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Introduction: With 3 -- 4 million new infections occurring annually, hepatitis C

virus (HCV) is amajor global health problem. There is increasing evidence to sug-

gest that HCV will be highly amenable to a vaccine approach, and despite

advances in treatment, a vaccine remains the most cost-effective and realistic

means to significantly reduce the worldwide mortality and morbidity associated

with persistent HCV infection.

Areas covered: In this review we discuss immune responses to HCV during nat-

ural infection, and describe how they may inform vaccine design. We intro-

duce the current candidate vaccines for HCV and compare how these fare

against the expected requirements of an effective prophylactic HCV vaccine

in relation to the breadth, functionality, magnitude and phenotype of the

vaccine-induced immune response.

Expert opinion: Although the correlates of immune protection against HCV

are not completely defined, we now have vaccine technologies capable of

inducing HCV-specific adaptive immune responses to an order of magnitude

that are associated with protection during natural infection. The challenge

next is to i) establish well-characterised cohorts of people at risk of HCV infec-

tion for vaccine efficacy testing and ii) to better understand the correlates of

protection in natural history studies. If these can be achieved, a vaccine

against HCV appears a realistic goal.

Keywords: functionality, hepatitis C virus, immunity, phenotype, prophylactic, T cells,

vaccines, viral vectors
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1. Introducing the problem

The prevention of persistent hepatitis C virus (HCV) infection is an area of real
unmet clinical need. Of the estimated 3 -- 4 million new HCV infections per
year, 10 -- 20% will go on to develop chronic liver disease and HCV is now the
most common indicator for liver transplantation in many countries [1,2]. HCV is
able to persist in up to 70% of immune-competent hosts it infects, and this leads
to a state of chronic hepatic inflammation, which can progress to fibrosis and
cirrhosis of the liver, and ultimately liver failure or hepatocellular carcinoma [1,3].

It was previously thought that an effective vaccine against HCV would be impos-
sible; however, we now know that a significant number of individuals spontaneously
clear the virus in the setting of an appropriate immune response, and there is evi-
dence of protective immunological memory against HCV in chimpanzees (Pan trog-
lodytes) and humans, where secondary infection is associated with reductions in peak
viral titre, duration of viraemia, hepatic inflammation and an increased rate of viral
clearance [4-6]. Immunological memory does not appear as effective as is seen with
Hepatitis A, B or E, as it is rarely, if ever, sterilising (reviewed in [4,6-8]); however,
an attenuated course of infection associated with early viral clearance prevents
chronicity and significant liver disease [4,6]. The goal for a vaccine against HCV is
unique in that to prevent the majority of disease it need only prevent persistence
of the virus rather than prevent infection.
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Currently, there is no licensed vaccine for HCV and treat-
ment is based on pegylated-interferon-a (IFNa) and the
nucleoside analogue ribavirin. This is expensive, relatively
toxic, prolonged (24 -- 48 weeks) and leads to a sustained viro-
logical response (SVR) in only 50 -- 60% of patients, depend-
ing on the infecting genotype [9]. New directly acting
antivirals (DAAs) that target specific HCV proteins are
emerging for the treatment of HCV. Two first-generation
protease inhibitors boceprevir (Victrelis�, Merck) and telapre-
vir (Incivek�, Vertex; Incivo�, Johnson & Johnson) have
been approved for use in the treatment of genotype 1 HCV,
and newer DAAs targeting a wider spread of genotypes and
offering increased SVR rates are expected to be developed

over the next decade [10,11]. Despite continuing improvements
in the prevention of HCV transmission, and in treatment reg-
imens, HCV is likely to persist in areas with limited access to
antivirals and poor blood product hygiene and needle usage.
There is evidence that significant reductions in incidence of
HCV infection, particularly for non-genotype 1 strains, are
unlikely without new interventions and/or a vaccine [12,13].

The characteristic of HCV that will offer the biggest prob-
lem for vaccine design is its viral variability. With sequence
diversity believed to be 10 times that of human immunodefi-
ciency virus (HIV), HCV strains are classified into 7 genotypes
(numbered 1 -- 7), which differ at 31 -- 34% of their nucleo-
tide positions, and which can be further divided into over
100 subtypes [14,15]. This diversity is largely due to a lack of
proof-reading capacity of the viral RNA-dependent polymer-
ase (NS5b) used by HCV during replication; therefore, HCV
exists within a host as a constantly evolving population of
closely related but diverse quasispecies [16].

Over the ~1000 years HCV has been infecting humans,
HCV genotypes have evolved in distinct geographical regions
due to “neutral” sequence drift and by rapid adaptive changes
due to immunological selection pressure [17]. In recent decades
epidemics of certain genotypes have spread through distinct
risk groups, such as the epidemic of genotype 3a HCV
amongst intravenous drug users (IVDUs) in the UK, and
single-source outbreaks due to contaminated blood prod-
ucts [3]. An effective prophylactic vaccine for HCV will need
to effectively target these prevalent circulating viral genotypes
and will need to cope with HCVs’ inherent mutability.

2. The immune response to HCV

Comparative analysis of individuals with distinct clinical out-
comes has been performed by several groups, and there is now
some consensus on the immune response required to prevent
persistence of HCV, but there is no clear correlate of protec-
tion (reviewed in [18-20]). Most simply put, a strong, broad
and persistent HCV-specific adaptive immune response dur-
ing acute infection is required for clearance [21]; however, in
the face of such adaptive immune responses HCV persists in
some patients, which likely reflects the importance of other
antiviral mechanisms [18,19,21].

2.1 Innate
As with other viral infections, the innate immune system --
mediated by phagocytes, natural killer (NK) cells, complement
and soluble antiviral factors, such as IFNs -- has an important
role in the control of HCV (reviewed in [22]); however, HCV
has been shown to suppress early innate immune responses by
multiple mechanisms, most notably by altering the downstream
effects of IFN expression or by blocking its production, and by
down-regulation of NK activity [23-26].

Recent genome wide association studies have highlighted
the importance of innate host genes in the clearance of
HCV. Single-nucleotide polymorphisms linked to the

Article highlights.

. There is currently no approved vaccine for HCV, which
is a major global health problem, newly infecting
~ 3 -- 4 million people annually worldwide.

