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ABSTRACT

We present the complete mitochondrial genomes of the Critically Endangered whitespotted wedgefish,
Rhynchobatus djiddensis (Forsskal, 1775), and bottlenose wedgefish, Rhynchobatus australiae (Whitley,
1939), with the R. djiddensis mitogenome documented for the first time. The genomes for R. djiddensis
and R. australiae are 16,799 and 16,805 bp in length, respectively. Both comprise 13 protein-coding
regions, 22 tRNA genes, two rRNA genes, and a non-coding control region. All protein-coding regions
consistently start with the ATG start codon; however, the alternative start codon GTG is observed at
the start of the COX7 gene. NADH2, COX2, and NADH4 have incomplete stop codons: T or TA, and
tRNA"“ and tRNA®", have atypical codons: UAA, UGA, GCU, and UAG. The phylogenetic analysis places
R. djiddensis and R. australiae within the Rhynchobatus genus, separate from other families in the order
Rhinopristiformes. We also highlight the most variable gene regions to expedite future primer design,
of which NADH2 was the most variable (4.5%) when taking gene length into account. These molecular
resources could promote the taxonomic resolution of the whitespotted wedgefish species complex and
aid in the genetic characterization of populations of these and related species.
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Introduction fine-scale population genetic analyses. The lack of clear
evolutionary significant units and molecular resources has
compromised species-specific fishery and demographic data
and further impedes assessments of conservation status,
enforcement of laws and management of these highly threat-
ened species (Henderson et al. 2016; Kyne et al. 2020). In par-
ticular, the whitespotted wedgefish, Rhynchobatus djiddensis
(Forsskal, 1775), and the bottlenose wedgefish, Rhynchobatus
australiae (Whitley, 1939), found across the Southwest Indian
Ocean region have an extremely high risk of extinction and
lack of baseline information (White et al. 2014; Kyne et al.
2020; Daly et al. 2021).

As such, the aim was to assemble and annotate the com-
plete mitogenomes of R. djiddensis and R. australiae from

Rhino rays (wedgefishes and giant guitarfishes) from the sub-
class Elasmobranchii are the most imperiled marine taxa in
the world, with all but one of the 16 described species classi-
fied as Critically Endangered according to the International
Union for Conservation of Nature (IUCN) Red List of
Threatened Species, and all are listed in Appendix Il of the
Convention on International Trade in Endangered Species
(CITES) (Choo et al. 2021; IUCN 2022). This is due to a com-
bination of their K-selected life history traits, presence in shal-
low waters which intersect with coastal fisheries, and
overexploitation through targeted and incidental catch,
driven by the need for animal protein and the trade in their

high-value fins (Kyne et al. 2020). Furthermore, significant
taxonomic uncertainty is associated with the Rhynchobatus
genus; thus, individuals recorded in e.g. fisheries landings are
often synonymized as a single species complex referred to as
the whitespotted wedgefish complex. Molecular taxonomic
studies of rhino rays are mostly limited in scope to single
genetic markers (Aschliman et al. 2012) which are not
always accessible for the relevant species and do not enable

high-throughput sequencing data and to infer the phylogen-
etic placement of these two species within the order
Rhinopristiformes. We also highlight the most variable gene
regions to aid with primer design and the amplification of
alternative mitochondrial markers. Future studies can utilize
the genomic resources developed here to refine species iden-
tification and genetic characterization in these and related
species.
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Figure 1. Species reference images of (A) Rhynchobatus djiddensis (Photo by the South African Institute for Aquatic Biodiversity), the whitespotted wedgefish, with
prominent black markings between eyes, large number of white spots and black pectoral marking surrounded by four or more white spots and (B) Rhynchobatus
australiae (Photo by John Nevill), the bottlenose wedgefish, with bottle-shaped snout slightly constricted near tip, three white spots aligned over the pectoral mark-
ing (usually two spots below), a short line of well-demarcated white spots on the mid dorsal surface and no spots on the tail (TL = 137 cm).

