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Objective: Extravasation of circulating cancer cells is an important step of the

metastatic cascade and a potential target for anti-cancer strategies based on

vasoprotective drugs. Reports on anti-cancer effects of fenofibrate (FF)

prompted us to analyze its influence on the endothelial barrier function

during prostate cancer cell diapedesis.

Research design and methods: In vitro co-cultures of endothelial cells with

cancer cells imitate the ‘metastatic niche’ in vivo. We qualitatively and quan-

titatively estimated the effect of 25 µM FF on the events which accompany

prostate carcinoma cell diapedesis, with the special emphasis on endothelial

cell mobilization.

Results: Fenofibrate attenuated cancer cell diapedesis via augmenting

endothelial cell adhesion to the substratum rather than through the effect

on intercellular communication networks within the metastatic niche. The

inhibition of endothelial cell motility was accompanied by the activation of

PPARa-dependent and PPARa-independent reactive oxygen species signaling,

Akt and focal adhesion kinase (FAK) phosphorylation, in the absence of cyto-

toxic effects in endothelial cells.

Conclusions: Fenofibrate reduces endothelial cell susceptibility to the

paracrine signals received from prostate carcinoma cells, thus inhibiting endo-

thelial cell mobilization and reducing paracellular permeability of endothe-

lium in the metastatic niche. Our data provide a mechanistic rationale for

extending the clinical use of FF and for the combination of this well tolerated

vasoactive drug with the existing multidrug regimens used in prostate

cancer therapy.
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1. Introduction

Agonists of PPARs are known to control the expression of genes involved in glucose
and lipid metabolism. They have been used in the treatment of diabetes, hyperlipid-
emia and cardiovascular diseases [1,2]. Fenofibrate (propan-2-yl 2-{4-[(4-chloro-
phenyl) carbonyl] phenoxy}-2-methylpropanoate) is an FDA-approved, PPARa
agonist characterized by excellent safety and tolerability profile after chronic and pro-
longed treatments [3,4]. It is widely used in clinical practice to lower serum levels of tri-
glycerides and cholesterol, improve low-density lipoproteins; high-density
lipoproteins ratio and prevent atherosclerosis [5-8]. In parallel, the vascular protecting
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activity of fenofibrate (FF), independent of its lipid-lowering
activity, has been reported, including its activity in improving
physiological neovascularization [9-11]. Conversely, several
reports indicate that FF may suppress endothelial cell prolifera-
tion and migration, leading to the attenuation of tumor
vasculature [12-15]. Vascularization of primary tumors and the
interactions of cancer cells with endothelial continua are crucial
for cancer development [16,17]; therefore, these facts prompted
questions about possible application of FF in cancer therapy [18].
According to the simplified model of cancer promotion

and progression, the formation of extensively proliferating
cell subpopulations characterizes early steps of carcinogenesis,
while cancer progression is triggered by the clonal appearance
of cells, capable of invading distant organs [19]. Potential
interference of FF with cancer promotion was illustrated by
the attenuation of growth and survival of glioblastoma [20],
hepatoma [21,22], medulloblastoma [23] and melanoma cells [24].
At the level of cancer progression, FF was demonstrated to
reduce invasive potential of cancer cells [24-27]. Both these
activities have been ascribed to PPARa activation [3,24,26,28-30]

but also to the PPARa-independent effect of FF on the
accumulation of reactive oxygen species (ROS) [21,31]. Impor-
tantly, ROS have been implicated in the PPARa-dependent
[26] and PPARa-independent [27] inhibition of cancer cell
motility. Converging effects of FF on endothelial and cancer
cell properties, its excellent safety and tolerability profile along
with anti-inflammatory activity [32], warrant the intensive
investigations into the possible interference of FF with the
progression of cancers characterized by long latency periods,
such as prostate cancer.
Penetration of the endothelial layer lining up vessel walls by

circulating cancer cells (cancer cell diapedesis) is a multistep
process, which determines the effectiveness of the metastatic
cascade and malignant dissemination [33]. It is initiated by
the stabilization of cancer cell adhesion to the endothelial
layer inside microcapillaries [34-36] and followed by local
remodeling of endothelial continuum in the ‘metastatic niche’
of cancer cells. Prompted by previous reports on the
interference of FF with tumor vasculature [15], we undertook
an in-depth examination of its effects on endothelial reactivity
to the signals generated by cancer cells. Monitoring of the
events accompanying the penetration of endothelial contin-
uum by DU-145 cells gave us the opportunity to recapitulate
the complexity of systems that regulate endothelial suscepti-
bility to challenge by a single cancer cell. This approach
enabled us to comprehensively address FF effects on the
efficiency of prostate carcinoma cell diapedesis.