. HCV persists in up to 70 -- 80% of immune-competent
hosts it infects, leading to a state of chronic hepatic
inflammation that can progress to liver failure or
hepatocellular carcinoma.

. The goal for a prophylactic vaccine against HCV is
unique in that to prevent disease it need only prevent
persistence of the virus, rather than prevent infection.

. Antibody responses to HCV are often strain specific or
do not neutralise circulating HCV strains because they
target highly variable sequences.

. We now know that a small but significant proportion of
humans and NHPs spontaneously clear HCV and
immunological memory can provide protection on
reinfection. Initial clearance of HCV and protection
against persistence in subsequent infections appear to
be prominently mediated by cellular immunity.

. Current HCV vaccine approaches include peptide,
plasmid DNA, recombinant proteins and vector-based
vaccines.

. Virally vectored vaccines are the most promising in
terms of T-cell induction -- in particular Ad and
MVA vectors.

. There is an ever-increasing complexity seen within
T lymphocyte populations and phenotype has been
linked to functionality and protection; therefore, an
understanding of the combination of functions
possessed by the T-cell population is needed to
effectively assess vaccine efficacy.

. Parameters of interest when assessing a vaccine-
induced HCV-specific T-cell population include breadth,
cytokine production, cytolytic capacity, magnitude,
phenotype and proliferative capacity.

. New technologies capable of analysing multiple T-cell
parameters simultaneously may enhance the
stratification of T-cell subpopulations by function,
allowing identification of better correlates of protection
for HCV.

. A major challenge in the next era of HCV vaccinology
will be the assessment of vaccine efficacy in
well-characterised at-risk populations.

This box summarises key points contained in the article.
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interferon-l3 gene have been associated with spontaneous
clearance of HCV and the genotype at this locus is the
most powerful baseline predictor of an SVR in genotype 1
patients treated with standard of care [27,28]; however, the
overall role of IFNs in control of HCV infection remains
unclear [29].

Evidently, the innate immune response is involved in the
effective control of HCV, but it is more difficult to manipu-
late practically for use in vaccines due to its lack of specificity;
nevertheless, it is clear that the use of adjuvants or vectors that
elicit an innate response is key in enhancing the adaptive
immune response to vaccination.

2.2 Humoral responses
Neutralising antibodies provide the clearest correlate of pro-
tection for many viral infections, and generation of such anti-
bodies is the basis of most successful vaccines [30].
Furthermore, vaccines that generate protective antibody
responses against HPV (human papillomavirus) and HBV
(hepatitis B virus) demonstrate that prevention of chronic
viral infection by antibody-inducing vaccination is possi-
ble [31,32]. The relevance of antibody generation for control
of HCV is complex for a variety of reasons.

Circulating antibodies against structural and non-
structural (NS) regions of HCV develop in all patients,
regardless of outcome, and a direct correlation between viral
clearance and the rapid induction of high-titre cross-neutralis-
ing antibodies has been shown, but in most patients antibody
responses are not neutralising or are isolate specific [33-35].
Much of HCV sequence diversity is concentrated in areas of
high variability, such as the major antibody target, hypervari-
able region 1 (HVR1) in E2, meaning antibodies often offer
protection only against a single strain and are easily evaded
by viral mutations [14,36]. If vaccine-induced immunity to
HCV is to be antibody driven, a strong and broadly cross-
reactive response is needed to account for extensive global
diversity and inherent mutability of the virus [37-39].

Due to its hepatotropic nature, a mechanism for antibody
evasion available to HCV is cell-to-cell spread via tight junc-
tions, which are common between hepatocytes [40]. It is also
likely the glycosylated coating of HCV and its interactions
with high-density lipoproteins are not only used in cell entry
but also hinder antibody binding [34].

A coordinated adaptive immune response involving both
antibodies and T cells is normally required for pathogen con-
trol [30]. Conceptually then, is it plausible that a vaccine
inducing T cells alone can prevent persistent HCV infection?
Several observations suggest that it can: chimpanzees and
humans can clear HCV infection without a detectable anti-
body response and HCV-specific cellular immune responses
can be detected in exposed uninfected persons without sero-
conversion [34,41,42]. It has also been shown that hypogamma-
globulinemic patients, deficient in antibody responses, can
clear HCV [43].

HCV uses multiple mechanisms to avoid antibodies, which
can explain why in the face of a detectable antibody responses
HCV can persist; this combined with mounting evidence that
clearance can occur without the detection of antibodies sug-
gests that although generation of effective antibody responses
would be ideal, a vaccine against HCV need not necessarily
induce HCV-specific antibodies.

2.3 Cellular responses
Comparative studies have shown that a functional early
T-cell response of high magnitude, targeted at multiple major
histocompatibility complex class I and II epitopes, is charac-
teristic of effective immunity, and that conversely, the hall-
mark of persistent infection is a weak, narrowly targeted and
dysfunctional T-cell response [44-48]. Patients who go on to
be chronically infected often do not lack a cell-mediated
response initially, but there is evidence that the timing, persis-
tence and functionality of the response are insufficient to
control HCV [21,48,49].

Some of the most convincing evidence for the importance
of T cells in protection against HCV infection comes from
chimpanzee studies in which antibody depletion of
CD8 T cells lead to prolonged viraemia in convalescent chim-
panzees that had previously cleared two rounds of infec-
tion [50]; subsequent viral clearance was precisely correlated
with a recovery of HCV-specific CD8 T cells [50]. A comple-
mentary experiment depleting CD4 T cells again led to the
abrogation of a previously protective immune response [51].
Retention of an effective population of CD4 T helper cells
appears to be a prerequisite for ongoing viral control, as
shown by the reoccurrence of viraemia in individuals where
CD4 responses wane, even after several months of apparent
control [19,21,52]. Kaplan et al. showed in their cohort of
acutely infected patients that those who cleared HCV had a
highly functional virus-specific CD4 response and broadly
targeted IFNg T-cell response, but that patients with
CD8 T cells or neutralising antibodies alone did not clear
HCV [53]. In man, a drop in viral load and a rise in serum
transaminase levels are often temporally linked to the emer-
gence of CD4 and CD8 T-cell responses and increased
intrahepatic IFNg expression [19,48,49,51].

