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Introduction: Current gene therapy involves replacement of defective gene

by delivery of healthy genetic material to precede normal function. Virus-

mediated gene delivery is the most successful and efficient method for gene

therapy, but it has been challenged due to serious safety concerns. Conversely,

gene delivery using plasmid DNA (pDNA) is considered safer, but its transfec-

tion efficiency is much lower than virus-mediated gene transfer. Recently,

mRNA has been suggested as an alternative option to avoid undesired

insertion of delivered DNA sequences with higher transfection efficiency

and stability.

Area covered: In this review, we summarize the currently available strategies

of mRNA modification to increase the therapeutic efficacy; we also highlight

the recent improvements of mRNA delivery for in vivo applications of gene

therapy.

Expert opinion: The use of mRNA-based gene transfer could indeed be a

promising new strategy for gene therapy. Notable advantages include no

risk of integration into the genomic DNA, adjustable gene expression and

easier modulation of the immune system. By reducing or utilizing the immu-

nogenic properties, mRNA offers a promising tool for gene/or transcript

replacement.
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1. Introduction

Strategies of current gene therapy include replacement of defective gene by delivery
of healthy genetic material to precede normal function. For gene therapy, virus-
mediated gene delivery has been considered to be the most successful gene replace-
ment method with high efficiency. However, this method has been challenged due
to serious safety concerns, including insertion mutagenesis and triggering of the
innate immune response [1]. Conversely, non-viral vector-mediated gene delivery
using pDNA is safer but has lower transfection efficiency compared to viral vectors
because of insufficient nuclear transport. Modification of pDNA for nuclear local-
ization and enhanced transcription by using a strong constitutive promoter increases
the expression of therapeutic genes, but integration of delivered sequences into the
nuclear DNA also induces unexpected genetic changes [1,2].

To overcome undesired integration of transferred pDNA, mRNA has been sug-
gested as an alternative [3,4]. As sufficient amounts of in vitro transcribed mRNA
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can be easily obtained by commercially available kits, thera-
peutic gene delivery using mRNA is now an effective replace-
ment for pDNA in gene therapy. Gene delivery using mRNA
has several advantages compared to pDNA. First, unexpected
insertion mutation and promoter dependency can be excluded
because mRNA is works as a gene/or transcript replacement in
the cytoplasm. Therefore, nuclear translocation and transcrip-
tion is not required. Second, mRNA-mediated gene transfer
occurs in non-dividing cells, while pDNA-mediated gene
transfer is mostly effective in dividing cells. Third, immuno-
genicity can be easily modulated by chemical modification.
Although there are many advantages of mRNA-mediated

gene delivery, mRNA was previously considered too unstable
to be used as a therapeutic molecule. However, transfection
efficiency of mRNA has been greatly improved [5,6] and the
half-life of mRNA has been dramatically increased, ranging
from a few minutes to several hours by chemical
modifications [7-9], which facilitates the use of mRNA for
therapeutic gene transfer. By combining various mRNA
modification and delivery methods, the efficacy of mRNA
gene therapy could be greatly improved.

2. Modified mRNA

The main reason for mRNA instability is the presence of a
hydroxyl group on the second carbon atom of the sugar
moiety, which facilitates hydrolytic degradation. Either
cis-acting or trans-acting factors can influence mRNA
degradation [10]. Mature eukaryotic mRNA consists of five
significant portions, including the cap structure ([m7GpppN
or m7Gp3N (N: any nucleotide)], the 5’ untranslated region
(5’UTR), an open reading frame (ORF), the 3’ untranslated
region (3’UTR) and a tail of 100 -- 250 adenosine residues
(Poly(A) tails) (Figure 1A).
The cap structure is post-transcriptionally modified with

methylated m7GpppN in the nucleus at the 5’ ends of
mRNA [11] and plays an important role in normal mRNA
function, for example, mRNA splicing [12], stabilization [13],

transport [14], recruiting ribosomes [15,16] and translational
repression via microRNA [17,18]. This structure contains an
uncommon nucleoside, 7-methylguanosine (m7G) and is
connected with the 5’-5’ triphosphate bridge to the first
transcribed nucleotide (Figure 1C).