2. Methods

2.1 Cell culture
Human umbilical vein endothelial cells (HUVECs, Life
Technologies Corp.) were routinely cultured in endothelial
basal medium (EBM) supplemented with 10% fetal bovine
serum (FBS) and supplement cocktail (recombinant human

epidermal growth factor [rhEGF], bovine brain extract,
hydrocortisone, gentamicin, amphotericin-B; all from Lonza).
For end point experiments, the cells were used within
2--6 passages in serum-free EBM medium with supplements.
Human prostate carcinoma DU-145 and PC-3 cells were rou-
tinely cultivated in DMEM-F12 HAM (Sigma) medium sup-
plemented with 10% FBS and antibiotics [37]. Co-culture
experiments were performed on HUVEC monolayers
between 70 and 98% confluence (indicated in the text).
DU-145 or PC-3 cells were seeded into HUVEC cultures at
the density of 1300 cells/cm2 in serum-free conditions. Feno-
fibrate, GW9662 and N-acetyl-L-cysteine (NAC; all from
Sigma) were administered at the time points and
concentration(s) indicated in the text.

2.2 Immunocytochemistry and fluorescence

microscopy
For the immunofluorescence analysis, cells on coverslips were
fixed with 3.7% formaldehyde (20 min), permeabilized
(0.1% Triton X-100 in PBS, 5 min), blocked with 3% BSA
and incubated with a primary antibody (rabbit polyclonal
anti-VE-cadherin IgG, mouse monoclonal anti-vinculin IgG,
mouse monoclonal anti-ZO-1 IgG; all from Sigma; [38]). Sub-
sequently, the cells were stained with a secondary antibody
(Alexa Fluor 488-conjugated goat anti-rabbit IgG or Alexa
Fluor 488-conjugated goat anti-mouse IgG; Life Technolo-
gies), and counterstained with TRITC-conjugated phalloidin
and/or Hoechst 33258 (both from Sigma). Where indicated,
cancer cells were stained with CellTracker Orange CMRA
(10 µM, Invitrogen). For gap junctional intercellular coupling
(GJIC) analyses, calcein-loaded (Invitrogen) donor (DU-145)
cells were plated on monolayers of acceptor (HUVEC) cells
grown on coverslips in Petri dishes at the ratio of 1:50 [39] to
evaluate intercellular calcein transfer and coupling index
defined as the percentage of donor cells coupled with at least
one acceptor cell. To determine the cytotoxic effect of FF,
HUVECs incubated with various concentrations of FF for 6,
24 and 48 h were harvested, and the number of viable cells
was determined by the fluorescence diacetate/ethidium bro-
mide test. Image acquisition was performed with a Leica
DMI6000B microscope (DMI7000 version; Leica Microsys-
tems, Wetzlar, Germany) equipped with the Total Internal
Reflection Fluorescence, Nomarski Differential Interference
Contrast (DIC) and Interference Modulation Contrast
(IMC) modules. LAS-AF deconvolution software was used
for image processing as described previously [39]. Three dimen-
sional (3D) images were registered using a Leica TCS
SP5 confocal microscope (Leica Microsystems, Mannheim,
Germany) using 63� HCX PL APO CS oil immersion (NA
1.4) objective lens. The following instrumental parameters
were used: excitation 405 nm (pulsed), 488 nm (Ar) and
543 nm (HeNe); emission detection bands: 430 nm -- 480
nm for Hoechst (DNA counterstaining), and 500 nm -- 575
nm for AlexaFluor488 or 560 nm -- 630 nm (for TRITC);
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voxel size: 70� 70� 210 nm, registration in sequential mode,
scanning 700 Hz, 4� line-averaged. 3D stacks of images were
deconvolved and visualized as 3D projections using SVI 3D
Huygens Deconvolution & Analysis Software (Scientific
Volume Imaging B.V., Hilversum, Netherlands).

2.3 Transmigration and transendothelial permeability

assays
HUVECs were seeded on coverslips at 2 � 104 cells/well and
grown to confluence for 72 h. Thereafter, 1300 DU-145 or
PC-3 cells/cm2 were seeded on a HUVEC monolayer on cov-
erslips and incubated for 6 and 24 h, before F-actin/DNA
staining and microscopic estimation of the percentage of
cancer cells capable of disrupting the endothelial continuum
(endothelial penetration index-EPI). For permeability studies,
HUVECs were plated at 1 � 105 cells into polycarbonate
Transwell inserts (3 µm pore size, 6.5 mm diameter; Corning)
and nonadherent cells were removed after 6 h. Inserts were
used for experiments 3 days after plating and transendothelial
permeability was measured as previously described [40].
Briefly, fluorescein isothiocyanate (FITC)-dextran (MW
42000; 1 mg/ml) was added to the upper compartment of
Transwell after 6 h of FF and/or DU-145 cell addition in
serum-free media. Samples were taken after 15 min, 30 min
and 1 h from the lower compartment and equal volume of
media was re-added to the lower chamber. The amount of
FITC-dextran was determined with a microplate reader
Infinite M200PRO (Tecan Group Ltd.), using excitation
wavelength of 492 nm and emission detection at 521 nm.
All inserts were fixed and then stained with eozine and phenol
red after the experiment to verify the confluence and general
appearance of the HUVEC monolayer.

