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ABSTRACT

Oncogenic signaling pathways-guided alternative splicing events and their clinical prognostic val-
ues were investigated in lung squamous cell carcinoma (LUSC). RNAseq and AS data of LUSC were
obtained from TCGA and SpliceSeq database, respectively. Pathway enrichment-guided activity
study of alternative splicing (PEGASAS) analysis was performed to evaluate the activity of onco-
genic pathways. We identified 4229 AS events in 2311 genes significantly associated with the
Hallmark_Myc_Targets_V1 pathway. Twenty-nine prognostic Myc guided-AS events classified LUSC
into 3 subtypes, of which Cluster 1 subtype showed the worst prognosis, while cluster 2 subtype
showed a favorable prognosis. A prognostic model based on 10 most contributive prognostic AS
events identified by LASSO could effectively stratify LUSC patients into high- and low-risk groups. The
high-risk group was associated with worse survival and contained more samples in poor prognostic
subtype (cluster 1). GSEA revealed that cell adhesion and immune response pathways were signifi-
cantly enriched in the high-risk group, and AS pathways in the low-risk group. Fifty-nine regulatory
SFs were identified to regulate these 10 AS events. Myc-guided AS events could classify LUSC sam-
ples into subtypes with significantly different survival. A prognostic model based on 10 Myc-guided
AS events could predict the survival of LUSC.
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Introduction stages (Siegel et al. 2019; Sabbula and Anjum 2019).

There were 2,206,771 new cases and 1,796,144 deaths
globally in 2020 for lung cancer, accounting for 11.4%
of the global cancer burden and 18.0 of global cancer-
related mortality, respectively (Sung et al. 2021).
Non-small cell lung cancer (NSCLC) accounts for
approximately 85% of all lung cancers, and lung squa-
mous cell carcinoma (LUSC) is a major subtype of
NSCLC (Sabbula and Anjum 2019). It’s the most com-
mon type of NSCLC in men, which may be due to
its high correlation with smoking. Although around
70% of stage I patients survived more than 5 years,
the overall five-year survival rate of LUSC is around
20%, due to the last diagnosis of LUSC at advanced

Traditional chemotherapy is the primary treatment
for advanced LUSC, but the response to treatment in
individuals varies greatly. In recent years, predictive
molecular biomarkers have been considered a pow-
erful addition to the available treatments for LUSC,
which can identify the patients who benefit the most
and predict the risk of adverse events (Genova et al.
2016; Liao et al. 2020). Therefore, it is necessary to
identify novel prognostic biomarkers for LUSC.
Alternative splicing (AS) is a conserved biological
process that generates multiple RNA variants from a
single transcript (Kornblihtt et al. 2013). AS causes
variable incorporation of coding regions, resulting in
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the production of functionally different proteins and
contributing to proteomic diversity, while AS of non-
coding regions can modulate the localization, stabil-
ity and translation efficiency of mRNAs (Kim et al.
2008). Therefore, keeping AS under control is very
important, but abnormality of AS is prevalently found
in diseases and is associated with disease progres-
sion (Garcia-Blanco et al. 2004; Scotti and Swanson
2016). Dysregulation of AS is also identified in cancers,
including LUSC (Garcia-Blanco et al. 2004; Bonnal
et al. 2020; Wang and Aifantis 2020). AS is emerg-
ing as a new hallmark of cancers (Ladomery 2013;
Farina et al. 2020), and contributes to tumor develop-
ment, drug resistance, immune evasion and metasta-
sis (Marzese et al. 2018; Sciarrillo et al. 2020). Lack
of the RAS-binding domain of BRAF V600E result-
ing from alternative splicing in melanoma leads to
resistance to RAF inhibitors (Poulikakos et al. 2011).
Exon 4 deletion variant of epidermal growth factor
receptor associates with metastasis of ovarian can-
cer (Zhang et al. 2013), while DeltaRon, a constitu-
tively active isoform of tyrosine kinase RON, pro-
motes invasion and motility of cancer cells (Ghigna
et al. 2005).