Single-source outbreaks have shown a clear relationship
between the patients’ HLA type and the outcome of their
infection, with HLA-B27, HLA-B57 and HLA-A3 being
associated with protective responses, again emphasising the
importance of effective antigen presentation and concomitant
T-cell response in the clearance of HCV [54-57].

It should be noted, however, that responses of similar
breadth and magnitude to those affording protection from
persistence in some patients have been seen in patients who
go on to be chronically infected and there have been contrast-
ing results when trying to correlate the magnitude of the intra-
hepatic cytotoxic T lymphocytes (CTL) and viraemia or
outcome of infection [33,45,58].

Ever closer to a prophylactic vaccine for HCV
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3. Current vaccine approaches

3.1 Recombinant protein vaccines
Several mechanisms have been investigated for the introduction
of HCV-specific antigens to induce protective immunological
memory (Figure 1; Table 1).
The genes encoding HCV viral proteins have been isolated

and cloned into bacteria, yeast or mammalian cells, and the
recombinant protein expressed purified for use in HCV vac-
cines. The advantage of recombinant protein vaccines is that
they do not contain the pathogen or its genetic material and
they do not require cultivation of the organism.
The first prophylactic vaccine candidate tested for HCV,

T2S-918/InnoVac-C by Innogenetics, consisted of a
C-terminally truncated recombinant E1 protein (Figure 1)
with aluminium hydroxide (alum) adjuvant [59]. This vaccine
elicited antibody titres against E1 in healthy volunteers that
were significantly higher than those seen in patients with per-
sistent HCV infection, but Innogenetics ceased work on this
vaccine in 2007 [59].

The immunogenicity of E1 and E2 (with deletion of
HVR1; Figure 1) was assessed as separate proteins, potentially
uncovering new antibody targets not available in the natural
heterodimeric form of E1E2 [60]. After vaccination with either
E1 or E2 adjuvanted with alum, antibodies were elicited in
four chimpanzees, but only antibodies against E1 were shown
to neutralise HCV pseudoparticles (HCVpp) and antibody
titres declined after challenge [60]. Chimpanzees were chal-
lenged with a 1b strain of HCV and only chimpanzees
vaccinated with E1 were protected from viral persistence [60].

Full-length heterodimeric E1E2 has also been tested
(Figure 1) in vaccines and proved to be highly immunogenic,
showing sterilising immunity in one study against a homolo-
gous HCV strain in five of seven chimpanzees [61]. By com-
bining results from chimpanzee vaccine studies using
E1E2 glycoprotein it was shown to offer protection from
persistent HCV infection in 10/12 and 8/9 chimpanzees
when challenged with homologous or heterologous HCV
strains, respectively [62]. When this vaccine moved into
Phase I human trials, strong antibody responses were detected

Core E1 E2

HVR1 + HVR2 Serine protease + cofactor

P7 NS2 NS3 NS4A NS4B NS5A NS5B5′UTR 3′UTR

A.

B.

Envelope
glycoproteins
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Core E1 E2 P7 NS2 NS3 NS4A NS5ANS4B NS5B

Autoprotease Helicase Unknown function RNA-dependent
RNA polymerase

Nucleocapsid

Protein
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vaccines
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vaccines
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Elmowalid-[1b; 85]

Firbas [1 – 2; 66]
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Park [1b; 77]
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Figure 1. HCV genome structure and vaccine immunogens. (A) Organisation of the HCV genome: HCV, a single-stranded RNA

virus of ~ 9.5 kb, consists of a single open-reading frame and two untranslated regions. HCV is transcribed as a single

polyprotein, which is cleaved by a host signal protease in the structural region and the HCV-encoded serine protease in the NS

region. The hypervariable regions of E2 (HVR1 + HVR2) are indicated by dashed arrows. The protein products of cleavage are

shown. The structural regions consist of core and the two envelope proteins, gp35 and gp76. The NS proteins are shown and

their functions are described where known. (B) Prophylactic vaccines for HCV tested in primates (including man) are listed

according to the lead author of the paper in which they are described. The relative coverage of the HCV genome by vaccine

immunogen is shown. The genotype of the immunogen encoded in each vaccine is shown in parenthesis with the paper

reference [].
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by enzyme-linked immunosorbent assay [63]; these antibodies
could block viral E2 protein-binding CD81, a major entry
receptor for HCV [63]. Despite these promising results techni-
cal difficulties in the manufacture of E1E2 protein have ham-
pered its use in vaccines.

Novartis is also pursuing a vaccine consisting of recombi-
nant HCV core protein (Figure 1) produced in yeast, admin-
istered with a potent T-cell adjuvant immunostimulating
complex matrix (IMX) [64]. Promising results in rhesus maca-
ques led to a Phase I dose escalation trial in 30 healthy volun-
teers, where all but one showed vaccine-induced antibodies
against HCV core protein, but T cells were detectable in
only 2 volunteers receiving a high dose of vaccine [64]. Limited
by the amount of vaccine available, doses higher than 50 µg of
recombinant core protein have yet to be tested.

The use of whole heat-killed recombinant yeast that express
targeted molecular immunogens (tarmogens) has also been
assessed (Figure 1) [65]. A core-NS3-5 fusion protein is
encoded in the vaccine candidate GI-5005a and when com-
bined with IMX and administered to five naı̈ve chimpanzees
a T-cell response was measurable in the liver and blood [65].
Despite altered viral kinetics during the acute phase of infec-
tion in all vaccinated animals, relative to controls, none
cleared HCV after challenge [65].

3.2 Peptide vaccines
Synthetic HCV peptides have been used to induce T-cell
immunity through direct presentation on antigen-presenting

cells (Table 1). Peptide vaccines are HLA-specific and target
only a selected subset of epitope sequences within HCV, lim-
iting their breadth and coverage within the population but
allowing closer control over the immunodominance
hierarchy of vaccine responses.

Five synthetic HCV peptides containing T-cell epitopes
(Figure 1), administered with poly-L-arginine, make up the
vaccine candidate IC41. When administered to 128 HLA-
A2+ healthy volunteers in a Phase I study, IC41 was shown
to be safe and immunogenic [66]. Few IFNg-producing cells
were induced by IC41, as measured by IFNg ELISpot
(Figure 2; median of 30 spot-forming cells [SFCs] per
106 peripheral blood mononuclear cells [PBMCs]) [66].

