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Lung cancer is a molecularly heterogeneous disease. The advent of next-generation
sequencing techniques has significantly advanced our understanding of the complex
molecular underpinnings of lung cancer. Furthermore, the development of targeted
therapies has significantly altered the landscape of lung cancer therapy over the past
decade. There is hence an increasing interest in developing a classification system
that guides clinical management and also incorporates relevant genomic information.
Here, we highlight the molecular features of lung adenocarcinoma as highlighted by
several independent groups, and more recently The Cancer Genome Atlas and
discuss their potential clinical significance.

Lung cancer is the leading cause of
cancer-related mortality in the world [1].
Non-small cell lung cancer (NSCLC) is
the most common histological subtype of
lung cancer [2]. Broadly, the histological
subtypes of NSCLC include adenocarci-
noma, squamous cell carcinoma and large
cell carcinoma. The genomic landscape of
a typical lung cancer caused by tobacco
smoking is quite complex [3,4].

Summary of findings from genomic
studies on lung adenocarcinoma
Comprehensive genomic studies involving
lung adenocarcinoma show several strik-
ing features [4–8]. The mutational burden
in tobacco-related lung adenocarcinoma is
significantly higher than many common
cancers (median of ~10.5 mutations/Mb
of the genome) [5]. In contrast, lung ade-
nocarcinoma from never smokers is associ-
ated with a very low mutational burden
(median of 0.6 mutations/Mb of the
genome). Smoking history also correlates
with the prevalence of nucleotide transver-
sions within tumors [4]. Transversion-high
(smokers) and transversion-low (never-
smokers) tumors are associated with dif-
ferent gene mutations, suggesting that
distinct mechanisms drive these tumors.
Furthermore, significant intra- and inter-

tumoral heterogeneity has been observed
in lung adenocarcinomas through next-
generation sequencing. The evolutionary
history of lung cancer clones constructed
through multi-region sequencing suggests
that driver alterations in lung cancer occur
early in cancer development [7,8]. Although
RAS/RAF/AKT pathways are the most
commonly involved (76% cases) in the
molecular pathogenesis of lung adenocar-
cinoma, alterations in the TP53 and cell
cycle regulator pathways are observed in
approximately two-third of cases [4].

Molecular classification of lung
adenocarcinoma
Based on tumor expression profiling,
Hayes et al. [9] demonstrated that lung
adenocarcinomas cluster into three
groups – bronchioid, magnoid and
squamoid. The Cancer Genome Atlas
(TCGA) investigators have validated
these findings and identified correlation
between molecular subtypes of adeno-
carcinoma with clinical features [4]. For
instance, bronchioid tumors harbor
EGFR mutations and tyrosine kinase
(TK) fusions more frequently than
other subtypes, are seen more fre-
quently in never-smokers and associated
with better prognosis. When applied to
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tumor samples that were a part of the JBR.10 trial, which
demonstrated benefit with adjuvant cisplatin and vinorelbine
in early-stage NSCLC, this classification system demonstrated
that only magnoid subtype tumors showed a significant
disease-free survival benefit with adjuvant therapy [10]. It is
speculated that magnoid tumors, which show a high degree
of chromosomal instability compared with other subtypes,
harbor DNA repair pathway defects that render them more
sensitive to platinum therapy. TCGA investigators have pro-
posed to change the nomenclature from bronchioid, magnoid
and squamoid subtypes to terminal respiratory unit, proximal
proliferative and proximal inflammatory subtypes respec-
tively [4]. Integrative clustering using copy-number, mutation,
DNA methylation and mRNA expression data suggested the
presence of six clusters that were associated with distinct
molecular profiles.

Implications for therapy
Targeted therapies directed against lung cancers harboring
mutations in EGFR TK and rearrangements involving anaplas-
tic lymphoma kinase (ALK) have significantly improved out-
comes in a subset of patients [11–14]. These alterations are
particularly prevalent among never- or light-smokers [11,15,16].
Unfortunately, EGFR mutations are present in the tumor cells
in only about 16% of patients with advanced stage NSCLC [17].
Similarly, about 5% of patients with lung adenocarcinoma
have ALK gene rearrangements in the tumor cells. A median
progression-free survival of 7.7 and 11 months has been associ-
ated with the use of crizotinib in previously treated and che-
motherapy naı̈ve patients [18–20]. Ceritinib has recently been
approved for use in ALK rearranged NSCLC [21]. A number of
novel ALK inhibitors are under development. Similarly, fusions
involving RET and ROS1 oncogenes have also been reported
in 1–2% of patients with NSCLC, and partial responses with
crizotinib and cabozantinib have been reported in these
patients, respectively [22]. Shaw et al. [23] recently reported an
objective response rate of 72% with a median PFS of
19.2 months with crizotinib in ROS1 rearrangement-positive
NSCLCs.