Many studies have reported the association of AS
with the prognosis of multiple cancers (Hu et al.
2019; Chen et al. 2020; Wan et al. 2020; Wu et al.
2021). Epithelial splicing regulatory proteins 1 and
2 (ESPR1/2) are the master regulators for AS, and
studies have shown that ESPR1/2 expression pro-
motes AS of CD44 and associates with poor out-
comes in breast and ovarian cancer (Yae et al. 2012;
Chen et al. 2017). A40p53 isoform is elevated in
tumor tissues and positively correlated with unfavor-
able prognosis in triple-negative breast cancer (Avery-
Kiejda et al. 2014). AS in LUSC is also related to can-
cer prognosis (Liu et al. 2020; Yan et al. 2021). Yan
et al. detected 1996 AS events in LUSC that corre-
lated with overall survival of LUSC (Yan et al. 2021),
while another group, 1991 prognostic AS events (Liu
et al. 2020). However, these studies focused mainly
on the effect of individual AS events, but did not
focus on a set of AS events guided by oncogenic
pathways.

Here we aim to investigate the global AS events
in LUSC and identify a set of AS events associated
with important cancer-related signaling pathways. Its
predictive capacity on LUSC prognosis was examined
thereafter through the workflow shown in Figure SI.
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Our study identified oncogenic Myc-related AS events
that exhibited a potent prognostic ability for LUSC
patients.

Materials and methods
Data collection and processing

The RNAseq data and clinical information of LUSC
from The Cancer Genome Atlas (TCGA) database
were downloaded. The percent spliced index (PSI) val-
ues (range 0-1, an intuitive ratio to quantify different
AS events) of AS in TCGA_LUSC samples were down-
loaded from the SpliceSeq database (Ryan et al. 2012).
The data were filtered with the following criterion:
>75% samples have PSI value and the average PSI
value > 0.05.

A total of 540 samples (48 healthy samples and 492
tumor samples with tumor stage information) that had
RNA-seq data and PSI value were included in our
study. The tumor samples contain 401 early-stage sam-
ples and 91 advance-stage samples (Supplementary
Table 1). Among them, 485 samples with prognos-
tic information were used for the construction of a
prognostic model.

Pathway enrichment-guided activity study of
alternative splicing (PEGASAS) analysis

H: hallmark gene sets containing 51 tumor-related
pathways were downloaded from the MSigDB
database (V7.1) (Liberzon et al. 2011). The activity
score of each pathway was calculated by PEGASAS
(Phillips et al. 2020) based on the expression profile.
Activity comparison between normal samples, early-
stage, and advance-stage groups were performed using
student’s t-test. The correlation analysis between path-
way activity score and PSI value of AS was performed
with a cutoff of |correlation coefficient| > 0.2 and
p < 0.0002.

KEGG pathway enrichment and gene ontology
analysis

The GO biological process (BP) and KEGG pathway
enrichment analysis were performed by the online tool
DAVID with a cutoff of p < 0.01 and count > 2. The
redundant GO terms were filtered out by REViGO and
displayed in scatterplots.
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Screening of prognostic-related AS events

The AS events showed a significant difference between
normal, early-stage, and advance-stage samples were
screened using t-test, and their prognostic values were
evaluated using univariate Cox regression analysis. AS
events with p < 0.05 were significantly associated with
prognosis.

Unsupervised clustering of AS events

Unsupervised clustering of prognostic-related AS
events was performed by heatmap (Version 1.0.8) in
R3.6.1 based on centered person correlation to reveal
subtypes of tumors. The correlation of each subtype
with prognosis was analyzed by Kaplan-Meier (KM)
survival curve using survival package (Version 2.41-1)
in R3.6.1. The clinical information between different
subtypes was compared thereafter.

Construction of the prognostic risk model

Tumor samples were divided into a training set and
a validation set randomly and equally. The training
set, validation set, and whole set were used for the
prognostic model construction and validation. The
most contributive prognostic AS events were further
screened by the LASSO Cox regression analysis using
the glmnet package (Version 4.0-2) in R3.6.1, in which
AS events were analyzed with 10-fold cross-validation
to obtain an optimized A value. AS events with a regres-
sion coeflicient value equal to 0 were the optimized
AS events used to construct a prognostic model. The
prognostic score (PS) was calculated by the following
formula:

Prognostic score (PS) = Z Coefas x Exppg;

Coefpgs represents the LASSO prognostic coefficient of
AS event. Exp pg] represents the expression level of AS
event in the training set.