A further study testing the efficacy of this vaccine when
administered subcutaneously or intradermally showed 65 --
100% of vaccinated healthy volunteers had lymphoproliferative
responses to HCV proteins but again weak T-cell responses
(Figure 2) [67]. The use of the TLR7 agonist, Imiquimod, had
no effect on vaccination [67]. In the setting of chronic infection
this vaccine caused a significant 0.47 log 10 drop in HCV
RNA, but this did not correlate with the size of the T-cell
response [68,69]. The biotechnology company Intercell AG
aims to enhance this approach by broadening the number of
epitopes targeted and by investigating new adjuvants.

3.3 DNA vaccines
Injection of recombinant plasmids has been shown to result in
effective protein expression in vivo and a subsequent immune

Table 1. Primate and human studies describing candidate prophylactic HCV vaccines.

Type of vaccine Investigator Lead author Year Vaccine Tested in Adjuvant Refs.

Recombinant
protein

Innogenetics Leroux-Roels 2004 Recombinant E1
(T2S-918/InnoVac-C)

Human n = 20 Alum [59]

Chiron/Novartis Choo 1994 rE1E2 Chimpanzee n = 7 MF59 [61]

Frey 2010 rE1E2 Human n = 60 MF59 [63]

CSL Ltd. Drane 2009 Recombinant Core Human n = 30 ISCOMATRIX [64]

BPRC, Holland Verstrepen 2011 Recombinant E1 or E2 Chimpanzee n = 4 Alum [60]

Peptide Intercell AG Firbas 2006 7 HLA-A2 restricted
peptides (IC41)

Human n = 128
(HLA-A2)

Poly-L-arginine [66]

Firbas 2010 7 HLA-A2 restricted
peptides (IC41)

Human n = 54
(HLA-A2)

Poly-L-arginine [67]

Virally vectored Transgene Co. Rollier 2007 DNA/MVA Chimpanzee n = 4 - [73]

Okairos Co. Folgori 2006 Ad6/Ad24 +
electroporated DNA

Chimpanzee n = 5 - [74]

Fattori 2006 Ad6/Ad6/ChAd32 Rhesus macaque n = 3 - [75]

University of
Oxford/Okairos

Barnes 2012 Ad6/ChAd3 Human n = 30 - [76]

NIH/Okairos Co. Park 2012 Ad/DNA Chimpanzee n = 5 - [77]

NYC blood center Youn 2008 Recombinant vaccinia Chimpanzee n = 4 - [78]

Other NIH Elmowalid 2007 VLPs Chimpanzee n = 4 AS01B [85]

Ad: Adenovirus, numbers indicate type; ChAd: Adenoviruses of Chimpanzee origin; BPRC: Biomedical Primate Research Centre, Holland; DNA: Plasmids containing

HCV genetic material; HLA-A2: Human leukocyte antigen serotype A2; n: Number of subjects used in study; rE1 or E2: Chimpanzees were vaccinated either with

recombinant E1 protein or with recombinant E2 protein; rE1E2: Recombinant E1E2 heterodimer.

Ever closer to a prophylactic vaccine for HCV
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response in mice, but this initial success has not yet been
translated well into man. DNA uptake and gene expression
decrease with the size of the immunised host; however, there
has been much development in technologies to improve cell
transfection, such as transdermal delivery with the gene gun,
and in vivo electroporation (reviewed in [70]).
Plasmids encoding HCV NS3/4a (ChronVac-c) or core/

E1/E2 (CICGB-230) have shown some efficacy as potential
therapeutic vaccines for HCV, but there is no published
data on their effectiveness as prophylactic vaccines [71,72].

3.4 Vector-based vaccines
Over the last decade great advances in molecular virology have
enabled the manipulation of viruses for delivery of foreign
genetic material to mammalian cells (Figure 1; Table 1) [73-79].

Their highly evolved mechanisms for cell entry and gene
expression within the host cell remain intact and viral vectors
can be rendered non-pathogenic and non-replicative by dele-
tions at specific locus [80]. Some viral vectors at the earliest
stages of testing as delivery vehicles for HCV genetic material
include alphaviruses, canary pox, ovine atadenovirus and
semliki-like viral particles [81-84].

Virus-like particles (VLPs) are attractive vectors for gene
delivery as they mimic the properties of native virions, are
safe and are easily manufactured. VLPs encoding the HCV
core-E1E2 genes (Figure 1) induced a large HCV-specific
T-cell population in chimpanzees (Figure 2) and all four
vaccines cleared challenge with homologous strain of
HCV [85]. Surprisingly, no HCV-specific antibody response
was detected [85].

Adenoviral (Ad) vectors are the best characterised viral vec-
tors and have emerged as the most potent at T-cell priming in
non-human primates (NHPs) and humans [86]. Ad-based
vaccines are particularly attractive gene vehicles as they can
stably express large foreign inserts (~10 kbp), they remain epi-
chromosomal and can be easily rendered replication defective
by deletion of the E1 locus [80,87].

The major limitation with the use of adenoviruses is that
pre-existing immunity to the vector can lead to its clearance
before a response is elicited to the inserted immunogen [86];
this can in part be overcome by the use of rare subtypes that
are of low seroprevalence, or the use of adenovirus with
altered surface proteins [86]. An extensive study of chimpanzee
adenoviruses by researchers at Okairos (Rome, Italy) isolated
over a thousand strains and showed that their immunogenic-
ity in mice varied widely [88]. Chimpanzee adenovirus
3 (ChAd3) and Ad6 were selected for analysis in human and
animal trials, with the whole NS region of HCV (genotype
1b, BK strain) [76].

Support for the use of Ad-based vaccines to induce protec-
tive T-cell populations in man came from a therapeutic trial
in which chimpanzees received heterologous Ad-Ad followed
by further boosting with electroporated DNA, all containing
the NS region of HCV (Figure 1) [74]. All vaccinated chimpan-
zees produced a high-magnitude T-cell response (Figure 2;
peak total anti-HCV responses ranged from 615-2509
SFC/106 PBMCs and 1108-7678 SFC/106 PBMCs for
CD4 and CD8 T cells, respectively) and when challenged
with a heterologous HCV strain four of five cleared the
virus [74]. Vaccinated animals showed strong anamnestic
responses that resulted in a blunted peak viraemia and shorter
period of infection relative to controls [74]. Prime-boost vacci-
nation with heterologous adenovirus containing HCV NS
also induced a large and broadly targeted HCV-specific
T-cell response in rhesus macaques (Figure 2) [75].