To increase the efficiency of mRNA translation, an anti-
reverse-cap analogue (ARCA), which contains a modified
cap structure containing a 5’-5’ triphosphate bridge, has
been suggested (Figure 1D and E) [7]. In vitro transcription
performed in the presence of a cap analog may be initiated
by an RNA polymerase from either guanosine (G) or m7G
to produce correctly-capped (m7GpppG) or reversely-capped
(Gpppm7G) mRNA, respectively [19]. The mRNAs bearing
reversely-capped structures are poorly translated and more
readily degraded. Only the 5’-5’ triphosphate linkage yields
a translatable mRNA molecule. Introducing a chemical mod-
ification at the 3’- (or 2’-) position of the cap analogs prevents
the reverse incorporation and improves both mRNA quality
and translation efficiency. ARCA results in attachment in
the correct direction only, which is recognized by eukaryotic
initiation factor 4E (eIF4E), leading to ribosome recruitment
and translation [9]. In addition, it has been reported that a
high number of cap modifications and elongated 5’-5’ phos-
phate bridges in the ARCA improves translation efficiency
and stability of mRNA [8].

The length of the poly(A) tail is also crucial for efficient
translation and enhancing mRNA stability [20]. In mammalian
cells, most actively translated mRNAs contain 100 -- 250 poly
(A)s [21]. For exogenous application, at least 20 poly(A)s are
required for effective translation [22]. Generally, translation
efficiency is dependent on the number of poly(A)s [23]. The
poly(A) tail binds to numerous polyadenosyl-binding proteins
(PABP), which recruit eukaryotic initiation factor 4G
(eIF4G), leading to circular mRNA by increasing affinity to
the mRNA cap [24]. This synergistic effect of the cap structure
and the poly(A) tail has been explained by a cap-eIF4E-
eIF4G-PABP-poly(A) closed loop structure, which could
facilitate the recycling of ribosomes [25] and protect from
nucleolytic degradation [26].

RNA degradation is initiated by shortening of the poly(A)
tail and includes a de-capping process (Figure 1F). The cap
structure and the poly(A) tail in the mRNA cooperatively
function to maintain the stability of the mRNA [27,28]. The
mRNA cap binds to the cap-binding protein (CBP) complex,
which regulates mRNA transport from the cytoplasm to the
nucleus. Degradation of mRNAs takes place in the cytoplasm
at sites called P-bodies, which contain 5’-3’ exonucleases,
de-capping and de-adenylating enzymes [28-30]. Once the
poly(A) tail has been shortened to less than 12 residues,
mRNA degradation then occurs by de-capping, along with
5’!3’ exo or 3’!5’ cleavage [31].

Further optimization of the mRNA structure can be
achieved by replacing unstable non-coding sequences with
non-coding sequences of mRNAs that are known to be stable.
Most eukaryotic mRNAs contain mRNA decay signals in

Article highlights.

. The use of mRNA-based gene transfer could be a new
promising strategy for transcript replacement and
vaccination therapy.

. Various chemical modifications increase the stability of
mRNA and provide more chances for the possible use of
mRNA-mediated gene transfer for gene therapy.

. Recent advances of mRNA-based gene transfer provide
notable advantages including no risk of integration into
the genomic DNA, adjustable gene expression and
easier modulation of the immune system.

. Specific nanoparticle formulation using modified mRNA
improves the therapeutic efficacy both in transcript
replacement and vaccination.
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Figure 1. Typical gene deliveries for therapeutic application. A. pDNA or mRNA-mediated gene transfer is illustrated. pDNA

contains the multiple cloning site (MCS), which is used for restriction endonuclease recognition to insert transgene. Mature

eukaryotic mRNA consists of five significant portions, including the cap structure ([m7GpppN or m7Gp3N (N: any nucleotide)],

the 5’ untranslated region (5’UTR), an open reading frame (ORF), the 3’ untranslated region (3’UTR) and a tail of

100 -- 250 adenosine residues (Poly(A) tails). B. Regions of mRNA modifications for increasing their stability. C. Chemical

structure of mRNA CAP. D. Standard dinucleotide cap analog. E. Anti-reverse cap analogs (ARCA). F. mRNA degradation

pathways. Both major pathways of mRNA decay are initiated by deadenylation (continued).
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Figure 1. Typical gene deliveries for therapeutic application. A. pDNA or mRNA-mediated gene transfer is illustrated. pDNA

contains the multiple cloning site (MCS), which is used for restriction endonuclease recognition to insert transgene. Mature

eukaryotic mRNA consists of five significant portions, including the cap structure ([m7GpppN or m7Gp3N (N: any nucleotide)],

the 5’ untranslated region (5’UTR), an open reading frame (ORF), the 3’ untranslated region (3’UTR) and a tail of