Evaluation and comparison of the predictive efficacy
of the prognostic model

On the basis of the formula, the PS score for all samples
in each data set was calculated, followed by subgroup-
ing samples into High-risk (PS > Medianps)) and
Low-risk (PS < Medianps)) subgroups based on the
median value. The KM survival curves were plotted by
survival package (Version2.41-1) in R.3.6.1 to evaluate

the differences in survival between of High-risk and
Low-risk groups.

Construction of regulatory network between
splicing factor (SF) and prognostic AS events

Seventy-one SFs (corresponding to 67 genes), vali-
dated in previous studies, were downloaded from the
SpliceAid2 database (Piva et al. 2012). Their expres-
sion levels were obtained from the LUSC transcrip-
tomic data. The Spearman correlation coeflicient (p)
between SF expression and prognostic AS events was
calculated, followed by Benjamini-Hochberg correc-
tions. The adjusted p < 0.05 and |p| > 0.2 were set as
cutoff values to screen SF-AS regulatory pairs. The SF-
AS regulatory network was constructed by cytoscape
(Version 3.4.0) (Shannon et al. 2003).

Gene set enrichment analysis (GSEA) analysis of the
high-risk and low-risk group

The differential analysis between the high-risk and
low-risk group was performed by limma (Version
3.34.7) based on the expression data to calculate
logFC value. The GSEA pathway enrichment analysis
was performed by the clusterProfiler (Version 3.16.0)
based on reference KEGG pathway gene sets from the
MSigDB database. All genes were input and ranked by
LogFC descending, followed by Benjamini-Hochberg
corrections. The adjusted p.adjust < 0.05 was set as a
cutoff value to present significantly enriched pathways.

Validation of key genes in an independent cohort

The expression pattern of the genes involved in key
prognostic AS events was analyzed between LUSC
tumor and normal samples using a T-test based on
the TCGA cohort and two other independent datasets.
GSE19188 dataset contained 27 LUSC and 65 normal
samples, and GSE30219 contained 61 LUSC and 14
normal samples. Both these datasets were downloaded
from the Gene Expression Omnibus database.

Results

Identification of Hallmark gene sets associated AS
events

The pathway activity scores of 51 hallmark gene
sets in normal, early-stage, and advance-stage were



calculated by the PEGASAS analysis (Table S2). The
comparison of pathway activity identified 2 differ-
ential pathways (Hallmark_Apical Surface and Hall-
mark_MYC_Targets_V1) that showed a significant
difference between these groups (Figure 1(A,B)). A
total of 1868 AS events (Corresponding to 1126
genes) and 4229 AS events (Corresponding to 2311
genes) were significantly associated with the Hall-
mark_Apical_Surface and Hallmark MYC_Targets_
V1, respectively (Table S3).

The GO BP and KEGG pathway enrichment
analyses were performed on the Hallmark Apical
Surface and Hallmark_MYC_Targets_V1 associated
AS genes. Twenty-six GO BP and nine KEGG path-
ways were obtained from the Hallmark_Apical_Surfa
ce-associated AS genes, while 41 GO BP and 10 KEGG
pathways were enriched from the Hallmark_MYC_Ta
1(C-E)).
Notably, RNA splicing-related pathways, including
GO BP terms regulation of RNA splicing, mRNA splic-
ing via spliceosome and KEGG pathway spliceosome,
were observed in the Hallmark MYC_Targets_V1-
associated AS genes, suggesting this hallmark pathway
was closely related to RNA splicing.

rgets_V1-associated AS genes (Figure

Screening of prognosis-related AS events and
AS-based LUSC subtype classification

A total of 552 AS events guided by the Hall-
mark_MYC_Targets_V1 showed significant differ-
ences among normal, early-stage, and advance-stage
samples (Figure 2(A)). Of which, univariate Cox
regression analysis revealed 29 prognosis-related AS
events (Table 1).