On the strength of this preclinical data the Ad vectors
ChAd3 and Ad6 were tested in a Phase I clinical trial in healthy
volunteers [76]. All 10 patients receiving the highest dose of Ad
responded to vaccination, with peak T-cell responses averaging
over 1000 SFC/106 PBMCs (Figure 2; range 443 -- 4263).
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vaccinations are separated by a forward slash, e.g., DNA/

MVA refers to a vaccine regimen using DNA priming

followed by an MVA boost. References in parenthesis [].
* Denotes approximation of published values. ChAd: Adenovirus of chimpan-

zee origin; i.d.: Vaccine was administered intradermally; rE1 or E2: Chimpan-

zees were vaccinated either with recombinant E1 protein or with Recombinant

E2 protein; rE1E2: recombinant E1E2 heterodimer; Sub.c.: Vaccine adminis-

tered subcutaneously; rVaccinia: Replication competent recombinant vaccinia

vector.

L. Swadling et al.

1114 Expert Opin. Biol. Ther. (2013) 13(8)



However, boosting with heterologous Ad in healthy volunteers
was not as effective as predicted from the results in rhesus
macaques, which is likely due to higher levels of cross-reactive
antibodies against the Ads in humans [75,76].

Modified vaccinia Ankara (MVA) is another attractive
vaccine vector due to its excellent safety record and immu-
nogenicity in man. It has been shown to be particularly
effective as a boosting vector, broadening and increasing
the magnitude of pre-existing T-cell responses [86,89-92].

A heterologous prime-boost regimen with DNA and MVA
encoding core-E1-E2 (Figure 1) and NS3 was tested in naı̈ve
chimpanzees by TRANSGENE [73]. A large T-cell response
was seen post-vaccination by IFNg and IL-4 ELISpot
(Figure 2), but proliferative responses were transient and a
high expression of IDO, CTLA-4 and PD-1 on HCV-specific
T cells after challenge suggested that induced T cells could
have been dysfunctional [73]. Three of four went on to be
chronically infected when challenged with a heterologous
J4 strain of HCV [73].

Using the malaria antigen ME.TRAP, priming vaccination
with Ad elicited similar T-cell responses to Ad encoding HCV
NS, and these responses were boosted 3.1 -- 5.2-fold by vacci-
nation with MVA containing ME.TRAP (Figure 2) [92]. Build-
ing on the results outlined above, a trial to assess the safety
and efficacy of a prime-boost regimen using ChAd3 boosted
with MVA encoding HCV NS in patients and healthy volun-
teers is ongoing [93]. This Ad/MVA vaccine regime has also
progressed to a Phase II study, which will take place in an
intravenous drug using community in Baltimore [94]. This
study will be the first double-blinded, randomised, placebo-
controlled trial of a vaccine to prevent HCV persistence.
The trial will enrol 350 subjects and is set up to assess whether
this regimen can enhance the rate of spontaneous resolution
of HCV infection.

A single meta-analysis has compared the overall outcome
of HCV infection between differing prophylactic vaccine
studies in chimpanzees, and also performed a comparison
between naı̈ve, re-challenged and vaccinated animals [5].
The authors show that immunological memory after prior
viral clearance, or vaccination, leads to a reduction in
peak HCV RNA titre and increased HCV clearance rates
after viral challenge [5]. Additionally, the study dissects the
outcome of infection after vaccination according to whether
or not the vaccine included NS or structural regions of
HCV, concluding that vaccines containing only structural
antigens were more efficacious [5]; however, these data
should be interpreted with caution, since a large proportion
of animals were vaccinated with the E1E2 recombinant
protein heterodimer (Novartis; [62,95]), and differences in
the challenge strain and dose of virus between studies com-
plicate the comparative analysis [5]. Examples of protective
and non-protective vaccines can be found for vaccines con-
taining structural antigens, NS antigens or both, and more
research is needed into which antigens offer the best
protection [73,74,78,95].

4. What is a protective T-cell response?

Several methodologies are progressing to clinical studies in
humans but what do we know about the type of immune
response offering protection from persistent HCV infection,
and how do responses to the current vaccine candidates
measure up against this ideal?

4.1 Magnitude
The most fundamental characteristic of a T-cell response is its
magnitude, as measured directly by the frequency of antigen-
specific T cells or by the number displaying a certain effector
function, most commonly production of IFNg .

Although no defined cut-off for a protective response
against HCV exists, responses in individuals who clear acute
infection are typically in the region of a few hundred IFNg-
producing cells per million PBMCs, and the responses often
remain detectable for many years after infection [21,53,74,96,97].

Prospective vaccines against HCV have induced T-cell
populations with a wide range of magnitudes (Figure 2).
One of the few vaccines tested in humans for which T-cell
responses were measured, IC41, had a median response of
only 30 SFC/106 PBMCs (range 15 -- 185) [67]. The largest
magnitude HCV-specific T-cell responses seen in animal
models and humans have come from regimens using Ad vec-
tors (Figure 2). The responses to Ad6-ChAd32 heterologous
prime-boost had an average of 4924 SFC/106 PBMCs in
rhesus macaques and 1202/1400 SFC/106 PBMCs in the
two Ad-Ad regimes tested in humans (Figure 2) [75,76].

Although vaccines that induce high levels of HCV-specific
T cells in animal models have protected against persistent
HCV infection, this is not always the case; T-cell responses as
high as 2368 SFC/106 PBMCs in chimpanzees vaccinated
with DNA and boosted with MVA were not protective against
challenge with a heterologous strain of HCV, highlighting the
importance of other factors, in particular the functionality
and antigen specificity of the vaccine-induced T cells [5,73].

With the development of viral vectors we now have the
means to induce large numbers of antigen-specific and
IFNg-producing T cells. However, it is apparent that the
magnitude of the T-cell response alone is a poor predictor
of protection for many viral infections and that an under-
standing of the combination of functions possessed by T-cell
populations is needed [91,98-101]. Several T-cell parameters of
importance for vaccine design are discussed below.