2.4 Cell motility
The movement of HUVECs in mono- and co-cultures was
time-lapse recorded using Leica DMI6000B time-lapse sys-
tem equipped with a temperature chamber (37 ± 0.2�C/5%
CO2), IMC contrast optics and a cooled, digital DFC360FX
CCD camera. HUVECs were seeded at density of 500 cells/
cm2 and cultured for 4 days to form islets (70% confluence).
Then cultures were treated with FF and/or GW9662/NAC
and recorded for 7 h with 5 min intervals. In the case of
co-culture, 1300 DU-145 or PC-3 cells/cm2 were added to
endothelial cell culture, recorded for 7 h and only HUVECs
that had direct contact with cancer cells were analyzed. The
tracks of individual cells were determined from a series of
changes in the cell centroid positions. The data were pooled
and analyzed to estimate basic cell motility parameters,
including: i) total length of the cell trajectory (µm); ii) the
total length of cell displacement, that is, the distance from
the starting point directly to the cell’s final position (µm);
iii) the average speed of cell movement, that is, total length
of cell trajectory/time of recording (um/h); and iv) the average
rate of cell displacement, that is, the distance from the starting

point directly to the cell’s final position/time of recording
(µm/h). Cell trajectories from no less than three independent
experiments (number of cells > 50) were obtained for analysis
by the non-parametric Mann--Whitney test [41].

2.5 FACS analyses of ROS
HUVECs in mono- and co-cultures with DU-145 cells were
treated with the EGM medium containing 25 µM FF and/
or 10 µM GW9662/5 mM NAC, in the presence of DHR
123 (dihydorhodamine 123; 2 µM, Life Technologies) for
4 h. Subsequently, the cells were harvested, washed and sus-
pended in PBS. Measurements of DHR 123 fluorescence
intensity were carried out with a FACSCalibur flow cytometer
(Becton Dickinson; excitation -- 488 nm).

2.6 Immunoblotting and angioactive protein arrays
Cells for immunoblotting were dissolved in a lysis buffer,
cellular proteins (20 µg/lane) were applied to 10% SDS-
polyacrylamide gels, followed by transfer to a nitrocellulose
membrane. Membranes were exposed to primary antibody
(rabbit monoclonal anti-pSer473Akt IgG, rabbit monoclonal
anti-Akt IgG, rabbit polyclonal anti-pThr202/pTyr204
Erk1/2 IgG, rabbit anti-Erk1/2 IgG, rabbit monoclonal anti-
pTyrFAK IgG, rabbit monoclonal anti-Focal Adhesion Kinase
[FAK] IgG (all from Cell Signalling); mouse monoclonal
anti-vinculin IgG, mouse anti-a-tubulin IgG and mouse anti-
actin IgG (all from Sigma)) followed by counterstaining with
relevant HRP-conjugated secondary antibody (Invitrogen),
their detection and semiquantification with SuperSignal West
Pico Substrate (Pierce, Rockford, IL) and the MicroChemii
imaging system (SNR Bio-Imaging Systems, Jerusalem,
Israel) [42]. Angiogenesis-related protein expression inHUVECs
was estimated by semiquantitative technique based on antibody
array kit (Proteome Profiler�Human Angiogenesis Array Kit,
R&D Systems) according to the manufacturer’s protocol. Sam-
ples were mixed with a cocktail of biotinylated detection anti-
bodies and then incubated with nitrocellulose membranes to
enable their binding to cognate immobilized capture antibod-
ies, detection with streptavidin-HRP and semiquantification
with the MicroChemii imaging system and Quantity One soft-
ware. The signal was produced at each spot in proportion to the
amount of the analyte bound. The results were expressed as fold
changes above or below the relevant control.

2.7 Quantitative reverse transcription polymerase

chain reaction
Total mRNA from the cells was prepared using the RNeasy
Mini Kit Plus (Qiagen, Inc.) and reverse-transcribed with
high capacity reverse transcription kit (Applied Biosystems).
Detection of vinculin and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) levels was performed by real-time
reverse transcription polymerase chain reaction (RT-PCR)
assay using 7500Fast System (Applied Biosystems). For detec-
tion of specific cDNAs, TaqMan gene expression assay was
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used including 6-carboxyfluorescein-labeled probes:
Hs00419715 m1 (vinculin) and Hs99999905_m1 (GAPDH)
(Applied Biosystems). GAPDH was used as a reference gene.
Results are presented as a DDCt value.

2.8 Statistical analysis
The statistical significance was determined by the Student’s
t-test with p < 0.01 (transmigration, fluorimetric and
viability tests) or p < 0.05 (qRT-PCR) considered to indicate
significant differences; by the non-parametric Mann--Whitney
test (p < 0.01; time-lapse analyses) and Wilcoxon signed-rank
test (p < 0.05; permeability tests). Each parameter was
calculated as the mean and standard error of the mean.