Based on the expression of the 29 prognostic AS
events, unsupervised clustering-assigned tumor sam-
ples into three clusters (Figure 2(B)). There were 157,
188, and 140 samples in clusters 1, 2, and 3, respec-
tively. The KM survival curve showed a different prog-
nosis of each cluster. Cluster 1 subtype showed the
worst prognosis, while cluster 2 subtype showed a
relatively good prognosis (Figure 2(C)). Combined
with clinical information, we found significant differ-
ences in tumor stage, age, gender, and pathologic-N
between clusters (Figure 2(D-G)). More early-stage
samples and pathologic NO-N1 samples were clustered
in the Cluster 3 subtype. Therefore, early-stage and
low pathologic grades might be drivers for the better
survival of the Cluster 3 subtype.
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Construction and evaluation of the predictive
efficacy of the prognostic model

Among the 29 prognosis-related AS events, LASSO
regression analysis identified 10 most contributive
prognostic AS events (Figure 3(A) and Table 2),
including AT events (ID_81185 and ID_81187) in
DNAJC2 gene, AT event (ID_28797) in EFCABI11
gene, AT event (ID_29320) in PPP2R5C gene, AT
event (ID_9625) in C4BPB gene, AP event (ID_38130)
in VPS9D1 gene, AP event (ID_63415) in PPARG
gene, AP event (ID_66486) in CCDC14 gene, AP event
(ID_79157) in AQP1 gene and ES event (ID_59273)
in EPB41L1 gene. KM survival curves were plot-
ted to evaluate the survival differences for each AS
event between the high PSI (PSI value > median)
and the low PSI group (PSI value < median), every
AS event showed significant differences between the
high PSI and low PSI groups (Figure 3(B-K)). Among
them, high levels of several AS events (ID_9625,
ID_63415, ID_66486, ID_81187, and ID_29320) were
correlated with a poor prognosis of LUSC, while
others (ID_28797, 1D_38130, ID_59273, ID_79157,
ID_81185) with
prognosis.

The prognostic model was established based on
these 10 AS events, and the PS scores of all samples

were  correlated favorable

in the training set, validation set, and whole set were
calculated. According to the median PS score, sam-
ples were obviously divided into high-risk and low-risk
groups. The distribution of PS scores and PSI values
in the training set was shown (Figure 4(A)). The PSI
values of AS events (ID_66486, ID_63415, ID_9625,
ID_81187, ID_29320) were gradually elevated along
with increase of PS score, while others (ID_79157,
ID_81185, ID_59273, ID_28797, ID_38130) were
decreased. Samples in each set were divided into high-
risk group and low-risk group based on the median
of PS scores, and KM survival curves were plotted.
Patients in the high-risk group showed worse survival
than those in the low-risk group (Figure 4(D)). These
observations were further confirmed in the valida-
tion set (Figure 4(B,E)) and whole set (Figure 4(C,F)),
demonstrating our prognostic model can effectively
predict the prognosis of LUSC.

To further interrogate the associations between risk
groups and LUSC subtypes, we examined the samples’
distribution of each cluster in high-risk and low-risk
groups (Figure 4(G)). The high-risk group contains
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Figure 1. Identification of Hallmark gene sets-associated AS events. (A, B) The activities of tumor signaling pathways in normal, early-
stage and advance-stage of LUSC were calculated by the PEGASAS analysis. Hallmark_Myc_Targets_V1 (A) and Hallmakr_Apical_Surface
(B) were shown. (C, D) GO BP analysis of Hallmark_Myc_Targets_V1 (C) and Hallmakr_Apical_Surface (D)-associated AS events. (E) KEGG
pathway enrichment of Hallmakr_Apical_Surface (left) and Hallmark_Myc_Targets_V1 (right)-associated AS events.
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Figure 2. Screening of prognosis-related AS events and AS-based LUSC subtype classification. (A) Heatmap of PSI value of differential
AS events between normal, early-stage and advance-stage LUSC. (B) Unsupervised heatmap of PSI value of prognostic AS events. (C) The
Kaplan-Meier survival curve of LUSC clusters. (D-G) distribution of patient tumor stage (D), age (E), gender (F) and pathologic_N (G) in

LUSC clusters.

more cluster 1 samples (46%), while the low-risk group
was dominated by cluster 2 patients (53%). This result
was consistent with the survival analysis that cluster
1 subtype had worse survival, while cluster 2 subtype
had favorable survival than other subtypes. Altogether,
these data demonstrated that the higher proportion
of cluster 1 subtype patients might explain the worse
survival of the high-risk group.