An issue of considerable clinical importance with the use
of targeted therapies is the eventual emergence of resistance
to these drugs. Mechanisms of resistance include the develop-
ment of alterations that affect drug binding through steric
hindrance or loss of affinity, such as the EGFR gatekeeper
T790M or ALK L1196M mutations [24]. Few patients with
resistance to ALK inhibition demonstrate copy-number gains
in rearranged ALK. Activation of bypass signaling pathways
and phenotypic transformation of tumors, including
epithelial-mesenchymal transformation or differentiation to a
small cell histology, represent other mechanisms of acquiring
resistance to targeted therapies. TK inhibitors such as
AZD9291 and CO1686 have recently demonstrated signifi-
cant activity in NSCLCs harboring the EGFR T790M muta-
tion [25,26]. Similarly, encouraging response rates with several
novel agents have been reported in crizotinib-resistant ALK

rearranged tumors [24,27]. These are currently being actively
investigated in clinical trials [28–31].

The introduction of next-generation sequencing technologies
has enabled an unbiased characterization of cancer genomes
on a massive scale. This has led to the discovery of several
potentially targetable genetic alterations in lung cancer over
the past few years, giving rise to newfound optimism and
promise in the field of cancer therapeutics. Such efforts have
led to the identification of new driver alterations in ‘oncogene
negative’ lung adenocarcinomas – a subset of tumors that lack
known somatic driver alterations capable of activating the
RTK/RAS/RAF pathway [4]. Among these, RIT1 mutations
were reported in 2% of adenocarcinomas by TCGA.
Berger et al. [32] demonstrated a potential role for combined
MEK and PI3K inhibition in these tumors. Similarly,
Vaishnavi et al. [33] reported oncogenic NTRK1 gene fusions
in 3% of oncogene-negative tumors. Cells expressing the
fusion protein were sensitive to CEP-701 (lestaurtinib) and
crizotinib. Comprehensive genomic analysis by TCGA also
suggests that distinct mechanisms underlie oncogene activation.
For instance, MET activation through exon 14 skipping as a
consequence of splice site alterations was reported in
10 sequenced adenocarcinoma samples [4]. Overall, these find-
ings emphasize the utility of next-generation sequencing tech-
nologies in unraveling the complex molecular mechanisms that
drive oncogenesis, and identifying targetable alterations. Such
characterization of molecular alterations in tumors through
‘multiplexed assays’ can potentially aid in the administration
of genotype-matched therapies to patients harboring specific
mutations – an approach that was recently demonstrated by
the Lung Cancer Mutation Consortium [34]. Tumors from
1007 patients were tested for at least 1 and 733 patients for
10 genetic alterations as a part of this initiative. These results
were used to select a targeted therapy or trial in 275 (28%)
of 1007 patients. The median survival was 3.5 years among
260 patients with an oncogenic driver who received genotype-
directed therapy, compared with 2.4 years in patients with
oncogenic drivers who did not receive such therapy. Next-
generation sequencing also carries the potential to determine
occult biomarkers that underlie drug sensitivity. Whole
genome sequencing of the tumor of a patient with metastatic
bladder carcinoma who achieved a durable remission with
everolimus aided in the identification of a loss-of-function
TSC1 mutation that correlated with drug sensitivity [35]. Simi-
larly, Lovly et al. [36] recently identified a therapeutic syner-
gism between ALK and IGF 1 receptor (IGF-1R) inhibitors
through whole genome sequencing of an ALK fusion-positive
tumor that had an exceptional response to IGF-1R-specific
antibody.

Future directions
It is critical to identify rare variants that have not so far been
identified. The ongoing ALCHEMIST study will screen 8000
patients with lung adenocarcinoma for targetable alterations in
resected early stage NSCLC. There are plans to study

Editorial Ganesh, Devarakonda & Govindan

362 Expert Rev. Anticancer Ther. 15(4), (2015)



comprehensively the genomic alterations in this trial to identify
rare variants. In addition, the contribution made by clonal evo-
lution in the process of metastases and treatment resistance
should be further studied using multi-region and multi-site
sampling. It is likely that clinical trials in the future will incor-
porate genomic studies, to understand the molecular mecha-
nisms underlying exceptional responses to novel therapies.
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