-art, fully implanted BCIs: Activa PC+S 
[258]; WIMAGINE [178, 259]; W-HERBS [260, 261]; and 
the Brain-Implantable Chip (BIC) [262, 263]. Insights 
from the first study bringing BCI implants to the home, 
the Utrecht Neuroprosthesis (UNP), gave a perspective 
from the technology-transfer point of view.

Human research is being done with Activa PC+S [258], 
a deep brain neurostimulator with sensing capability, 
which was developed by Medtronic as a tool that gives 
insight into the chronic nature of deep brain disorders. The 
device can stream signals out so that closed loop systems 

of the cochlear implant [255], which started with single 
electrode implants suitable only for sensing loud noises 
and developed into current systems enabling telephone 
conversations. The path-to-market for cochlear implants 
took some 25 years from first implants in the early 1960s, 
to commercial production in the late 1980s. BCI implanta-
tion should likewise begin by providing immediate practi-
cal benefit and evolving toward more complex applications.

Does BCI mean business for augmentative and 
alternative communication?

Organizers: Femke Nijboer (Leiden University); Melanie 
Fried-Oken (Oregon Health & Science University); 
Theresa M. Vaughan (National Center for Adaptive 
Neurotechnologies); and Douglas K. R. Robinson 
(Université Paris-Est Marne-la-Vallée).

BCI researchers are beginning to translate BCI tech-
nology for augmentative and alternative communication 
(AAC). Stakeholders, including experts from neuroscience, 
engineering, computer science, and AAC; current and 
potential consumers (e.g. people with locked-in syndrome, 
progressive neuromuscular disorders and spinal cord 
injury) and their families; industry and the general public, 
have participated in structured conversations about how to 
bring BCI and AAC to market and to society over the past 
five years [256]. This workshop asked BCI researchers to 
explore the challenges, opportunities, and bottlenecks for 
(1) design criteria for improved BCI usage and competi-
tiveness with alternatives; (2) technology transfer routes 
that are strong and sustainable; and (3) improved methods 
for increasing the number of children and adults with com-
plex communication needs who can use a BCI.

The workshop took a multi-stakeholder perspective 
as an entrance point to address these challenges, explor-
ing multi-dimensional factors that shape the technology 
transfer process beyond technical dimensions. The 30 par-
ticipants formed three discussion groups, each addressing 
separate topics. While a detailed write up of the workshop 
is in process, the following provides a snapshot of each 
group discussion.

1.    The real cost of developing and regulating com-
plex implanted devices: while binary switches 
may provide low-hanging fruit early in devel-
opment, the cost of complex devices may limit 
those who can afford to develop, demonstrate 
and deploy them.

2.    The minimum level of functionality that would 
mean (successful) business: this led to a discus-
sion about the broader BCI market and the role 
for non-medical BCI demonstrators and prod-
ucts. The group concluded that much can be 
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Despite impressive progress in BMI research, includ-
ing tests involving their intended end-users, effective 
translation from proof-of-concept prototypes into reli-
able applications remains elusive. Indeed, current BMI 
systems, using either invasive or non-invasive techniques, 
cannot yet be used by end-users and their caregivers with 
the same level of independence as other assistive tech-
nology, but require frequent (e.g. weekly) support from 
BMI experts.

Multiple factors create roadblocks that hinder this 
transition. This workshop identified pitfalls in the BMI 
development process, and defined concrete actions to 
reduce their impact. A brief summary of the discussions 
is presented here, while a more detailed report can be 
found elsewhere in this issue [266].

Many research efforts ignore the fact that a BMI is, by 
definition, a closed loop system where human and machine 
constantly interact. A common pitfall is to devote research 
efforts solely to optimizing the decoding engine instead 
of simultaneously studying and enhancing the interac-
tion with the human. Improving training paradigms and 
feedback is essential to help the user find appropriate 
strategies to achieve BMI control [267]. Moreover, user 
requirements and preferences must be considered from 
early stages of the design process [268].

Another pitfall is the signal vulnerability to artifact con-
tamination, especially with non-invasive recording tech-
niques. Multiple methods have been proposed to remove 
artifacts, especially those due to eye movements [269]. 
However, some end-users (e.g. people with cerebral palsy) 
may exhibit other types of artifacts that are more challeng-
ing to remove [270]. Similarly, real-life applications are 
generally noisier than laboratory conditions [271]. The 
creation of repositories archiving datasets from different 
types of end-users could advance the state-of-the-art in 
robust methods for real-life BCI systems. A crowd-sourc-
ing approach for labeling signal contamination may pro-
vide a valuable asset to benchmark approaches for artifact 
management.

Another issue concerns the metrics used to estimate 
the BMI performance [272]. Performance assessment 
should go beyond machine learning/classification met-
rics, and include efficiency/effectiveness metrics in the 
human-computer interaction sense [273]. Strong evidence 
shows that human factors influence performance. Thus, 
researchers should explicitly assess these factors (cognitive 
workload, sense of agency, among others) in the experi-
mental design [274, 275].