4.2 Breadth
The selection pressure exerted by the adaptive immune
response rapidly selects for escape variants, leading to persis-
tence of HCV strains that are unrecognisable by circulating
T cells and antibodies in both natural infection of humans
and in animal infection models [36,102-104]. The breadth of a
T-cell response has been reproducibly associated with control
in human correlative studies [21,45,96,97]. For an effective HCV
vaccine, a T-cell response targeting multiple epitopes may
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be required to limit the possibility of viral escape and to
effectively block viral replication [45,96,97].
The breadth of the T-cell response to vaccination is

dependent upon the size and specificity of the immunogen
(Figure 1), and vaccine studies to date have induced T-cell
responses with a wide variation in breadth. The breadth of
the response using a peptide vaccine will be restricted to
the HLA repertoire of the vaccinated population, whereas a
virally vectored vaccine approach may induce a broadly
targeted T-cell response on a diverse HLA background
population [66,76].
As well as targeting multiple HCV epitopes, an effective

global vaccine will also need to target multiple viral geno-
types [14]. Using HCVpp recombinant E1E2 protein vaccines
induced antibodies with cross-reactivity against genotypes 1a,
1b and 2a [105]. Barnes et al. showed that response to Ad-
Ad vaccination containing the NS region from a 1b BK strain
recognised peptides from genotypes 1a, and to a more limited
extent, 3a, the most prevalent genotypes in Europe and
America [76].

4.3 Proliferation and cytokine production
A dysfunction in the T-cell proliferative capacity has been
repeatedly identified in those who fail to control HCV relative
to those who clear [46-48,106]. Good proliferative capacity is
key for memory responses induced by prophylactic vaccina-
tion, as a rapid and large expansion of secondary effector
T cells is needed during recall responses. Lymphoproliferative
responses to HCV proteins have been seen in several HCV
vaccine studies [59,63,66,74,76,85].
Intracellular cytokine staining is used to assess the produc-

tion of several cytokines relevant to viral control by antigen-
stimulated T cells. The production of IFNg and TNFa is often
measured due to their direct antiviral effect, as well as IL-2,
which promotes the clonal expansion of T-cell populations
on activation and influences differentiation of T-cell subsets.
These cytokines are often measured in conjugation with
CD107a (lysosome-associated membrane protein-1), a marker
of T-cell degranulation, and the pro-inflammatory cytokine
MIP-1-b (macrophage inflammatory protein-1b; CCL4).
It has been assumed, but not convincingly shown, that a

polyfunctional T cell, with the capacity to carry out multiple
antiviral functions, is more effective at clearing a virus than a
monofunctional T cell; evidence of this came from compara-
tive studies of long-term non-progressors (LTNPs) and pro-
gressors in the setting of HIV infection, and mouse studies
of Leishmania major [99,107]. The T-cell population in LTNPs,
relative to progressors, is enriched for single CD8 T cell that
can co-produce MIP-1-b, TNFa, IFNg and CD107a [98].
But these highly polyfunctional T cells are lacking in some
LTNPs, when present represents a small fraction of the total
HIV-specific T-cell population, and could simply be an indi-
cator of low antigenic load in these individuals [98,107]. Poly-
functionality not only affords a larger repertoire of functions
for the individual cell, but it can also mean a larger per-cell

production of the cytokine relative to monocytokine pro-
ducers (e.g., in some studies monocytokine-producing
T cells made 10� less IFNg per cell than polyfunctional
T cells) [99,108-110].

Evidence of a hierarchy in cytokine production is emerging,
where increased antigen exposure and co-stimulation lead to
an increase in functions expressed by a T cell [111-114].
Viola et al. showed that MIP-1-b and IFNg are most readily
released by T cells on limited stimulation and that IL-2
production is only triggered when a T cell has been exposed
to high levels of antigen and co-stimulation [114]. The antigenic
load resulting from vaccination is highlighted as a key attribute
that will affect T-cell quality and vaccine efficacy. This hierar-
chy is evident in vaccine responses elicited by Ad-Ad and
Ad-MVA vaccination, and polyfunctionality is a characteristic
of T-cell responses to these vector combinations [76,92].

4.4 Cytotoxicity
One functional attribute of human CD8 T cells that
unequivocally combats acute viral infections is cytotoxic-
ity [21,115]. Direct cytotoxic killing of infected cells is primar-
ily mediated by the activation of apoptotic pathways within
the target cell by granzyme cleavage of intracellular cas-
pases [116]. On recognition of an infected cell, activated
CTL secrete lysosomes containing the pore-forming protein
perforin and granzymes, which are delivered to the target cell
inducing its apoptosis [117,118].

Rather than its ex vivo expression, the rapid up-regulation of
perforin is a key effector function of T cells, and one that
appears to be lacking in HCV-specific T cells taken from chron-
ically infected patients [98,119,120]. Although it has been shown
that during chronic infection HCV-specific CD8 T cells are
often deficient in perforin expression and up-regulation relative
to CMV-specific populations, it remains unclear how much
perforin is necessary to initiate granzyme-mediated killing [120].

Surface mobilisation of CD107a has been used to identify
cells that have degranulated on peptide stimulation and,
although this assay does not show killing directly, or give
information on the content of the granules released, it can
be combined with staining for granzymes and perforin to
give an indication of the cytolytic potential of a T cell [121].

Few trials have assessed the cytolytic capacity of vaccine-
induced CTL, but it remains a key parameter that should be
assessed in any vaccine aiming to mediate protection through
induction of T cells. After vaccination with heterologous Ad-
Ad encoding the NS region of HCV, the vast majority of
HCV-specific T cells express both granzyme A and B, and
often high levels of perforin [76]. It was also shown that these
cells produced CD107a on peptide stimulation, showing
that they have the capacity to kill HCV-infected cells [76].

4.5 Phenotype
Research over the last decade has revealed an ever increasing
complexity and division of labour within T lymphocytes, par-
ticularly within the memory compartment [101,122-124].
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Antigen-experienced cells in humans express the short,
CD45RO, form of the protein tyrosine phosphatase CD45,
and the long form, CD45RA, is expressed by naı̈ve T cells
and is re-expressed by a subset of CD8 T cells [125]. In combi-
nation with the lymph node homing receptor CCR7, four
broad populations of T cells can be described [122]: Central
memory T cells (Tcm; CD45RA-, CCR7+) that home to
the lymph nodes and have limited effector function but high
proliferative capacity; Effector memory T cells (Tem;
CD45RA-,CCR7-) that show immediate effector and cyto-
lytic function and circulate peripheral tissues; naı̈ve, antigen-
inexperienced T cells (CD45RA+, CCR7+); “terminally dif-
ferentiated” effector memory T cells (Temra; CD45RA+,
CCR7-) that have re-expressed CD45RA.

