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LETTER TO THE EDITOR

Coupled circle maps as a tooi to model synchronisation in
neural networks

M Bauer} and W Martienssen
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Physikalisches Jastitut Universitt Frankiurl, Roveri-Mayer-5

furt 1, Federal Repubhc of Germany

Abstract. Temporal corrzlat.on and decorrefation of the spking of groups of neurons
have been suggested to be of mmportance for the segmentation of different features
to objects (binding problem). We show that coupled «ircle maps exhubiting chaotic
oscillanions are a useful tool to sunulaie the behaviour of such systems In a model
where oae map represents the phase dypamics of one neuron or a group of neurons we
observe that, depending on the couphing strength, the diufferent maps show correlated or
uncorrelated behaviour, while the autocorrelation function remaws flat, as expected for
a chaotic signal This synchromzed behaviour can be organized by a simple Hebb-type
learming rule

It has been claimed [1] that besides the spiking frequency of the newral activity, the
‘phase’ of the neurai osciiiation piays an important roie in the processing of dara in
the brain. The correlation of the spikes of different active neurons is supgesied to
code whether or not different signals belong to the same object (binding problem).
Recent experiments [2-4] support these considerations by finding correlated firing of
neurons that correspond to different receptive fields when these ficlds are stimulated
by the same object. These features are normally simulated using neural network
models consisting of coupled oscillators, mostly relaxation oscillators [5-13).

The dynamics of nonlinear oscillators has been subject of extensive studies [14, 15).
Circle maps [16] have proven to be very useful for the description and understanding
of such systems, namely of uncoupled relaxation oscillators [17,18]. It has also been
shown that it is possible to reduce the dynamics of a leaky integrator model [19]
for one newron to a circle map. Beyond the studies on single maps the behaviour of
coupled maps with various topologies has been treated 1n terms of nonlinear dynamics

AN Y

[20-22].

In this letter we point out that coupled circle maps can be used to simulate
the correlation of phases, even when the signal of the single neuron is chaotic.
The coupling method used here is based on the method described in {23} for the
determination of Lyapunov exponents by studying correlation between the chaotic
motions of two equivalent coupled systems. The organization of neurons in different
groups, showing synchronous behaviour within one group, can be demonstrated using
a simple Hebb-like learning rule. The aim of this paper is to illustrate a way for
the study of dynamical properties and synchronization in neural systems; ve do not
attempt to make a neurophysiological model of, for example, the visual system nor
to present a technical system for object recognition.

t e-mnail" bauer@ml.physikun-frankfurt.de
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The N neurons of the consicered model are described by two variables the phase
0, and the activity ¢,. The dysamics of the phases 6, is modelled using standard
sine circle maps{, with an additional noise term # that represents equally distributed
random numbers in the interval [0, #']. The sine circle map (=) is defined by:

plri=z+ 0+ -ék; sin(2rz) + n (mod 1}. (1)

Using this definition of ¢ the new phase #,(1 + 1) of the ith neuron is calculated:

it +1) = To—le(0() + rel ()] @

The circle map ¢ is applied on the old phase #,(t) and—weighted with a coupling
strength x—on an input value ¥,. This input is given according to the phases of the
other neurons weighted with a coupling matrix J (J,, = 0,V:):

T, J,6
8,(1y= L2 ®
3 Y

In our simulations we use the parametersi for the circle map & = 5, & = 0.618,
that assure chaotic oscllations of the uncoupled map with a Lyapunov exponent of
A =0.89.
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Figare 1. The cross-comrrelation C(0) of the phases m a network of N = 100 coupled
neurons (k = 5) 15 plotted versus the coupling swrength «. We observe that at the
cntical coupling strength =, = 1.43 the solution with C(0) = 1 loses its stability.

In figure 1 we ploi the averaged (over 20 different initial conditions) cross cor-
relation C' between two coupled newrons in a neiwork of size N = 100 versus the

t Simtlar results can be achieved with other circle maps, e.g the maps described m {19].
t The choice of these parameters is not critical.
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coupling strength « (J,, = 1,Vi # j). We observe that the strongly correlated state
Ioses its stability below a critical coupling strength around «, = 1.5.

This change of the correiation does not correspond to a transition from a periodic
or stationary behaviour at high «-values to chaotic oscillations below .. With the
exception of the little peak around x = 0.3 the cscillation is always chaotic.

In order to study the stability of the strongly correiated state (6;(f) =
8,(t),Vi, j), we define the average phase 9(t} = 1/N }0;. Neglecting (in a large
network) the contribution of 8; to 9 we can write:

8,(t + 1) = ——[(6,(£)) + re(I(1))] @
* 1K

I+ 1) = @(¥(1)). &)

Considering the dynamics of the difference ¥ (¢) = #,(t) — ¥(t) between the phase
of one neuron and the average phase, we find:

T (t+1)=

10(0,(8) + xe(I(ED] - WD) ©

Linear stability analysis of the phase difference gives:

vty = o T (). @

Using the definition of the Lyapunov exponent for the uncoupled map

.1 5 de(=,)
= - — = 8
A(#o) = lim ~1In g = @®
the correlated solution loses its stability at the critical coupling strengthf =
k.=e*—1. (9)

‘This allows us to calculate the parameter & for our simulation directly from the prop-
exties of the one dimensional circle map. Applying (9) on the simulation parameters
used in figure 1 we find a value of x_ = 1.43 which is in good agreement with the
numerical result

