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LETFER TO THE EDlTOR 

Coupled circle maps as a too! to model synchronisation in 
neural networks 

M Bauerf and W Martienssen 
",)o'KdlU"t3 I I I D 1 I I Y b  "YI"s.DII. n * . m " . L ,  .."Y..-..'eyYY..~~L -, " Y W Y  I Lo"=- 

fun 1, Federal Republic of Germany 

Abrlrae~ lbporal c a ~ l a t . o n  and demrrelamn of the sptking of p u p s  of neurons 
have been suggested 10 be of importance for the segmentation of different features 
to objeels (binding problem). We show that coupled ercle maps exhibiting chaolrc 
mcillaucns are a useful Loot to simulate the behawour of such systems til a model 
where nile map reprerenll the phase dyllamirs of one neuron or a group of neurons we 
observe that, depending on the muplrng strength, the different maps show correlated or 
unmmlated behamour, while the autocolrelation func:ion remains flat, as expected for 
a chaotic signal This synchmnlzed behaviour can be organaed by a simple Hebb-type 

nL._...., _I.. r __...... , r  _I.-_ i.. =-._._L.l D--- 1,"..". e...."__ , 1 nxm -"b 

leamlng rule 

It has been claimed [l] that besides the spilang frequency of the neural activity, the 
'phase' of the neurai osciiiation piays an important mie in the processing of data in 
the brain. The correlation of the spikes of different active neurons is suggested to 
code whether or not different signals belong to the same object @inding problem). 
Recent experiments (2-41 support these considerations by finding correlated firing of 
neurons that correspond to different receptive fields when these fields are stimulated 
hy the same object. These features are normally simulated using neural network 
models consisting of coupled oscillators, mostly relaxation oscillators [S-13]. 

The dynamics of noniiear oscillatoIs has been subject of extensive studies [14,15]. 
Circle maps [16] have proven to be very useful for the description and understanding 
of such systems, namely of uncoupled relaxation oscillators [17,18]. It has also been 
shown that it is possible to reduce the dynamics of a leaky integrator model [19] 
for one neuron to a circle map. Beyond the studies on single maps the behaviour of 
coupled maps with various topolagies has been treated m terms of nonlinear dynamics 

In this letter we point out that coupled circle maps can he used to simulate 
the correlation of phases, even when the signal of the single neuron is chaotic. 
The coupling method used here is based on the method described in 123) for the 
determination of Lyapunw exponents by studying correlation between the chaotic 
motions of two equivalent coupled systems. The organization of neurons in different 
groups, showing synchronous behaviour within one group, can be demonstrated using 
a simple Hehb-lie learning rule. The aim of this paper is to illustrate a way for 
the study of dynamical properties and synchronization in neural system, ye do not 
attempt to make a neurophysiological model of, for example, the visual system nor 
to present a technical system for object recognition. 

t e-mail' bauer@pll.physiliuai-franltfun.de 
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The N neumns of the consitiered model are described by two variables the phase 
0, and the activity s,. The dynamics of the phases 8, is modelled using standard 
sine circle mapst, with an additional noise term r)  that represents equally distributed 
random numben in the interval [ O ,  f ] .  The sine circle map pp(z) is defined by: 

(1) 
k 
2s p(z) = o+ 52+ -ssin(Zso) + r)  (mod 1). 

Using this definition of p the new phase O , ( t  + 1) of the ith neuron is calculated 

(2) 
1 

ei(t + 1)  = - w i ( t ) )  + ~9(29~(t))i. 
1 f K  

The circle map 1p is applied on the old phase e , ( t )  and-weighted with a coupling 
strength 6-n an input value 8,. This input is given according to the phases of the 
other neumns weighted with a coupling matrix J (J, ,  = 0,Vz): 

In our simulations we use the parameterst for the circle map k = 5, 52 = 0.618, 
that assure chaotic osnllatiom of the uncoupled map with a Lyapunov exponent of 
x = 0.89. 

0.8 

0 
R 

8 0.4 

.i. c 

B 

0 

crmpling 6 

Fwre 1. The emssmmelation C(0) of the phases in a nelwork of N = 100 mupled 
neurons (k = 5) IS platted vemus lhe coupling strenglh I(. We obsewe that at the 
cntical coupling strength IF' = 1.43 lhe solution with C(0) = 1 loses its stability. 