Expression pattern of genes involved in the
prognostic AS events

Nine genes were involved in the 10 most prog-
nostic AS events in the prognostic model, includ-
ing DNAJC2, EFCAB11, PPP2R5C, C4BPB, VPS9D1,
PPARG, CCDC14, AQP1 and EPB41L1. The expres-
sion pattern of these 9 genes was analyzed. In
the TCGA cohort, all 9 genes were differentially
expressed in LUSC tumor samples compared with
normal samples (Figure S2(A)). Additionally, their
expression was also validated in two independent
cohorts. In both datasets, in addition to CCDC14,
EPB41L1, PPP2R5C and VPS9DI, the other five
genes were all differentially expressed in LUSC tumor
samples compared with normal samples, with sim-
ilar expression pattern in two datasets and TCGA
cohorts (Figure S2(B,C)). The results suggested that
these prognostic AS events might play important
roles in LUSC by affecting the expression pattern of
genes.

Table 1. Univariate Cox regression analysis of prognosis-related
AS events.

AS events HR (95% Cl) P value
ID_9625 1.638 (1.242-2.161) 0.000
ID_81187 1.503 (1.138-1.984) 0.004
ID_9624 0.670 (0.509-0.883) 0.004
ID_81185 0.668 (0.506-0.882) 0.004
ID_24704 0.672 (0.510-0.886) 0.005
ID_24705 1.478 (1.121-1.948) 0.006
ID_37798 1.469 (1.115-1.936) 0.006
ID_69089 1.465 (1.112-1.930) 0.007
ID_59424 1.460 (1.106-1.927) 0.008
ID_59422 0.698 (0.529-0.921) 0.011
ID_38130 0.710 (0.540-0.934) 0.014
ID_49932 0.710 (0.539-0.935) 0.015
ID_66486 1.408 (1.069-1.856) 0.015
ID_38131 1.400 (1.064-1.841) 0.016
ID_18268 1.397 (1.058-1.845) 0.018
ID_79157 0.732(0.557-0.963) 0.026
ID_28797 0.739 (0.561-0.973) 0.031
ID_59273 0.739 (0.561-0.973) 0.031
ID_49685 1.350 (1.026-1.776) 0.032
ID_63079 0.697 (0.500-0.972) 0.033
ID_63415 1.349 (1.023-1.777) 0.034
ID_79158 1.340(1.019-1.762) 0.036
ID_62294 0.745 (0.565-0.983) 0.037
ID_66487 0.747 (0.567-0.984) 0.038
ID_13995 0.751(0.570-0.988) 0.041
1D_29320 1.330(1.011-1.751) 0.042
ID_68258 0.752 (0.572-0.990) 0.042
ID_13994 1.323 (1.005-1.741) 0.046
ID_68257 1.322 (1.005-1.740) 0.046

HR: hazard ratio; Cl: confidence interval.

Construction of regulatory network between SF and
prognosis-related AS events

SFs are major contributors of AS and play important
roles in oncogenesis. A total of 149 SF-AS interac-
tion pairs between 10 AS events and 59 SFs were
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Figure 3. Construction and evaluation of the predictive efficacy of the prognostic model. (A) A selection in LASSO model. (B—K) The

Kaplan-Meier survival curve of OS-related AS events.

Table 2. Optimized prognostic AS events.