100 -- 250 adenosine residues (Poly(A) tails). B. Regions of mRNA modifications for increasing their stability. C. Chemical

structure of mRNA CAP. D. Standard dinucleotide cap analog. E. Anti-reverse cap analogs (ARCA). F. mRNA degradation

pathways. Both major pathways of mRNA decay are initiated by deadenylation.
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their 3’ untranslated regions (3’ UTRs), which affect mRNA

stability. Various AU-rich sequences in the 3’ UTR of

mRNA have been reported to be involved in the removal of

the poly(A) tail [32]. The half-life of mRNA increases when

AU-rich sequences are replaced with sequences of 3’ UTR

from stable mRNA [10]. Other specific sequences in the 3’

UTR are the so-called iron responsive elements (IREs), which

regulate mRNA stability in the 3’ UTR, and affect translation

in the 5’ UTR [33]. 3’ UTRs of the human globin gene have

also known as stable and insertion of two sequential 3’ UTR

and poly (A) tail reported to show enhancement of mRNA

stability in DC cells [34].
The coding region of mRNA sometimes facilitates mRNA

degradation. Natural coding sequences often show less

efficient codon usage for translation in specific organisms.

Since different organisms usually show particular preferences

for one of the several codons that encode the same amino

acid [35], optimized codon usage improves translational

efficiency [36]. As ribosomal traffic is modified by change of

synonymous codon, mRNA turn-over and stability can be

modified by altering RNases accessibility to target sites.
For in vivo applications that use mRNA as an alternative

to pDNA, the immune response should be considered.

Both DNA and RNA stimulate the mammalian innate

immune system through activation of Toll-like receptor

(TLRs). Thirteen TLRs have been identified and four of

them (TLR3 for dsRNA, TLR7 and 8 for U-rich ssRNA,

TLR9 for CpG DNA motif) are involved in nucleic acid rec-

ognition. It has been reported that mRNA can be recognized

by TLR3 [37] and in vitro transcribed RNAs induce a strong

TNF-a response in dendritic cells (DC) [38]. There are other

receptors for TLR-independent immune response. RIG-I

like receptor (RLR) such as retinoic acid inducible

gene 1 (RIG-I) and melanoma differentiation-associated

protein 5 (MDA-5) trigger type I IFN by IFN-regulatory fac-

tor 3 (IRF3)-dependent pathway, and they can be stimulated

by ds/mRNA.
The use of modified nucleosides (Figure 2), such as 2’-O

methyl nucleoside for in vitro transcription, shows dramatic

suppression of TLR-mediated DC activation [38], but the

effects of modified nucleosides on the TLR-independent

immune response are still unknown. As many modified

nucleosides are present in mammalian RNAs, such as pseu-

douridine, 2-thiouridine, 5-methylcytidine, 6-methyladeno-

sine, inosine and many 2’-O-methylated nucleosides at the

5’-terminal cap, these nucleosides can be used for modified

mRNA to reduce the immune reaction [3].
On the other hand, the strong immune-stimulatory effect

of mRNA can in fact be exploited for use in vaccination.

Targeting antigen-presenting cells (APCs) with mRNA has

been reported to induce tumor or antitumor immunity by

activating T and B cells [39,40]. Although mRNAs from

6-methyl adenosine
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CH3

2′-O methyl nucleoside
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2′-Fluoro nucleoside

F    

S
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Figure 2. Nucleoside modification of mRNA for immune escape.
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organelles like mitochondria are less modified than mRNAs
from nuclear and bring stronger immune response, several
reports have shown that mRNA-based gene transfer has a
higher antigen (e.g., melan A or influenza matrix protein
M1) loading efficiency to stimulate cytotoxic T cells [6,41].

3. Delivery systems for modified mRNA

Because the spontaneous uptake of naked nucleic acids by
cells is very inefficient, nucleic acid delivery has been
developed, adopting both viral and non-viral systems [42].
Replication-deficient recombinant viruses are commonly
used vehicles for gene transfer. Use of viral vectors for
pDNA has been intensively studied, but only a few cases of
mRNA delivery using RNA viruses have been investigated.
Generally, viruses which carry therapeutic DNA or RNA
can copy to DNA in the cytosol after transfection, and enter
into the nucleus. Some RNA viruses have shown localized
replication and expression in the cytosol. For mRNA delivery,
positive-strand viruses can be directly used and translated into
therapeutic proteins [43] but negative-sense RNA should be
coupled with its RNA-dependent RNA polymerase so that
the positive-sense virus is translated because the negative-sense
virus is not infectious [44].
In addition, various transfection reagents have been devel-