In figure 1 we plot the averaged (over 20 different initial conditions) Cross cor- 
relation C between two coupled neurons in a network of size N = 100 versus the 

t Similar result5 can be achieved wlh other circle maps, e.g the maps described in (191. 
$ The choice of these parameters IS not critical. 
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coupling strength K (J,> = 1,Vi  # j ) .  We obsewe that the strongly correlated state 
loses its stability below a critical coupling strength around 

nis change of the correlation does not correspond to a transitim from a periodic 
or stationary behaviour at high n-values to chaotic oscillations below nc. With the 
exception of the little peak around IE = 0.3 the oscillation is always chaotic. 

In order to study the stability of the strongly correlated stare ( O , ( t )  = 
O>(t ) ,V i , j ) ,  we define the average phase 8( t )  = l / N C O j .  Neglecting (in a large 
network) the contriiution of 0, to d we can write: 

= 1.5. 

1 
s:!t + 1) = -i+=(e.(t)) + ~ r p ( z ~ ( t ) ) I  

zP(t + 1) = (o(ff(t)). 

(4, 

(5) 
I + K -  - . . - -  

Considering the dynamics of the difference @ , ( t )  = O , ( t )  - d ( t )  between the phase 
of one neuron and the average phase, we find 

Linear stability analysis of the phase diEerence gives: 

Using the definition of the Lyapunov exponent for the uncoupled map 

the correlated solution loses its stability at the critical coupling strengtht K ~ :  

(9) 
.A ‘ i c = e  -1. 

This allows us to calculate the parameter K for our simulation directly from the prop- 
erties of the one dimensional circle map. Applying (9) on the simulation parameters 
used in figure 1 we find a value of K< = 1.43 which is in 200d agreement with the 
numerical result. 

In figure 2 the time dependence of the phase variables 0, in a network of N = 10 
neurons for a coupling strength IE = 1.5 and a small noise amplitude q = is 
plotted for different coupling situations. In the first section (A) of figure 2 the ten 
neurons are uncoupled (Le. J., = 0 ,  V i , j ) ,  which results in totally uncorrelated 
chaotic behaviour. In the second section (B) the coupling is switched on (Ji, = 
1, V i  # j), after a few iterations the phases of the neurons correlate showing the 
Same chaotic time series. In the following section (C) of the figure we divide the 
neurons in two groups, i.e. the neurons within both .groups are totally coupled but 
there is no connection between the groups. Coupled neurons again show the same 
chaotic time series, but due to the noise in the system the two groups decorrelate 

t lhis Solulion holds only lor large networlip, m smallw nerxorks the entiSal crmpliig lies belween lhis 
value and the solution for IWO mupled mapr X = In((l -E tcc2)/(1 - xicl)). ’ 
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Figure 2. The lime dependence of the ph- S. ;n a network af N = tQ neumm 
wlth the parameters k = 5. 6 = 1 5 IS pl~tted. The venical lines mark the times when 
the coupling IS changed. (A) All neurom are uncoupled J,, = 0. (B) All neumns are 
coupled J,, = 1 for I # 3. (C) The neumm are drwded into two groups (the separation 
of the gmug IS marked by the horizonla1 line) Only the n e w "  wlthln each gmup 
are coupled. (D) The net" are coupled as in (B). 

after a few iterations even though the noise amplitude is very small. A smallt noise 
amplitude is necessary if a zero coupling between the groups is chosen, in order 
to allow identical starting phases to show a different time evolution. Alternatively 
or additionally the coupling between the groups can be made slightly negative (e.g. 
Jz, = -0.1) which allows the groups to decorrelate without noise. In the last part 
(D) of this figure the couplimg between the two groups is switched on again and we 
observe that the neurons correlate again very quickly. 