Finally, improvements are needed in the way BMI 
research studies are designed and reported. Experiments 
are often conducted in small populations, without involv-
ing intended end-users, or lack appropriate controls to 
identify experimental confounds. Further, studies often 

and algorithms can be developed. The first major success 
in this area has been a locked-in patient using the device 
for communication at home in the UNP study [264].

Lessons on development constraints of implants (safety, 
biocompatibility, operability, manufacturing and quality 
management) have been learned from the WIMAGINE® 
experience [178, 259]. A full ECoG-based BCI platform 
from implantable device to a four-limb exoskeleton was 
developed to prove the feasibility of controlling complex 
effectors. The clinical research protocol is now approved 
in France.

Another study with humans has been done with a wired 
ECoG system (HERBS) [260, 261], with patient-specific 
micro-ECoG electrodes using 3-D printing and develop-
ment of the wireless, fully implanted W-HERBS. Animal 
tests evaluated longevity of the system over six months.

Developed in an academic environment, the BIC [262, 
263] enables a broadband neural recording from a mul-
ti-electrode array in a non-human primate brain by con-
verting these signals to a digital stream of infrared light 
pulses for transmission through the skin. Many of the les-
sons learned during development involve management of 
quality systems for design and manufacturing, which is 
not within the academic tradition.

Erik Aarnoutse brought the perspective of bringing this 
technology to the home of the user in the UNP study. 
Many regulatory efforts where needed for ethical approval, 
e.g. continued use of the system after the clinical trial is 
finished, which every patient can demand, requires a 
post-marketing surveillance plan. Also, minimal invasive 
surgery, essential for acceptance of the technology by users 
and clinicians, required validation of prelocalization with 
fMRI [265]. The first results are very promising.

An important conclusion of this workshop was that the 
technological, but especially regulatory hurdles of bring-
ing BCI implants to the market are large. The W-HERBS 
and BIC are not approved for human investigations yet; 
the Activa PC+S and WIMAGINE are approved only for 
investigational use. None of the mentioned implants are 
approved for commercial sale. The UNP study shows, 
however, that it is feasible to bring the technology of BCI 
implants to the home of the user. A larger public accept-
ance will provide impetus for bringing implantable BCIs 
to the market, but the combined expertise of industry and 
academia is necessary to accomplish this.

What’s wrong with us? Roadblocks and pitfalls in 
designing BMI applications

Organizers: Ricardo Chavarriaga (EPFL)
Presenters: Sonja Kleih (University of Würzburg); 

Fabien Lotte (Inria Bordeaux); and Reinhold Scherer 
(Graz University of Technology).
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use inappropriate statistical tests [276–279]. These 
design flaws limit the ability to generalize conclusions. 
As in other fields, publications must provide complete 
method descriptions to allow replication of experiments. 
Similarly, negative results must also be reported to enable 
the research community to learn from its errors [280]. We 
propose the preparation of guidelines for good reporting 
practices that the BCI Society can endorse and encourage 
authors and reviewers to follow. While some guidelines 
from related fields can be adopted (e.g. [278, 281–283]), 
specific aspects inherent to BMI systems should be con-
sidered as well (e.g. procedures for decoder calibration, 
evaluation performance on small populations, among 
others). Similarly, we propose periodic special issues of 
peer-reviewed journals dedicated to reporting negative 
BCI results, obtained with rigorous and unbiased studies. 
These steps will advance the field towards more robust and 
reliable systems, enabling the leap from research labora-
tories to real world applications.

Conclusion

As represented in these workshops, BCIs are being used in 
an ever-expanding variety of application areas. The dec-
ades of BCI research and development are bearing fruit as 
a number of applications approach commercial readiness, 
requiring an increased focus on regulatory and usability 
aspects of system design. At the same time, the expan-
sion of BCIs into new application areas is highlighting 
the importance for BCI advancement of increased under-
standing of the complexities, variability, and underlying 
mechanisms of the brain signals being interpreted. Thus, 
despite the increasing maturity of the field, BCI research 
remains a collaborative endeavor. No one area of train-
ing can capture the entirety of the knowledge needed for 
improving BCI performance. Collaboration is still needed 
between engineers, clinicians, and basic scientists. Thus, 
students seeking to enter BCI research should not expect 
to become an expert in all areas affecting BCI function, 
but should acquire sufficient exposure to many areas to 
facilitate productive collaborations while maximizing 
their expertise in one or two areas of training in which 
they can make individual contributions. The value of big 
data collaborations involving data sharing and pooled 
expert analysis of data was discussed in several workshops 
as an important step to understanding the complexities of 
brain activity with regard to BCI performance. The work-
shops of the BCI Meeting Series provide a venue to initiate 
such efforts and an opportunity to build collaborations 
to advance BCI research and development to support the 
emergence of practical BCI products for deployment as 
clinical treatment options or tools for personal expression 
for people, both with and without physical impairments.
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