3. Results

3.1 Fenofibrate enhances endothelial barrier function

to DU-145 cells
We used co-cultures of HUVECs with human prostate
carcinoma DU-145 cells to estimate the effect of FF on the
efficiency of DU-145 cell diapedesis. Confluent monolayers
of adherent HUVECs imitate the endothelial layer at the
interface between the blood and the interstitial tissues. VE-
cadherin-mediated intercellular adhesion, together with
ZO-1-dependent tight junctions, stabilized endothelial integ-
rity in vitro (Figure 1A). Disturbance of adherents and tight
junctions was observed in the proximity of DU-145 cells
shortly after their seeding onto confluent endothelial cells in
control conditions. Concomitantly, DU-145 cells efficiently
penetrated endothelial layer as visualized and quantified by
confocal microscopy (Figure 1B). The value of EPI estimated
in control conditions increased from 66 to 79% between
6th and 24th hour of co-incubation. 25 µM FF considerably
delayed transendothelial penetration of DU-145 cells
(EPI = 24 and 55% after 6 and 24 h of co-incubation, respec-
tively). This effect was accompanied by less prominent distur-
bances of endothelial continuum in the presence of FF
(Figure 1A).

3.2 Fenofibrate targets DU-145-induced HUVEC

mobilization
Actin cytoskeleton determines endothelial barrier function
through the effect on endothelial cell adhesion [43]. Therefore,
we further estimated the effect of DU-145 cells on actin cyto-
skeleton organisation in HUVEC. Short and scattered stress
fibers attached to relatively small focal adhesions (FAs), were
accompanied by cortical belts of F-actin in control HUVECs
in serum-free conditions (Figure 2A). The seeding of
DU-145 cells evoked reorganization of F-actin in proximal
HUVECs, which was illustrated by the formation of promi-
nent stress fibers and FAs. Concomitant time-lapse analyses
of proximal HUVECs revealed an induction of their motility
in subconfluent co-cultures with DU-145 cells (Figure 2B).
These data demonstrate that cancer cells affect endothelial
barrier function through the mobilization of endothelial cells.
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Figure 1. Fenofibrate inhibits penetration of endothelial

layers by DU-145 cells. A. DU-145 cells (marked with *) were

seeded onto the monolayer of HUVECs (98% confluence,

serum-free; left) at thedensity of 1300 cells/cm2 in theabsence

(middle) or presence of 25 µM FF (right). After 6 h, specimens

were fixed with 3.7% FA, permeabilized, stained for VE-

cadherin (upper panel) or ZO-1 (lower panel) and counter-

stained with Hoechst33258. B. Representative XY and XZ

reconstructions of transmigrating DU-145 cells registered 1,

6 and 24 h. after seeding in the absence of FF. DU-145 cells

were stained with CellTracker, seeded and fixed as in A,

stained against F-actin, counterstained with Hoechst33258

and visualized with confocal laser scanning microscopy.

Transendothelial penetration indices were estimated for

DU-145 cells seeded onto the HUVEC monolayer in the

absence and presence of FF at the indicated time points.

Statistical significance versus the relevant control at p < 0.01

(t-Student test, n = 3). Scale bar - 40 µm.Note that attenuating
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Noteworthy, the enhancement of endothelial barrier function
by FF (Figure 1) was correlated with its inhibitory effect on
DU-145-induced HUVEC motility (Figure 2B). In contrast,
a synergy of FF and DU-145 effects on HUVEC cytoskeleton
was illustrated by increased numbers of mature FAs and more
prominent stress fibers in proximal HUVECs cultivated in the
presence of FF (Figure 2A). Corresponding effects of FF on
HUVEC mobilization by human prostate cancer PC-3 were
observed (Figure S1 in supplementary data). Thus, augmenta-
tion of HUVEC adhesion to underlying extracellular matrix

may reduce their susceptibility to the signals from cancer cells
and improve endothelial barrier function.

Because FF was found to exert its biological effects through
the activation of PPARa/ROS-dependent signaling [3], we
further estimated how PPAR antagonist GW9662 influenced
the effect of FF on HUVEC mobilization by DU-145 cells.
GW9662 attenuated FF-induced cytoskeleton reorganization
(Figure 2A) but failed to restore FF-inhibited HUVEC motil-
ity in the co-cultures with DU-145 cells (Figure 2B). Similar
correlation was observed in HUVEC/PC-3 co-cultures
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were fixed with 3.7% FA, permeabilized, and stained for F-actin and vinculin. A number of FAs per single cell was calculated

and plotted from TIRF photomicrographs. Statistical significance versus the relevant control at p < 0.01 (Student’s t-test, n = 3).

B. HUVEC motility was visualized by time-lapse videomicroscopy in the conditions ascertaining their basal motility (70%

confluence). Cells were analyzed in the control (serum-free) conditions (upper left), in the presence of DU-145 cells (upper right), in

the presence of DU-145 cells and 25 µM FF (lower left), or in the presence of DU-145 cells, 25 µM FF and 10 µM GW9662 (lower

right). Cell trajectories are depicted as circular diagrams (axis scale in µm) drawn with the initial point of each trajectory placed at

the origin of the plot (registered for 7 h; n > 50). Inserts depict cell morphology visualized by IMC. Dot-plots and column chart
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numbers of vinculin(+) FAs in FF-treated HUVECs correlate with their attenuated motility. GW9662 counteracts the effects of FF on

HUVEC cytoskeleton but not on their motility. All results are representative of three independent experiments.
* vs HUVEC control; † vs HUVEC+DU-145; p £ 0.01
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of the mean; TIRF: Total internal reflection fluorescence.
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(Figure S1 in supplementary data). These effects were accom-
panied by ROS generation in FF-treated HUVEC/DU-145
co-cultures and downregulation of ROS levels by GW9662
(Figure 3). Because 10 µM GW9662 inhibits the activity of
PPARa [44], our data indicate that FF attenuates DU-145-in-
duced HUVEC mobilization at least partly through PPARa/
ROS-dependent effect on the adhesive status of HUVECs.
However, PPARa-independent pathways may also be
involved in HUVEC reactions to FF.