In figure 2 the time dependence of the phase variables 6; in a network of N = 10
neurons for a coupling strength « = 1.5 and a small noise amplitude n = 10-5, is
plotted for different coupling situations. In the first section (A) of figure 2 the ten
neurons are wncoupled (ie. J,, = 0, Vi, ), which results in totally uncorrelated
chaotic behaviour. In the second section (B) the coupling is switched on (J;, =
1, ¥i # 4, after a few iterations the phases of the neurons correlate showing the
same chaotic time series. In the following section (C) of the figure we divide the
newrons in two groups, ie. the neurons within both .groups are totally coupled but
there is no connection between the groups. Coupled neurons again show the same
chaotic time series, but due to the noise in the system the two groups decorrelate

t+ This seluticn holds only for large networks, w smaller networks the entical coupling Jies between this
value and the solution for #wo coupled maps: A =In{(1 + xc2} /(I - £e2)). '
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Figure 2, The time dependence of the phases &, in a network of ¥ = 10 necurons
with the parameters & = 3, £ = 1 5 5 plotted. The vertical lmes mark the umes when
the couphng 15 changed. {A) Ail neurons are uncoupled J;, = 0. (B) All newrons are
coupled .J,; = 1 for 2 # 3. (C) The neurons are divided into two groups (the separauion
of the groups is marked by the hotizentzl line) Only the neurons within cach group
are coupled. (D) The neurons are coupled as in (B).

after a few iterations even though the noise amplitude is very small. A small} noise
amplitude is necessary if a zero coupling between the groups is chosen, in order
to allow identical starting phases to show a different time evolution. Alternatively
or additionally the coupling between the groups can be made slightly negative (e.g.
J,, = —0.1) which allows the groups to decorrelate without noise. In the last part
(D) of this figure the coupling between the two groups is switched on again and we
chserve that the neurons correlate again very quickly.

In order to show the correlation properties of the sysiem in a more quantitative
way and to demonstrate that the presented features are not an effect of transients or
only of very small networks, we calculate the cross-correlation functioni of a network
with N = 1000 neurons devided into two groups averaged over 100600 iterations.
The result of this simulation is depicted in figure 3. We find that the correlation
between two neurons within the same group is flat at C(r) = 0 except the peak
around r = 0 where the correlation becomes one. This result is identical with the
autocorrelation function of one of the chaotic signals. If we consider the phases of
neurons in different groups, we observe that the correlation function remains flat
around C'(7)} = 0 even at the delay ~ = 0.

t In fact the noise amplitude can be chosen arbitranly simall because the difference between the two
groups will grow exponentiaily. For numencal simulations i must be chosen iarge enough that ihe
contribution of the noise is not rounded during the iteration.

} The temporal correlation between two time senes X,Y; defined by

Clr) = Tt
v b LD ylzq-r

with z, = X, — (X} and y, = Y, — {¥) where {:) denotes the time average.
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Tigare 3. The cross-correlation function €'(r) 15 plotted for two newrons that are m
the same group (solid hue} and for two neurons that are in different groups (broken
line).

In the last part of this letter we give an example for a simple learning algorithm
that demonstrates how the neural network can organize itself into groups. In order
to do this, we present the different groups (objects) randomly to the network and
apply a Hebb-like learning rule for the coupling strengths J,,

J;(t+1) = @[J, (1} — A+ vs,s, (10
where « determines the learning speed and A is a “forgetting’—term. The function
&{ =Y confinee the value nf the comling strenoth in the rance {8 g 1
T VOTARALILLAS LRI FRMILW WL MV WSMpiraagp CRLVApLAr LER LARW LREHY 4¥min? Ymaxl®

& for @ zg 8
®($) — { min \- max (11)
0 otherwise.

For our simulations we choose A = 0.001,y =0.01,0_, . =0and 0, . =1.In
every timestep during the learning phase each group is independently chosen to be
active with a probability p,. That means with a probability p, we set the activity s,
of all neurons belonging to one group to 5, = 1.

This learning process is shown in figure 4, We want the network (N = 12) to or-
ganize in three independent groups of synchronous phase. According to the learning
algorithm described above we start at £ = O to present the different objects (groups)
in a random fashion with p, = 0.3 to the network (the presented patterns are shown
at the bottom of the figure). Afier this learning, the neurons have organized into

three groups even though these groups have not always been presented separately
during the learning, ie. the network distinguishes the neurons that are always acti-
vated simultaneously because they belong to the same object and those that are only
sometimes activated simultaneously because they belong to different objects that are
presented independently at the same time. In that way the network has learned three
different ‘objects’ that can be distinguished even when they are presented at the same
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Figure 4. Learning in a network of N = 12 neurons; the phases #, of the twelve
neurons are shown m the upper part of the figure, In the last row the presented activity
pattern 1s showti. The learning starts at £ = 0 and ends at £ = 100. Afier this the
couplings have arranged according the ‘leamang rule’ (10), leading to a configuration
that consists of three regions that show indepenrdent chaotic oscillations {for clanty the
three regions are separated by the dotted lines)

time. The neurons of one group continue to oscillate in phase for a time depending
on the ‘forgetting’ constant A,

In conclusion we have demonstrated that coupled circle maps are a useful tool
to simulate and describe the correlation behaviour of neural networks. Besides the
fact that one-dimensioazl maps can be simulated more efficiently than differential
equations, one can profit from knowledge about the dynamical behaviour of circle
maps. The possibility to choose chaotic states of the maps allows us to distinguish
a large number of objects (i.e. build a number of different groups if the network is
sufficiently large) that show no correlation between the newrons belonging to different
objects but perfect correlation within the same group. Practically the number of
different groups is limited by the resolution of the phase variable and the length of
the considered time interval.

This work is supported by the Deutsche Forschungsgemeinschaft via the Sonder-
forschungsbereich 185 ‘Nichtlineare Dynamik’.
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