oped for non-viral delivery, which can be classified into two
different groups. One is mRNA delivery across the cellular
membrane by physical disturbances, and the other is genera-
tion of mRNA endocytosis by cationic carriers. Various phys-
ical manipulations have also been used to improve efficiency
for direct transfection [45]. Methods utilizing electroporation,
gene guns, ultrasound or high-pressure injection can be
applied for direct delivery of nucleotides to the cells. These
methods can also be used for in vivo as well as in vitro appli-
cations. In particular, the use of electroporation is one of the
most efficient methods for mRNA delivery [6,46,47]. As the
mRNA does not have to enter the nucleus, soft electrical
pulses may be applied to reduce cellular toxicity. Another
advantage of electroporation is the direct delivery of mRNA
into the cytosol, which could surpass the unwanted immune
response. For therapeutic vaccination, mRNA-pulsed DCs
can be used as APCs and modulate tumor immunity. Com-
pared to transfection of pDNA, higher tumor antigen loading
of DCs was observed in the gene transfer by mRNA in
human [6,41,46]. The gene gun method uses high-velocity heavy
metal particles such as gold, and this particle-mediated
mRNA delivery is applicable to most mammalian tissues [48].
Gene gun-mediated GFP mRNA delivery was reported to
show detectable expression for a week, and mRNA encoding
for the human epidermal growth factor (hEGF) showed a
wound healing effect.
Self-assembled lipo- or poly-plexes are well-known

transfection vehicles that are spontaneously generated by
charge-to-charge interactions between the complexations of
negatively charged mRNA and cationic lipids or polymers,

such as lipoplexes, polyplexes, polycations and dendrimers [49].
Although various polycations, such as DEAE (diethylamino-
ethyl)-dextran [50], DOTMA/DOPE (1,2-dioleyl-3-trimethy-
lammoniumchloride/1,2-dioleoyl-3-phosphoethanolamine) [5],
poly L-lysine [51] and PEI (polyethylene imine) [49], showed an
ability to transfect mRNA, the most efficient was demonstrated
to be DOTAP (1,2-dioleoyl-3-trimethylammonium propane)
[9]. Single-stranded mRNA strongly binds to cationic polymers
compared to pDNA, and cytosolic mRNA is involved in
pDNA release from the cationic polymer [52]. As efficient
cationic polymers that are used for pDNA transfection may
not suitable for efficient mRNA transfection [3], the design of
novel cationic polymers for mRNA delivery in human cells
has to be carefully considered.

4. Systemic delivery of modified mRNA for
gene therapy

In order to use mRNA as an efficient therapeutic agent for
in vivo application, delivery routes also have to be considered.
Direct delivery with naked mRNA at the targeted site was
usually administrated by local injection, but indirect delivery
using carrier-mediated mRNA with targeting moiety was
recommended for systemic injection (Figure 3) [53]. For sys-
temic delivery, the increased stability and the prolonged circu-
lation of mRNA is important to improve therapeutic efficacy.
In addition to chemical modification to prevent mRNA deg-
radation, cationic lipid or polymer complexes showed success-
ful protection against nucleases and increased stability of
mRNA for systemic delivery in a mouse model. Net positively
charged complexes showed increased stability of mRNA
in vitro, although they sometimes interact with negatively
charged serum proteins to form aggregates resulting in rapid
clearance or creating clots [54]. To acquire the characteristic
of prolonged circulation and to inhibit non-specific uptake
by the reticuloendothelial system (RES), conjugation with
polyethylene glycol (PEG) has been frequently suggested to
play a role [55]. PEGylated lipids or polymers were reported
to have higher stability by inhibiting attachment to serum
proteins. PEGylation is very important to preserve the integ-
rity of mRNA and to target tumor sites after prolonged
circulation.

On the other hand, immune modulation by mRNA should
also be considered for in vivo application. Altough single-
stranded RNA is reported to stimulate the innate immune sys-
tem [56], therapeutic mRNA can be disguised by chemical
modification to reduce the innate immune response by resem-
bling the highly modified RNAs from organelles in mamma-
lian cells [57-59]. In addition, the secondary structure of
exogenous mRNA is reported to activate IFN-inducible pro-
tein kinase R, a global repressor of protein translation, result-
ing in a low transgene expression [60].