3.3 Fenofibrate improves endothelial barrier function

independently of intercellular communication in the

‘metastatic niche’
FF may directly target endothelial cells or enhance their
barrier function through indirect effect on the efficiency of
intercellular communication loops in the metastatic niche.
Paracrine loops and GJIC between cancer and endothelial
cells has long been suggested to facilitate cancer cell diapede-
sis [33,45]. Actually, FF significantly reduced GJIC intensity

between DU-145 cells and HUVECs. However, this effect
was not counteracted by GW9662 (Figure 4A). Furthermore,
transient silencing of Cx43 expression in DU-145 cells
attenuated their mobilizing effect on HUVEC motility but
chemical block of GJIC by 18-a-glicyrrhetinic acid exerted
only minute effects on HUVEC motility and transendothelial
penetration of DU-145 cells (Figure 4B). Thus, interference of
FF with GJIC is hardly responsible for its effect on HUVEC
mobilization in co-cultures, nor could the augmentation of
endothelial barrier function by FF be ascribed to its interfer-
ence with paracrine loops in the metastatic niche. The shifts
in the expression profiles of 22 out of 55 analyzed angioactive
factors were seen after DU-145 cell seeding on HUVEC
monolayers. Only CXCL16 expression was considerably
upregulated in HUVEC/DU-145 co-cultures, whereas
downregulation of anti-angiogenic endostatin and of pro-
angiogenic IGFBP-2, angiopoietin-2, uPA and TGF-b1 was
seen. FF attenuated the expression of pro-angiogenic
IGFBP-1 and IL-8, and of anti-angiogenic TIMP-4,
TIMP-1, but had no effect on the CXCL16 expression levels
in co-cultures (Figure 4C, Figure S2 in supplementary data).

Mobilization of HUVECs and the shifts in the expression
of angioactive factors were accompanied by increased extracel-
lular signal-regulated kinase(ERK)1/2-dependent (ERK)
1/2-dependent signaling activity in HUVECs co-cultured
with DU-145 cells (Figure 4D, see also Figure 2).
A pronounced and prolonged ERK1/2 and Akt phosphoryla-
tion was seen when FBS depletion was followed by
DU145 cell seeding. FF slightly increased ERK1/2 phosphor-
ylation in co-cultures but did not considerably affect
ERK1/2 phosphorylation in HUVEC monolayers. In con-
trast, we observed increased levels of phosphorylated Akt
both in FF-treated HUVEC monolayers and HUVEC/
DU-145 cultures. Interestingly, the dynamics of Akt
phosphorylation in HUVECs upon DU-145 seeding was
more similar to control. These data indirectly indicate the
involvement of Akt -dependent pathway in the augmentation
of endothelial barrier function by FF.

3.4 Fenofibrate enhances endothelial barrier function

through the direct effect on endothelial cell

adhesion
Further analyses of HUVEC reactions to FF administered in
the absence of DU-145 cells unequivocally confirmed its
direct effect on endothelial cells. Akt phosphorylation
(Figure 4) was accompanied by oscillations of FAK phosphor-
ylation levels and correlated with up-regulation of vinculin
levels in HUVECs at the protein but not mRNA level
(Figure 5A). In conjunction with cytoskeletal rearrangements,
in particular with the increased numbers of FAs in FF-treated
HUVECs (Figure 5B), this observation is indicative of the
recruitment and sequestration of vinculin to FAs. In similar
to co-cultures, FF induced cytoskeletal rearrangements
and accumulation of ROS in HUVECs (Figure 5C) in a
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Figure 4. Communication networks within the metastatic niche do not participate in augmentation of HUVEC barrier

function by fenofibrate. A. Calcein-loaded DU-145 cells were seeded onto HUVEC monolayers (98% of confluence) in the

absence (upper left), in the presence of 25 µM FF (upper right) or in the presence of FF and GW9662 (lower left). The inhibitory

effect of FF on GJIC in HUVEC/DU-145 co-cultures is illustrated by quantification of calcein transfer assay (coupling index, Ci,

lower right; 2 h). Statistical significance versus the relevant control at p < 0.01 (t-Student test, n = 3). Scale bar: 25 µm. B. The

effect of siRNA Cx43 silencing in DU-145 cells and AGA (100 µM) on EPI and HUVEC motility was compared (see legend to

Figure 1 and 2). Statistical significance was estimated with the non-parametric Mann-Whitney test (* vs HUVEC control; † vs