Additional complexity has been found in mice studies that
have tried to identify precursors of long-lived memory cells in
the effector pool. Effector T cells have been divided into
memory precursor effector cells and short-lived effector cells
by their expression of CD127 (IL-7Ra), and KLRG1 and a
population of T cells with stem cell-like properties have
been described (Tscm) [126-128].

Rather than being a trivial pursuit, the description of these
subsets of T cells has led to the identification of certain subsets
as being the main mediators of protection after vaccina-
tion [91,129]. An Ad-MVA heterologous prime-boost regimen
encoding malaria antigens preferentially induced antigen-
specific Tem that mediated protection against challenge with
malaria sporozoites, as confirmed by transfer experiments [91].
Tem were also shown to mediate protection against SIV
challenge in rhesus macaques [129].

It is now clear T cells play a key role in clearance of HCV,
but we are lacking information about which subsets mediate
this control and which subsets we should aim to elicit by vacci-
nation. It is likely that a mixed population of lymph-node
homing Tcm, with the potential to rapidly proliferate and
differentiate into effector T cells, along side a population of
Tem, which circulate the periphery and have a more immediate
effector function, would in theory be most effective.

The vaccine platform used to deliver immunogens has a
profound influence on the type of T-cell response elicited,
due to differences in the innate signalling pathways stimu-
lated and the persistence and amount of antigen after
vaccination [86,91,129,130].

Low levels of transcriptionally active Ad have been shown
to persist long term at the site of vaccination, in the liver
and in lymphatics, after vaccination with Ad in mice and pri-
mates; however, transgene expression by MVA becomes unde-
tectable after ~ 2 days [131]; this may explain why MVA
vaccination is characterised by the induction of Tcm, whereas
a single Ad induces and maintains an active Tem population,
as well as developing Tcm and Temra [91,131]. It is clear the
number of antigen encounters, or vaccinations, also influences
the extent of T-cell differentiation [132]. For example, repeated
stimulation by antigen can lead to a larger population of Tem
and Temra but fewer Tcm [133].

Barnes et al. describe the phenotypic properties of T cells
induced by heterologous Ad-Ad vaccination encoding the
NS region of HCV [76]. Vaccine-induced CD8 T cells peaked
in magnitude 2 weeks post Ad priming, and subsequently
contracted to a memory T-cell population in which a signifi-
cant proportion had down-regulated PD-1, and re-
expressed CD127 [76]. A key feature of the CD8 T cells
induced by Ad encoding the NS region of HCV is the re-
expression of CD45RA, giving a mixed population consisting
of Temra > Tem > Tcm [76]. This phenotype is remarkably
similar to that of the T cells induced by the highly efficacious
vaccines for yellow fever and smallpox (Dryvax), which have
excellent safety records in humans and elicit large T-cell
responses that are associated with life-long protection [134].

The use of classic phenotypic markers has under-repre-
sented the complexity of T-cell phenotypes, but the advent
of sophisticated cytometric techniques (i.e., multiparametric
flow cytometry, cytometry by time-of-flight, and gene expres-
sion profiling) capable of analysing multiple T-cell parameters
simultaneously may enhance the stratification of T-cell sub-
populations by function [101,130,135]; for example, a recent
study described phenotypically identical T-cell populations
induced by different vaccine regimens that were distinct
when the cell transcriptome was assessed [130].

Three prime-boost regimens encoding HIV Env gene were
compared by Flatz et al. (DNA-Ad, Ad-Ad and Ad-rLCMV
[recombinant Lymphocytic choriomeningitis virus]) and
despite inducing T-cell populations that were similar in mag-
nitude, cytokine production and Tem/Tcm phenotype, the
gene expression profile of the cells induced by different regi-
mens was distinct [130]. Using linear discriminant analysis,
antigen-specific T cells clustered separately for each regimen
and there were noticeable differences in expression in senes-
cence and homing markers (e.g., Eomes, CCR7, CXCR3,
CCR5, KLRG1 and Klrk1) [130]. Therefore, even using the
magnitude, cytokine production and classic phenotyping
may not be sufficient to identify correlates of protection
because they are insensitive to the full extent of heterogeneity
in CD8 responses [130].

Clearly, a better understanding of the division of labour
between T-cell subsets and the steps involved in T-cell differ-
entiation and memory formation should help identification of
correlates of protection for viral pathogens.

5. Conclusion

The development of a vaccine capable of preventing chronic
HCV infection remains the most cost-effective and realistic
method of controlling HCV globally, and it would find a tar-
get population in at-risk groups in developed countries and in
entire populations in many developing countries [13,136].

The prospects for a HCV vaccine have improved greatly in
the last decade and there is now strong evidence that HCV is
highly amenable to a prophylactic T-cell vaccine. Evidence
from secondary infections in patients and from vaccine studies
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in humans and NHP show that immunological memory can
protect against persistence of HCV and therefore disease,
and this protection appears to be prominently mediated by
cellular immunity [4-6,137].
We now understand that clearance of HCV can occur with-

out the induction of a measurable antibody response; how-
ever, vaccine-induced neutralising antibodies, when targeting
circulating virus, also show effective control of HCV [60,95].
It is likely that a T-cell-based vaccine will show enhanced
efficacy when combined with a vaccine that induces
cross-reactive antibodies.
With the development of novel DNA delivery systems,

viral vectors and VLPs we now have the tools to induce large
antigen-specific T-cell populations (Figure 2) and we are
developing adjuvants to enhance these further and to tailor
the types of T-cell subsets induced by vaccination.
We now know that different subtypes of T cell exist, with

different functionalities, and that these subsets offer different
levels of protection against specific pathogens. As this under-
standing develops further we will be able to better asses and
manipulate vaccine-induced T-cell populations. To do this
it is essential that we better describe the T-cell parameters
associated with control of HCV.