In an effort to improve efficiency of systemic delivery of
modified mRNA for gene therapy, specific nanoparticle
formulation using liposome-protamine-RNA (LPR) was

H. Youn & J. -K. Chung

1342 Expert Opin. Biol. Ther. (2015) 15(9)

http://informahealthcare.com/journal/EBT


suggested [61]. To suppress immune activation, Wang et al.
modified cytidine triphosphate and uridine triphosphate

with 5’-methylcytidine and pseudouridine triphosphate

(Figure 4) during the in vitro transcription of mRNA.

Modified anionic mRNA was then mixed with polycation

(protamine, 4 kDa) to generate an mRNA/protamine com-

plex. Cationic lipid DOTAP/cholesterol was used to generate

a liposome, which was then mixed with the mRNA/prot-

amine complex. To reduce the attachment of serum protein

and minimize uptake of RES for systemic injection, extensive

PEGylation was applied to generate LPR. As sigma receptor

overexpressed tumor cells (H460) were used, anisamide was

also added to the distal end of PEG for specific targeting

(Figure 4A). LPR is small in size (< 100 nm) for easy internal-

ization. Herpes simplex virus 1-thymidine kinase/ganciclovir

(HSV-tk/GCV) therapy, one of the most widely used suicidal

gene/prodrug coupling for gene therapy, was used in this

research. Tumor cells were transfected with LPR, which con-

tains modified mRNA encoding HSV1-tk. After HSV-tk/

GCV therapy, tumor cells showed reduced survival in vitro
(Figure 4B), and tumor reduction was observed in an in vivo
mouse xenograft model (Figure 4C). Interestingly, mRNA

(LPR)-transfected tumors showed a greater reduction than

pDNA (LPD, liposome-protamine-DNA)-transfected

tumors. The delivery of mRNA (LPR) was found to be very

rapid (expression within 4 h after transfection), transient

and cell cycle independent.
The classical vaccination strategy for cancer starts from

transfection of DC with tumor antigens using whole cell

extracts, but whole cell extracts contain many irrelevant anti-

gens, which can cause autoimmune responses. For this reason,

fine-tuned nucleic acid-based vaccination is a promising alter-

native. A liposome/mRNA vaccine encoding various tumor

antigens, such as human CEA (carcinoembryonic antigen)
[62], OVA (chicken ovalbumin) [63], hTERT (human telome-
rase catalytic subunit) [64], AFP (a-fetoprotein, a protein spe-
cifically expressed by hepatocellular carcinoma cells) [65] and
RHAMM (the receptor for hyaluronan-mediated motility fre-
quently overexpressed in brain tumors) [66] were loaded to DC,
and their efficacy was monitored in an in vivo mouse model.

For mRNA vaccination, the administration route was
reported to be a critical component [67,68]. There was a
marked difference in the cytotoxic T lymphocyte (CTL)
response to kill tumor cells after intravenous (i.v.), subcutane-
ous (s.c.), intramuscular (i.m.) or intradermal (i.d.) injection
of liposome encapsulated protamine-condensed mRNA at
the base of the ear pinna [67]. Only i.d. administration showed
a significant CTL response. Interestingly, mRNA functions
not only as an antigen-encoding molecule, but also as an
adjuvant by enhancing immunological responses and antigen
presentation. In addition, naked RNA vaccine administered
into the lymph node was reported to show rapid selective
uptake by lymph node DCs driven by micropinocytosis [68].

Recently, transfection efficiency and transgene expression
using mRNA by various injection routes have also been inten-
sively investigated [69,70]. Figure 5 shows bioluminescence
imaging to evaluate in vivo transection efficiency of naked or
nanoparticle (ovalbumin)-based mRNA with chemical modi-
fication (ARCA) mRNA delivery. Transfection was increased
by OVA nanoparticle-mediated mRNA transfer compared to
naked mRNA both in intranasal and i.v. injections.

5. Conclusions

The use of mRNA-based gene transfer could indeed be a
promising new strategy for gene therapy. Notable advantages
include no risk of integration into the genomic DNA,
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Ultrasound
High pressure

Naked mRNA, modified-mRNA with targeting moiety
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with targeting moiety

Figure 3. Different injection routes of gene delivery are outlined.
Adapted with permission from [53].
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adjustable gene expression and easier modulation of the

immune system. Various chemical modifications increase the

stability of mRNA and provide more chances for the possible

use of mRNA-mediated gene transfer for gene therapy. How-

ever, one major challenge for the potential use of mRNA in

gene therapy is to try to reduce inflammatory reactions after

repeated treatment. Although repeated mRNA application

seems to be feasible in principle, knowledge about application

frequencies for long-term treatment is currently unknown. By

reducing or utilizing the immunogenic properties, mRNA

offers a promising tool for both gene therapy and vaccination
approaches, respectively.