ASID Gene symbol AS type LASSO coefficient HR

ID 28797 EFCAB11 AT —0.122 0.739
1D 29320 PPP2R5C AT 0.506 1.33

ID 38130 VPS9D1 AP —0.785 0.71

ID 59273 EPB41L1 ES —0.542 0.739
ID 63415 PPARG AP 0.096 1.349
ID 66486 CCbC14 AP 0.916 1.408
ID 79157 AQP1 AP —0.392 0.732
ID 81185 DNAJC2 AT —2.373 0.668
ID 81187 DNAJC2 AT 0.004 1.503
ID 9625 C4BPB AT 0.129 1.638

identified (Figure 5). Seven of them were regulated
by many SFs. Notably, SF CELF2 were significantly
correlated with the 10 AS events, while HNRNPC,
NOVA2, SRSF3 were associated with 9 of 10 AS events.
This close correlation between AS events and SFs sug-
gests the involvement of SFs in the regulation of AS
in LUSC, and contributes to the regulation of LUSC
progression.

GSEA pathway enrichment analysis

Sixty-seven KEGG pathways showed significant differ-
ences between high-risk group and low-risk groups.
The top 5 pathways with the largest normalized enrich-
ment score in high-risk group and low-risk groups
were plotted (Figure 6(A,B)). Pathways involved
in cell interaction (cell adhesion molecules) and
immune response (complement and coagulation cas-
cade, Leishimania infection, Lysosome, and Viral
myocarditis) were observed in the high =risk group,
while RNA splicing-related pathways (spliceosome
and RNA degradation) were found in the low-risk

group.

Discussion

LUSC is a common type of lung cancer with a poor
prognosis, and many new cases are diagnosed every
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year. Evaluation and prediction of the clinical outcome
of LUSC are critical for patient care and disease man-
agement. Abnormality in AS regulation is prevalent
in various diseases and contributes to disease pro-
gression. AS is emerging as a new hallmark of cancer
and contributes to tumor development, drug resis-
tance, immune evasion and metastasis. Dysregulation
of ASis also identified in cancers, including LUSC. Our
current study demonstrated that the oncogenic MYC-
related AS events exhibited potent prognostic power
for the overall survival of LUSC. Furthermore, three
subtypes of LUSC were classified based on the expres-
sion levels of these AS events. Each LUSC subtype
showed a different clinical outcome. Further study is
required to interrogate the relationship of Myc with AS
in LUSC and understand the roles of these AS events
in the pathogenesis of LUSC.

AS is conservative and tightly regulated and it
showed considerable flexibility to adapt various sur-
rounding environments. AS is found in multiple
diseases and it participates in the pathogenesis of
many diseases (Kelemen et al. 2013; Scotti and
Swanson 2016). While consistent results were also

observed in our study, we further interrogated the
association of these AS with cancer-related hall-
mark gene sets, and our data showed that these
differential AS events in LUSC were significantly
associated with Hallmark Apical_Surface and Hall-
mark_Myc_Targets_V1 pathways. Myc signaling is
under tight control in normal cells but abnormally
activated in tumors. Myc signaling is implicated in the
initiation and maintenance of various cancers. Stud-
ies have shown that Myc contributes to the malig-
nancy of LUSC (Chanvorachote et al. 2020). Myc
can be regulated by many upstream signaling includ-
ing JAK/STAT pathway, Wnt/B catenin signaling,
Notch signaling, and Ras/PI3 K/AKT/GSK-3 pathway
to promote cancer cell proliferation, survival, metas-
tasis and drug resistance through direct or indirect
modulation of target gene expression (Chanvorachote
et al. 2020). Intriguingly, our results demonstrated
that pathways involved in alternative splicing regu-
lation were enriched in Hallmark Myc_Targets V1
pathway-associated AS genes. This agrees with pre-
vious study that demonstrated that oncogenic Myc
signaling regulates alternative splicing in different
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cancers (Koh et al. 2015; Phillips et al. 2020). These
results suggest that AS is an important target of Myc
signaling in LUSC and insinuates the contribution of
AS in the carcinogenesis of LUSC under the control of
oncogenic Myc signaling. Furthermore, Myc-guided
AS events stratified LUSC patients into 3 clusters with
different prognoses. Among them, cluster 1 contained
more advanced patients and showed a poorer progno-
sis than other clusters. These results further strength-
ened the importance of Myc-associated AS events in
the malignancy of LUSC and highlighted their prog-
nostic values.