Materials and methods

Samples, DNA extraction, and high-throughput
sequencing

In this study, the R. djiddensis specimen was collected in
Sodwana Bay, KwaZulu-Natal, South Africa (27.5565° S,
32.6673° E; sample ID: SALS-050.2) and the R. australiae speci-
menin Unguja, Zanzibar, Tanzania (6.1357° S, 39.3621° E;
sample ID: FID7731). The specimens were morphologically
identified (please see Figure 1 for references images) and
confirmed by molecular species identification based on the
cytochrome oxidase ¢ subunit 1 (COX7) and nicotinamide
adenine dinucleotide hydride dehydrogenase subunit 2

(NADH2). Fin-clip samples and DNA are stored at the
Genetics Department of Stellenbosch University, South Africa
(http://www.sun.ac.za/english/faculty/agri/genetics, Aletta
Bester-van der Merwe, aeb@sun.ac.za). Total genomic DNA
was extracted from fin-clip samples using a standard cetyltri-
methylammonium bromide extraction protocol (Sambrook
and Russell 2001). The quality and quantity were assessed
using a NanoDrop™ ND 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA). Low-coverage whole-genome
sequencing was performed on an lon Torrent S5™ System at
the Central Analytical Facility at Stellenbosch University,
South Africa. All sequencing reads were quality filtered using
Torrent Suite™ Software.
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Table 1. Whole mitogenomes from the order Rhinopristiformes used to infer the phylogenetic placement of R. djiddensis (ON065568) and R. australiae

(ON065567).
Family Species Size (bp) GenBank accession number Reference
Glaucostegidae Glaucostegus granulatus (Cuvier, 1829) 16,547 MN783017 Johri, Fellows, et al. (2020)
Pristidae Anoxypristis cuspidata (Latham, 1794) 17,243 KP233202 Chen, Kyne, et al. (2016)
Pristis clavata (Garman, 1906) 16,804 KF381507 Feutry et al. (2015)
Pristis pectinata (Latham, 1794) 16,802 KP400584 Chen, Wiley, et al. (2016)
Pristis pectinata (Latham, 1794) 16,803 MF682494 Diaz-Jaimes et al. (2018)
Pristis pristis (Linnaeus, 1758) 16,912 MH005928 Kyne et al. (2018)
Pristis zijsron (Bleeker, 1851) 16,804 MH005927 Direct submission
Rhinidae Rhina ancylostoma (Bloch & Schneider, 1801) 17,217 KU721837 Si, Chen, et al. (2016)
Rhynchobatus australiae (Whitley, 1939) 16,804 KU746824 Si, Ding, et al. (2016)
Rhynchobatus australiae (Whitley, 1939) 16,805 ON065567 This study
Rhynchobatus djiddensis (Forsskal, 1775) 16,799 ON065568 This study
Rhynchobatus laevis (Bloch & Schneider, 1801) 16,560 MN988687 Johri, Tiwari, et al. (2020)
Rhinobatidae Rhinobatos hynnicephalus (Richardson, 1846) 16,776 KF534708 Chen et al. (2015)
Rhinobatos schlegelii (Muller & Henle, 1841) 16,780 KJ140136 Chen, Ai, et al. (2016)
Trygonorrhinidae Zapteryx exasperata (Jordan & Gilbert, 1880) 17,310 KM370325 Castillo-Paez et al. (2014)

Those in bold are the mitogenomes from this study.

Mitogenome assembly, phylogenetic reconstruction, and
variation analysis

lon Torrent reads were mapped to the previously published
mitogenome of R. australiae (KU746924) using the Geneious
Read Mapper algorithm with default parameters (Kearse et al.
2012). The consensus sequences were annotated with the
web-based tool MitoAnnotator (lwasaki et al. 2013) and the
Sequence Manipulation Suite (Stothard 2000) was used to
check for translation errors. The annotated mitogenome
sequences can be accessed via GenBank under accession
numbers ON065568 for R. djiddensis and ON065567 for R.
australiae. The mitogenomes were drawn into full circular
genome with Proksee (https://proksee.ca) which uses
CGView,js as its genome drawing engine (Grant and Stothard
2008). Strand asymmetry was measured based on the follow-
ing formulas: AT skew=(A - T)/(A+T) and GC skew=(G -
Q)/(G+ Q) (Perna and Kocher 1995).