6. Expert opinion

Previously, the stability and transfection efficiency of mRNA
was considered too low for it to be used as a therapeutic
molecule. However, the efficacy of mRNA transfer has
been greatly improved by combining various chemical modi-
fication and delivery methods. Since mRNA degradation is
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clovir; HSV-tk: Herpes simplex virus-thymidine kinase; LPD: lipid/protamine/DNA; LPR: lipid/protamine/mRNA.
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initiated by shortening of the poly(A) tail and includes a

de-capping process, mRNA structure has been optimized

by replacing unstable non-coding sequences with stable

non-coding sequence. Various physical manipulations and

nanoparticle-mediated mRNA delivery have also been used

to improve transfection efficiency. In addition, modification

of the cap structure and optimization of codon usages for

specific organisms have been frequently used to increase the

efficiency of mRNA translation.
Use of mRNA as an alternative to pDNA for therapy has

major advantages of its cellular localization; i) risk of insertion

mutagenesis can be avoided because mRNA exerts its function

in the cytoplasm; ii) promoter-dependent modulation of gene

expression is not required because amount of delivered mRNA

into cytosol is directly related to its function; iii) effective

delivery of mRNA into non-dividing cells is possible because

transfection efficiency of mRNA is independent from cell

cycle and nuclear transport; iv) vector-induced immunogenic-

ity can be avoidable; v) repeated application is possible.
Although mRNA-based gene transfer was considered as a

safe application, induction of unwanted immune response

by repeated treatment remains still critical for their in vivo
application. By utilizing the immunogenic properties,

mRNA-based gene transfer offers a promising tool for both

transcript replacement and vaccination approaches, respec-

tively. However, control of immunogenic properties of

mRNA to reduce inflammation for mRNA based-transcript

replacement therapy has not been carefully investigated to

date. Especially, most of researches have been focused on

short-term application because mRNA can only render a tran-

sient expression, but long-term treatment is required for the

treatment of inherited disease. Repeated mRNA treatment

seems to be feasible but knowledge about frequency, interval

and duration for long-term application is currently unknown.

It would be interesting to investigate how to control a protein

expression pattern after mRNA delivery under the different

pathologic situation.
Recently, mathematical models that predict kinetics and

efficiency of mRNA delivery in vitro and in vivo were

suggested by several reports [71-73]. Kinetics related to endoso-

mal uptake and cytosolic release of exogenous mRNA in the

cellular level should be studied to establish a compartment

C. Intravenous injection

p/mLuc

n/mLuc
NaAc

n/mLuc
RL

B. Subcutaneous injection A. Intranasal injection 

NTC

NTCp/mLuc n/mLuc RL

p/mLuc

n/mLuc
NaAc

n/mLuc
RL

Figure 5. Evaluating in vivo transfection efficiency of naked or nanoparticle-based modified (ARCA) mRNA according to the

administration routes. A. Bioluminescence in C57BL/6 mice transfected intranasally with 4 µg of p/mLuc and n/mLuc over a 4-h

time period. B. Bioluminescence in C57BL/6 mice transfected subcutaneously at the base of the ear pinna with p/mLuc and n/

mLuc (in NaAc and RL) at 4 h. C. Bioluminescence signal in BALB/c mice intravenously administrated with 26 µg of p/mLuc and

m/Luc at 8 h time points with respective color scales.
Adapted with permission from [4].

mLuc: Luciferase mRNA; n: Naked; NaAc: Sodium Acetate; NTC: Non-transfected control; p: mOVA nanoparticle; RL: Ringer’s lactate solution.
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model with rate equation. These studies established a great co-
relation between theories and efficiency of delivered mRNA;
thereby provide useful information to optimize mRNA-based
therapeutic application. Particularly, a more detailed and
quantitative understanding of artificial mRNA delivery is
important for in vivo application. The degree of predictive
power describing synthetic mRNA expression level and
timing will depend on the degree of accuracy with the trans-
fection efficiency and kinetics for the experimental planning.
Although mRNA delivery is inherently stochastic and the
expression level of every single cell is different, measurement
at the single cell level and analysis of the corresponding distri-
bution of functions, in terms of successfully delivered and
translated mRNA, is still necessary to acquire the true popula-
tion response in the mRNA delivery. We are convinced that
predictive modeling of mRNA delivery will provide dramatic
advances in the theoretical as well as practical aspects of
mRNA-based therapy.
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