Among those MYC-guided prognostic AS events,
we obtained 10 most valuable AS events after LASSO
regression analysis, involving 9 genes, including
DNAJC2, EFCABI11, PPP2R5C, C4BPB, VPS9DI,
PPARG, CCDC14, AQP1 and EPB41L1. PP2A B sub-
unit isoform B56-gamma (PPP2R5C) is a regulatory
subunit of protein phosphatase 2A (PP2A) and a
tumor suppressor by activating p53 or suppressing

ERK signaling (Letourneux et al. 2006; Li et al. 2007;
Shouse et al. 2008). AS of PPP2R5C was reported in
gastrointestinal adenocarcinomas and ovarian cancers
(Lin et al. 2018; Zhu et al. 2018), but its functional con-
sequences remain unknown. cancer cells may employ
the AS machinery to inactivate the tumor suppres-
sor activity of PPP2R5C. Peroxisome proliferator-
activated receptor gamma (PPARG) is a transcription
factor that regulates fatty acid B-oxidation and plays
an important role in cancer development (Tachibana
et al. 2008), AS of PPARG is also identified in tumors
with unknown effects (Sebestyen et al. 2015). AS
of other tumor-relevant genes (VPS9D1, EPB41LlI,
AQP1) also showed prognostic ability in various can-
cers (Wang et al. 2017; Song et al. 2019; Liang et al.
2020; Du et al. 2021). Besides, our study identified
several novel AS events in cancers. AS of EF-hand
calcium-binding domain 11 (EFCAB11) was reported
in macrophages upon Mycobacterium tuberculosis
infection but not in tumors (Kalam et al. 2017). AS of
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Coiled-coil domain-containing protein 14 (CCDC14)
is not reported yet. DnaJ heat shock protein family
member C2 (DNAJC2, also known as ZRF1) is a chro-
matin regulator and participates in epigenetic mod-
ulation of gene transcription in cancers (Aloia et al.
2015), but AS of DNJC2 is not found in other can-
cers or diseases. Complement component 4 binding
protein beta (C4BPB) regulates the activation of the
complement cascade and circulating C4BPB may serve
as indicators for cancer prognosis and metastasis (Bat-
tistelli et al. 2008; Liu et al. 2012). AS of C4BPB is not
reported before. These AS events in cancer-associated
genes insinuate their functions in carcinogenesis, and
the novel AS events may also contribute to tumor
progression rather than act as prognosis biomarkers.

The 10 AS events-based prognostic model strati-
fied LUSC patients into high- and low-risk groups, and
patients in the high-risk group showed significantly
poorer prognosis than those in the low-risk group.
Intriguingly, the distribution of LUSC clusters in the
high-risk and low-risk groups varied greatly. Samples
in Cluster 2 subtype (favorable survival) were domi-
nant in the low-risk group, while samples in Cluster 1
subtype (worse survival) were highly enriched in the
high-risk group, which was consistent with the prog-
nosis of LUSC clusters. These data demonstrated that
our prognosis model could effectively predict the risk
of LUSC and may be helpful for the clinical man-
agement of LUSC. A previous study also investigated
AS in LUSC and identified a survival-associated AS
signature (Liu et al. 2020). While consistently discov-
ering the prognostic value of AS events for LUSC, our
study interrogated oncogenic Myc pathway-guided AS
events rather than global AS in LUSC. Furthermore,
the MYC-guided AS events classified 3 different sub-
types of LUSC, which revealed the internal diversity
of LUSC and deepened our understanding and further
management of LUSC. Given the regulatory roles of
oncogenic MYC signaling in AS, the MYC-associated
AS events may not only act as prognosis markers but
also contribute to the malignancy of LUSC. Further
study is warranted to explore the oncogenic roles of
MYC-associated AS events.

Our current study identified a set of oncogenic Myc
signaling-guided AS events in LUSC and classified
3 subtypes of LUSC with different clinical outcomes
based on these AS events. We established a power-
ful Myc-guided prognostic AS-based prognosis model
stratifying LUSC patients with different risks. Our

findings deepened our understanding of the prognos-
tic power of Myc-associated AS events and suggested
their essential roles in the pathogenesis of LUSC. Fur-
ther studies are required to elucidate the underlying
mechanism(s) of Myc-related AS in the progression of
LUSC.
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