HUVEC+DU-145; p £ 0.01). Error bars represent SEM. C. HUVECs were cultured in control conditions (98% of confluence), in

the presence of DU-145 cells, and in the presence of DU-145 cells and 25 µM FF for 24 h. Then, expression of angioactive

proteins was estimated by semiquantitive technique based on antibody array kit (see Methods). Plots show the

densitometrically estimated dot intensities illustrating the protein amounts in HUVEC/DU-145 co-cultures in the absence

and in the presence of 25 µM FF relative to HUVEC control. Note that FF had minute effect on the expression pattern of

angiogenic factors in the co-cultures. D. HUVEC/DU-145 co-cultures were established as in C, and pSer473Akt and pThr202/

pTyr204 ERK1/2 levels were visualized by immunoblotting at the indicated time points in the absence and presence of 25 µM
FF. Numerical values represent results of densitometric analyses, normalized against housekeeping gene expression (a-
tubulin) and FBS control and compared to control (HUVEC = 1). Note the increase of ERK1/2 and Akt phosphorylation in

HUVECs in co-cultures with DU-145, and of Akt phosphorylation in the presence of 25 µM FF, respectively. Results are

representative of three independent experiments.
AGA: 18-a-glicyrrhetinic acid; EPI: Endothelial Penetration Index; FBS: Foetal bovine serum; GJIC: Gap junctional intercellular coupling; HUVECs: Human umbilical

vein endothelial cells; SEM: Standard error of the mean.
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PPARa-dependent manner because both reactions were
attenuated by GW9662 (Figure 5C cf. B). Notably,
GW9662 did not counteract inhibitory effect of FF on
HUVEC motility (Figure 5D). These findings confirm that
FF directly enhances endothelial barrier function partly via
direct PPARa-dependent effects on endothelial cell adhesion.
On the other hand, the lack of GW9662 effects on

FF-treated HUVEC motility suggested the involvement of
PPAR-independent pathways in HUVEC reactions to FF.
Because we observed intracellular ROS accumulation in
HUVECs after FF treatment, PPARa-independent/ROS-
dependent pathways may be involved in the observed
phenomena. To verify this notion, we analyzed the effect of

NAC on HUVEC reactions to FF. NAC attenuated
FF-induced cytoskeletal rearrangements (Figure 6A) and
significantly restored FF-inhibited HUVEC motility
(Figure 6B). NAC strengthens cellular antioxidant defense
systems [46], therefore these findings would confirm an
involvement of PPARa-independent/ROS-dependent signal-
ing in the determination of HUVEC responses to FF. On
the other hand, eradication of HUVEC responses to FF by
NAC was accompanied by the increase of ROS levels in
FF-treated cells (Figure 6C). Notably, FF did not influence
the structure of tight junctions in HUVEC monolayers and
its effect on their permeability to solutes was similar in the
presence and absence of DU-145 cells (Figure 7A). No
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Figure 5. Fenofibrate directly targets endothelial cell cytoskeleton and motility. A. HUVECs were cultivated in the absence or

in the presence of 25 µM FF. Tyr397FAK levels and vinculin expression at protein and mRNA level were analyzed at the

indicated time points by immunoblotting and qRT-PCR (quantified as described in Figure 4D). B. Cytoskeletal architecture of

HUVECs cultured in control conditions (upper left), in the presence of 25 µM FF (upper right), or in the presence of 25 µM
FF + 10 µMGW9662 (lower left) was visualized and the numbers of FAs per single cell quantified as in Figure 2 (lower right). C.

HUVECs (98% of confluence) were cultivated in the in the presence of 25 µM FF (upper plot), or in the presence of 25 µM FF

and 10 µM GW9662 (lower plot). Cells were incubated in the presence of DHR123 (2 µM) for 4 h and analyzed with

FACSCalibur flow cytometer as in Figure 3. D. HUVEC motility in the control conditions (70% of confluence; left), in the

presence of 25 µM FF (middle left) 25 µM FF + 10 µM GW9662 (middle right) was visualized by time-lapse videomicroscopy and

analyzed as in Figure 2B (right). Statistical significance was estimated with the non-parametric Mann-Whitney test (* vs

HUVEC control; p £ 0.01). Error bars represent SEM. Results are representative of three independent experiments.
FAs: Focal adhesions; HUVECs: Human umbilical vein endothelial cells; SEM: Standard error of the mean.
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pronounced changes in the expression pattern of angioactive
factors were seen either (Figure 7B). When administered at
concentrations of up to 100 µM, FF prompted the matura-
tion of focal contacts and reduced their motility in a dose-
dependent fashion, but exerted no effects on their viability
(Figure 7C; Table 1). NAC-induced normalization of HUVEC
phenotype in the presence of high ROS levels indicates the
involvement of a discrete ROS pool in HUVEC-reactions to
FF. Thus, ROS generation is a physiological response of
endothelial cells to FF, unrelated to FF cytotoxicity.