In order to show the correlation properties of the system in a more quantitative 
way and to denonstrate that the presented features are not an effect of transiena or 
only of very small networks, we calculate the cross-correlation functioa of a network 
with N = 1000 neurons devided into two groups averaged over loo00 iterations. 
The result of this simulation is depicted in figure 3. We find that the correlation 
between two neurons within the same group is flat at C(r) = 0 except the peak 
around I = 0 where the correlation becomes one. This result is identical with the 
autocorrelation function of one of the chaotic signals. If we consider the phases of 
neurom in different groups, we obseNe that the correlation functiOn remains flat 
around C(I) = 0 even at the delay r = 0. 

t In lac1 the noise amplitude can he chosen arhimnly Sillall because the difference hehveen the two 
gmups wiii g m w  expnentiaiiy. For numenmi simuiaiions ii must be chosen iarge enongb iWi ilr 
contTibutton of (he nowe is not rounded during Ihe ileralion. 
$ The temporal correlation hetween two lime sen= X t X  defined by 

wilh 2, = X ,  - ( X )  and v, = Y, - (Y) where (.) denotes the time average. 
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delay 7 

C:e== - CL!., 

~igom 3. "he msoeamlation function C(r) w1 plotted for two n e n "  that are m 
the same group (solid roe) and for two neurons that are in different groups (broken 
line). 

In the last part of this letter we give an example for a simple learning algorithm 
that demonstrates how the neural network can organize itself into groups. In order 
to do this, we present the different groups (objem) randomly to the network and 
apply a Hebb-lie learning rule for the coupling strengths J,, 

J , j ( t + l ) = ~ [ J , l ( ~ ) - X + ~ ~ , ~ l ]  (10) 

where 7 determioes the learning speed and X is a 'forgetting'-term. The function 
9(.) mnfizes the va!..e nf the m..pling strength iz the ra!!ge [$,,,l",!?,,,aj: 

(11) 
0 for e,,, < 2 < e,, { 0 otherwise. 

@(x) = 

For our simulations we choose X = 0 . 0 0 1 , ~  = 0.01,8,,, = 0 and e,,,, = 1. In 
every timestep during the learning phase each group is independently chosen to be 
active with a probabiiity pa. That means with a probability pa we set the activity 8 ,  

of all neurons belonging to one group to s, = 1. 
This learning process is shown in figure 4. We want the network (N = 12) to or- 

ganize in three independent groups of synchIonous phase. According to the learning 
a!gorithm descrihed above we start at t = 0 to present the different ohjects (groups) 
in a random fashion with pa = 0.3 to the network (the presented patterns are shown 
at the bottom of the figure). After this learning; the neurom have organized into 
three groups even though these groups have not alyays been presented separately 
during the learning, i.e. the network distinguishes the neurons that are always acti- 
vated simultaneously because they belong to the same object and those that are only 
sometimes activated simultaneously because they belong to different ohjects that are 
presented independently at the same time. In that way the network has learned three 
different 'objects' that can be distinguished even when they are'presented at the same 
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Figure 4. Learning io a newark of N = 12 new”; the p h a w  8, of the twelve 
neurons are s h a m  I ~ I  the upper part of the figure. In the last mw the presenled actiwg 
pattern Is shown. The leaming Slam at 6 = 0 and ends at t = 100. After IhIs the 
couplings have arrange& amordizg the ‘ l a r n i g  role. (lo), leading to a configuration 
that eonskls of three regam that show independent chaotic OSciUations (for dan!y the 
three regions are separated by the dotted lines) 

time. The neurom of one group continue to oscillate in phase for a time depending 
on the ‘forgetting‘ constant A. 

In condusiou we have demonstrated that coupled circle maps are a useful tool 
to simulate and describe the correlation behaviour of neural networks. Besides the 
fact that one-dimensional maps can be simulated more efficiently than differential 
equations, one can profit from knowledge about the dynamical behaviour of circle 
maps. The possibility to choose chaotic states of the maps allows us to distinguish 
a large number of objects (Le. build a number of different groups if the network is 
sufficiently large) that show no correlation between the neumns belonging to different 
objects but perfect correlation within the same group. Practically the number of 
different groups is limited by the resolution of the phase variable and the length of 
the considered time interval. 

This work is supported by the Deutsche Forschungsgemeinschaft Via the Sonder- 
forschungshereich 185 ‘Nichtlineare Dynamik’. 
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