We inferred the phylogenetic placement of R. djiddensis
and R. australiae by aligning the mitogenomes against 13
whole  mitogenome  sequences from the order
Rhinopristiformes (Table 1), using MAFFT (Katoh and Standley
2013) with the L-INS-i algorithm on Geneious (Kearse et al.
2012). Two mitogenomes from Arhynchobatidae and three
from Rajidae were included as outgroups. The alignment was
based on 13 concatenated protein-coding genes of each
mitogenome. The nucleotide substitution models that best
fitted the alignment were determined in PhyloSuite using
PartitionFinder2 (Lanfear et al. 2016) according to the
Akaike's information criterion with correction for small sam-
ple size (AlCc) as recommended by Lanfear et al. (2016).
Sequences were partitioned into coding domain sequences
(CDS) to account for the divergent phylogenies of sequence
regions undergoing unique evolution. Maximume-likelihood
(ML) inference of the phylogenetic relationships among mito-
genomes was performed using IQ-TREE (Nguyen et al. 2015)
with 1000 bootstrap replicates and Bayesian inference (BI)
was performed in MRBAYES v3.2.7a (Ronquist et al. 2012)
with 2,000,000 MCMC generations and the first 500,000 gen-
erations discarded as burn-in. The consensus tree was visual-
ized with The Interactive Tree Of Life (iTOL) v5 (Letunic and
Bork 2021). Additionally, the mitogenomes from this study
and the online R. australiae sequence (KU746924) were

aligned in Geneious as previously described, whereafter
Mega 11 (Tamura et al. 2021) was used to identify the most
variable regions across all protein-coding genes and the con-
trol region between the species.

Results

The obtained mitogenomes for R. djiddensis and R. australiae
comprised 16,799 and 16,805 nucleotides, respectively
(Figure 2). The overall base composition of the R. djiddensis
genome was A: 32.3%, T: 27.7%, C: 26.7%, and G: 13.3%; and
of the R. australiae genome was A: 32.3%, T: 27.6%, C: 26.9%,
and G: 13.2%. Protein-coding gene regions were highly con-
served between species, as commonly seen in elasmobranchs
(Diaz-Jaimes et al. 2016).

The phylogenetic reconstruction places R. djiddensis and R.
australiae within the genus Rhynchobatus, with the closest
relationship to the other two wedgefish species, R. laevis and
R. australiae (Figure 3). In addition to the placement of our
specimens, the previously reported sample of R. laevis (Johri,
Tiwari, et al. 2020) clusters within R. australiae with strong
support in our ML analysis. Johri, Tiwari, et al. (2020), how-
ever, used NADH2 genes to assess the phylogenetic place-
ment of R. laevis where it also resided within the clade
representing Rhynchobatus, but separate to other sister spe-
cies. In our Bl analysis, R. laevis clusters the same as in Johri,
Tiwari, et al. (2020), with slightly less statistical support than
our ML analysis (Figure S1).

The number of single nucleotide polymorphisms (SNPs)
per gene region, and relative variation accounting for gene
length, are listed in Table 2. A total of 481 SNPs were
detected between the species (ambiguous sites were not
included). NADH5 was the most variable in terms of total
number of SNPs (75), followed by COXT (53) and NADH2 (47).
Taking gene length into account, NADH2 was most variable
(4.493%), followed by NADH6 (4.239%) and NADH5 (4.052%),
with the control region ranking 7th (3.7%).