4. Discussion

Penetration of endothelial layer by circulating cancer cells is a
prerequisite for their homing in interstitial compartments
underlying the endothelium. This process is crucial for
the metastatic cascade [47] and its efficiency depends on a num-
ber of intrinsic cancer cell traits: their motile activity and nano-
mechanical elasticity, competence for GJIC, expression of cell
adhesion receptors and secretion ofmetalloproteinases [34,48-50].
The interference of FF with tumor progression has predomi-
nantly been considered in terms of its effect on these

properties [23,26]. The susceptibility of the endothelial layer to
a challenge by a single cancer cell is an equally important, yet
underestimated determinant of diapedesis [48,51]. FF effect on
the properties of endothelial continuum in the metastatic
niche has not yet been assessed. This study fills this gap because
it demonstrates for the first time that FF enhances endothelial
barrier function through the direct effect on endothelial cell
susceptibility to the signals generated by prostate cancer cells.
The influence of FF on endothelial cell behavior in the meta-
static niche illustrates a new mechanism of its anti-cancer
activity. It confirms previous suggestions about the interfer-
ence of FF with the metastatic cascade which were based on
in vivo approaches [18,25]. It is noteworthy that the enhance-
ment of endothelial barrier function to prostate cancer cells
was observed in the presence of 25 µM FF. This concentration
of FF in the culture medium remains within the limits defined
by the content of fenofibric acid, an active FF metabolite, in
the blood of patients who take FF on regular bases (up to
200 mg/day). Pharmacodynamic studies have revealed that
maximal concentrations of fenofibric acid in the sera of
FF-treated patients considerably exceed 25 µM [52-55],
confirming the biological significance of our findings.
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Figure 7. FF does not exert sub-lethal effects in HUVECs. A. Functional status of ZO-1-mediated intercellular contacts in

control conditions (upper left), in the presence of 25 µM FF (upper right), or in the presence of 25 µM FF + 10 µM
GW9662 (lower left); and the effect of DU-145 and 25 µM FF on solute permeability of HUVEC monolayers was analyzed as

described (see Figure 1 and Methods, respectively). B. HUVECs were cultured in control conditions (98% of confluence) and in

the presence of 25 µM FF for 24 h. Then, angioactive proteins were analyzed as in Figure 4B. C. HUVECs were cultivated in the

presence of FF (25-100 µM) and their cytoskeleton architecture (see Figure 6A for control; upper panel) motility (middle), and

viability (lower plot) was quantified. Statistical significance: * versus the relevant control at p < 0.01, using the Wilcoxon

signed-rank test (A), Mann--Whitney (B) and Student t-test (C). Note the dose-dependent effects of FF on HUVEC cytoskeleton

and motility but not on HUVEC viability.
HUVECs: Human umbilical vein endothelial cells.

Table 1. Effect of fenofibrate on the motile activity of HUVECs.

Parameters Control FF 25 mM FF 50 mM FF 100 mM

TLCT (µm) 391.8 ± 11.5 308.5 ± 14.7* 271.4 ± 11.3* 229.8 ± 9.1*
ASCM (µm/h) 55.9 ± 1.6 44.1 ± 2.1* 38.8 ± 1.6* 32.8 ± 1.3*
TLCD (µm) 91.1 ± 6.5 82.9 ± 7.5 77.6 ± 5.6* 63.9 ± 5.3*
ARCD (µm/h) 13.0 ± 0.9 11.8 ± 1.1 11.1 ± 0.8* 9.1 ± 0.7*

Values are the means ± SEM.

*Statistically significant (Mann--Whitney test) at p £ 0.01 (HUVEC in control conditions vs HUVEC treated with fenofibrate at indicated concentrations).

ARCD: Average rate of cell displacement; ASCM: Average speed of cell movement; HUVECs: Human umbilical vein endothelial cells; SEM: Standard error of the

mean; TLCD: Total length of cell displacement; TLCT: Total length of cell trajectory.
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Monitoring of endothelial cell behavior in the proximity of
cancer cells gives the opportunity to reconstruct the events in
the ‘metastatic niche’ of circulating cancer cells during cancer
cell diapedesis. It provides a tool to evaluate the role of endo-
thelial cell mobilization in the progress of the transendothelial
penetration of cancer cells. DU-145 cell line, which was used
in this study to imitate circulating prostate carcinoma cells,
had been propagated from prostate cancer metastases to brain.
Thus, DU-145 cells represent the progeny of cells capable of
penetrating tissue barriers. The interference of FF with their
intrinsic properties might thus have participated in the
observed attenuation of transendothelial penetration in
HUVEC/DU-145 co-cultures. Actually, we have previously
shown that FF inhibits the motility and GJIC in DU-145 pop-
ulations [27]. Here, we observed the retraction of endothelium
in the proximity of DU-145 cells, which was accompanied by
induction of HUVEC motility and counteracted by FF. Inter-
ference of FF with endothelial cell mobilization by PC-3 cells
(derived from prostate cancer metastasis to bone) additionally
illustrates the biological significance of our data. Correspond-
ing HUVEC responses to FF seen in the absence and presence
of cancer cells show that FF effectors are situated down-stream
of intercellular communication loops within the metastatic
niche. FF inhibited GJIC between cancer and endothelial
cells [56], but this communication route plays a secondary role
in HUVEC mobilization by DU-145 cells. Concomitantly,
the expression of angioactive factors, which might mobilize
HUVECs in the ERK1/2-dependent manner, was not affected
by FF. These data indicate that FF enhances endothelial barrier
function in the ‘metastatic niche’ of prostate cancer cells
through a direct effect on endothelial cell properties.