6. Expert opinion

A vaccine for the prevention of HCV infection would address
a huge unmet clinical need globally. In developed countries
we would envisage that an effective prophylactic vaccine
would be administered to at-risk populations, but in large
areas of Africa and Asia, where prevalence rates are high, a
universal vaccination strategy would be optimal. It is this
need that has driven an intense research program in HCV
vaccinology over the last 15 years.
Detailed studies of natural infection have shown that

complete HCV viral control is attainable through effective
host anti-viral immunity. Multiple lines of evidence point to
the crucial role played by host T-cell immunity in viral
control, in addition to host innate immune genes. Effective
humoral immunity has been less clearly associated with
protection -- nevertheless, a vaccine that induced appropriate
B-cell responses may improve vaccine efficacy. Over the last
decade numerous vaccine strategies have been assessed in
small animal and primate models. Broadly these include
HCV envelope protein vaccines designed to generate protec-
tive humoral responses, peptide vaccines that are restricted
by host HLA, and more recently DNA and virally vectored
approaches (Figure 1). DNA vaccination is capable of generat-
ing robust T-cell immunity, but requires additional delivery
mechanisms such as electroporation. Virally vectored vaccines
have recently reached Phase II studies and show immense
promise when used alone, or in the future alongside other
approaches (Figure 2).
To date, the exact correlates of immune protection against

persistent HCV infection have not been clearly defined, and

indeed this may never be achieved given the heterogeneity
contained within small study populations of patients with
primary infection and the real limitations of animal models
of HCV infection. However, in broad terms, the generation
of CD4+ and CD8+ T cells that target multiple HCV anti-
gens at a high magnitude, and that persist over months to
years, is seen in humans that control viraemia after primary
infection, and also in primate prophylactic T-cell vaccine
studies [44-48,74,75,77,78]. Therefore, current vaccine strategies
should at least aim to recapitulate these findings in Phase I
human studies before efficacy testing. Ideally a potent
T-cell vaccine would be combined with an antigen capable
of generating broadly cross-reactive neutralising antibodies
against HCV envelope. However, currently this is not
technically feasible.

Current vaccine approaches are capable of inducing
T-cell immunity of a breadth and magnitude that has
been associated with viral clearance in humans. However,
we do not know if these T cells possess all the “qualities”
that are required for long-term viral control, since these
qualities are not absolutely defined. This presents a real lim-
itation in the design, assessment and ranking of vaccine can-
didates. Natural history studies that identify T-
cell parameters associated with viral control in the context
of HCV and also other pathogens will contribute to our
understanding in this area (Figure 3). However, Phase II
studies of efficacy testing in humans may be required to fur-
ther define immune correlates of protection, for optimal
vaccine generation in the laboratory -- a process termed
“reverse vaccinology” (Figure 3).

We believe that in order to now advance the field, compar-
ative Phase I studies in human trials that address the magni-
tude, breadth and functionality of T and B cells induced by
leading vaccine candidates, incorporating a range of immuno-
gens, should be developed. Ultimately, Phase II studies assess-
ing efficacy of the most promising regimens will be required.
Since efficacy studies are logistically challenging, consortiums
of investigators that care for well characterised at-risk cohorts
(e.g., IVDUs and men who have sex with men) could be
established now. If this approach is taken then a platform
will be in place for efficacy testing of the most promising vac-
cine candidates when required (Figure 3). These studies would
assess the change of incidence of primary HCV infection that
progresses to chronic disease. A placebo-controlled, Phase II
study assessing vaccine efficacy using these principles in
IVDUs is currently underway in Baltimore, USA, and pro-
vides proof of principle that this kind of study is now feasi-
ble [94]. This approach can move forward in parallel with
laboratory studies that aim to improve small animal models
of HCV and to further define the correlates of immune
protection in natural history studies.

Another challenge in the field is the generation of cross-
reactive immune responses that are capable of protecting peo-
ple from diverse HCV strains. This may be less of an issue in
populations where only one viral genotype commonly
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circulates, though even in this case there is considerable diver-
sity between individuals infected with the same HCV geno-
type. However, in many countries multiple viral genotypes
circulate, for example in the United Kingdom approximately
50% of people are infected with genotypes 1a or 1b and
50% with genotype 3. Ideally then, an effective vaccine would
be capable of protecting from multiple HCV strains. This
may be achieved through administering more than one
genotype-specific vaccine at a population level, or through
the design of immunogens within a single vaccine that target
multiple genotypes.

The HCV research community can be proud of the prog-
ress made over the last two decades in understanding HCV
pathogenesis through in vitro replication models, and in the
recent advances in the treatment of HCV. In the next decade
we will see the implementation of multiple new DAAs that
will cure many of those already infected. However, these treat-
ments will come at a significant financial burden, and will be
unavailable to most, either because infected people exist in
resource poor settings, or because people are unaware that

they are infected. Furthermore, these drugs are least effective
in people with advanced disease who need them most. For
these reasons we believe that the adage “prevention is better
than cure” holds true for HCV today.

This, combined with new vaccine technologies that are
really capable of delivering potent anti-HCV viral immunity,
argues for major new investment in HCV vaccine Phase I, and
efficacy studies. This investment will require not only signifi-
cant financial resourcing, but also appropriate infrastructure
and collaborative working between investigators that care for
carefully characterised patient and “HCV at-risk” cohorts,
across national boundaries. If these practical steps are taken,
a preventative vaccine for HCV can be achieved.
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Figure 3. Progress to an effective prophylactic vaccine against HCV. A summary of some of the key interactions between basic

research and vaccine studies is shown. Natural history studies of HCV infection are used to better understand the immune
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of vaccines for preclinical and Phase I studies and at the selection stages when assessing efficacy of candidate vaccines.

Cohorts of at-risk populations need to be characterised before candidate vaccines can be tested in Phase II/III studies and so

this work should be done in parallel with early-stage vaccine assessment. Phase II/III studies of vaccine efficacy may be

required to further define correlates of protection for optimal vaccine generation -- a process termed “reverse vaccinology”.

Basic research into vaccine modalities, adjuvants and the biology of T and B cells can be fed into the process of vaccine

development at all stages to allow us to better design, assess and implement novel vaccines.
HCV: Hepatitis C virus.
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