Discussion

There is a pronounced need for updated and accurate gen-
omic resources, particularly in the marine environment.
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Figure 2. Gene maps of the Rhynchobatus djiddensis (ON065568) and Rhynchobatus australiae (ON065567) mitogenomes. The outermost circle genes are transcribed

clockwise and the rest counter clockwise.

Advances in high-throughput sequencing technologies have
led to the development of genomic resources with great
potential for applications in marine conservation, yet large-
scale sequence information for elasmobranchs remains rela-
tively scarce with limited genetic resources especially for
batoids (Pearce et al. 2021). In this study, the use of low-
coverage whole-genome sequencing data enabled the devel-
opment of molecular resources, namely the complete

mitogenomes of R. djiddensis and R. australiage. While our
phylogenetic reconstruction supports the monophyly of
Rhynchobatus and finds similar relationships as previous stud-
ies (Si, Ding, et al. 2016; Johri, Fellows, et al. 2020; Kousteni
et al. 2021), full resolution of the order is limited by the lack
of available data. Future studies should focus on generating
and analyzing whole mitochondrial genomes for batoids,
which is more attainable than a few years ago due to recent
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Figure 3. Maximum-likelihood phylogeny of five families from the order Rhinopristiformes based on the concatenated dataset of 13 protein-coding genes, with
members of the families Rajidae and Arhynchobatidae included as outgroups. Numbers at nodes indicate bootstrap values. GenBank accession numbers are given
adjacent to the species name, scale bar indicates groupings of species into families and the taxa in bold are the mitogenomes from this study.

Table 2. Single nucleotide polymorphisms (SNPs) found in 16 regions of the
mitogenomes from this study; Rhynchobatus djiddensis (ON065568) and
Rhynchobatus australiae (ON065567), and the online-available R. australiae
sequence (KU746924).

Gene Length (bp) SNPs Relative variation (%)
CoxX1 1557 53 3.404
cox2 691 18 2.605
CoX3 786 25 3.181
NADH1 975 38 3.897
NADH2 1046 47 4493
NADH3 351 9 2.564
NADHA4L 297 11 3.704
NADH4 1381 38 2.752
NADH5 1851 75 4,052
NADH6 519 22 4.239
CYTB 1143 46 4.024
12S rRNA 967 7 0.724
16S rRNA 1690 24 1.420
ATP6 684 22 3.216
ATP8 168 5 2976
Control region 1108 41 3.700

ATP: adenosine triphosphate; CO: cytochrome c oxidase subunit; CYTB: cyto-
chrome b; NADH: nicotinamide adenine dehydrogenase subunit; rRNA: ribo-
somal ribonucleic acid.

technological advancements. Additionally, the previously
reported sample of R. laevis (Johri, Tiwari, et al. 2020)
grouped within R. australiae in our ML analysis but separately
in our Bl analysis. Phylogenetic uncertainty translates to taxo-
nomic uncertainty (Chafin et al. 2021), and the latter is sig-
nificantly associated with the Rhynchobatus genus. Our
mitogenome analysis also highlights areas of variability to
serve as a guideline for locating and designing primers to
target the most informative mitochondrial regions in R. djid-
densis and R. australiae, with NADH2 being the most variable.
This challenges the suitability, at least within the
Rhynchobatus genus, of the more conventional control region
and COX1 as standard mitochondrial markers for population

studies or barcoding of elasmobranch species (Feutry et al.
2014; Klein et al. 2019). Our findings can be used to resolve
misidentification issues and taxonomic disputes within the
whitespotted wedgefish complex, as it is a prerequisite to
the efficient implementation of conservation efforts and asso-
ciated management based on elasmobranch population
structuring patterns (Dudgeon et al. 2012; Bester-van der
Merwe and Gledhill 2015). The taxonomic uncertainty within
the Rhynchobatus genus is highlighted; therefore, these gen-
omic resources in combination with those already developed,
can support the sustainable management of wedgefishes
using a precautionary approach.
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