PPARa/ROS-dependent pathway has previously been
implicated in the inhibition of cancer cell invasive poten-
tial [26]. Our observations indicate that PPARa-dependent,
ROS-dependent signaling is also involved in the regulation
of endothelial barrier function in the ‘metastatic niche’ by
FF. This was illustrated by a partial abrogation of endothelial
cell responses to FF seen in the presence of PPARa antago-
nist. It was accompanied by attenuation of ROS accumulation
in FF-treated HUVECs. Akt and FAK phosphorylation
observed in FF-treated HUVECs suggest that both effectors
participate in the endothelial cell reactions to FF. Notably,
it has previously been shown that endothelial cell reactions
(incl. inhibition of cell motility and angiogenesis) to FF and
other PPARa agonists are mediated by Akt [57]. Whether
Akt provides a mechanistic link between PPARa pathway
and cytoskeletal rearrangements in endothelial cells requires
a more elaborate study based on PPARa knock-out approach.
Such an approach should also consider the interrelations
between FF-induced ROS signaling in HUVEC and activa-
tion of Akt-dependent pathway.

More detailed analyses are also required to identify mecha-
nisms underlying the abrogation of FF effect on endothelial
cells by NAC. Concomitantly with the attenuation of
FF-induced cytoskeletal rearrangements, NAC restored the

motility of FF-treated HUVECs. It demonstrates the involve-
ment of PPARa-independent, ROS-dependent pathway in
HUVEC reactions to FF. Such a pathway has been shown
to mediate FF-induced inhibition of cell motility [27]. As a
glutathione (GSH) precursor, NAC assists intracellular anti-
oxidant defense systems [46]. However, it failed to reduce
ROS levels in FF-treated endothelial cells. In the absence of
FF effects on endothelial cell viability, these observations sug-
gest the involvement of a discrete, relatively small ROS parti-
tion, generated in a PPARa-independent fashion. Preventive
effect of NAC on GSH depletion in FF-treated endothelial
cells, which reduces their susceptibility to ROS signaling,
may provide an alternative explanation for this conundrum.
Precise identification of the specific, NAC-sensitive and
NAC-insensitive ROS and their subcellular origin(s) is needed
to justify further speculations on the mechanisms of ROS
involvement in endothelial cell reactions to FF in vitro and
in vivo.

Considering the present state of knowledge, we can again
only speculate about the mechanisms of the interplay between
PPARa-dependent/independent pathways and adhesion of
FF-treated HUVECs [12,57]. Stress fibers thickening, increased
vinculin expression and FA recruitment [58] in FF-treated
endothelial cells are characteristic for strongly adherent
isometrically contracting cells [59]. We can suggest that FAK-
dependent adhesive status of endothelial cells cooperates in
the regulation of endothelial barrier function. Increased solute
permeability of FF-treated endothelia suggests that the shifts
in cell adhesion strength may evoke changes in the equilib-
rium between cell-to-cell and cell-substratum interactions,
crucial for endothelial barrier function [33]. However, local
loosening of intra-endothelial fascia adherens can only be suf-
ficient for transendothelial infiltration of ‘ameboid’ cells, such
as leukocytes or monocytes. These cells are elastic enough to
squeeze through relatively small endothelial discontinu-
ities [60]. In contrast, cancer cells that are characterized by
‘mesenchymal’ strategy of movement display relatively low
susceptibility to mechanical distortions [61]. They require
more prominent endothelial remodeling to penetrate trans-
junctional windows. Whereas DU-145 cell motility plays a
secondary role in the remodeling of endothelial continuum,
the inhibition of endothelial cell motility may additionally
strengthen endothelial barrier function through stabilizing
effect on cell-substratum adhesion. Negative feedback loops
between cell migration and adhesion strength may participate
in this process. Thus, converging FF effects on cancer and
endothelial cells at the ‘metastatic niche’ affect the susceptibil-
ity of the endothelial continuum to the signals from cancer
cells and regulate endothelial barrier function.

5. Conclusions

The in vitro model, which imitates the interface between cir-
culating cancer cells and endothelium [34,48,62], enabled us to
demonstrate the attenuating effect of FF on endothelial cell
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responsiveness to the signals generated by cancer cells in the
metastatic niche. The strengthening effect of FF on endo-
thelial cell adhesion and impairment of motile activity by
FF reduces the efficiency of prostate carcinoma cell diapede-
sis and potentially interferes with the prostate cancer meta-
static cascade. In the context of other in vivo studies that
directly and/or indirectly suggest the interference of FF
with tumor progression [15,18,25], this report extends the
knowledge on biological effects of existing and emerging
vasoactive drugs on the metastatic cascade. It fills the gap
in the understanding of the links between the vasoactive,
anti-atherosclerotic and anti-tumorigenic activity of FF and
suggests the application of this lipid-lowering drug as a
means to reducing the metastatic spread of prostate cancer
cells. It also justifies further analyses of the interference of
FF with the metastatic cascade of prostate cancer and other
tumors with the more sophisticated genetic in vivo
approaches. Comprehensive epidemiologic studies are also
postulated to estimate the links between FF intake and
risk of prostate cancer metastases.
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