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Metabolomic biomarkers: 
search, discovery and validation
‘… we will have good systems biology models of 
metabolism and metabolomics long before the same 
can be said of gene or protein networks.’

Douglas B Kell
University of Manchester, 
School of Chemistry & Manchester 
Interdisciplinary Biocentre, 
131 Princess Street, Manchester 
M1 7DN, UK
dbk@manchester.ac.uk
www.dbkgroup.org

Expert Rev. Mol. Diagn. 7(4), 329–333 (2007)

Why metabolomics?
With the mainstream concentration during
the reductionist molecular biology era being
on qualitative studies of macromolecules,
metabolism has become the Cinderella subject
of this period [1]. However, this strategy was
latterly seen as a partial failure (as evidenced
by genomics), since it failed to uncover the
existence (let alone the function) of approxi-
mately half the genes in even well-worked
organisms, such as Escherichia coli and baker’s
yeast. Subsequently, this
led to a data-driven rather
than hypothesis-depend-
ent strategy [2,3], accompa-
nied by a much greater
emphasis on the pheno-
type at a global omics
level, which has now
passed from a focus on the
transcriptome via the pro-
teome to the metabolome [4–18]. There are
many reasons why it is appropriate to concen-
trate on the metabolome (BOX 1), the most sig-
nificant being that it hinges upon the proper-
ties of networks, and is thus an issue of
systems biology [8,19–23].

The metabolome is amplified relative to the 
transcriptome or the proteome
Although some of its roots can be found
earlier, it was the genius of Kacser and Burns
[24] and of Heinrich and Rapoport [25] to rec-
ognize that metabolic networks were – and
needed to be treated as – systems of interact-
ing components that could not be under-
stood solely in isolation, and that various

important and mathematically provable the-
orems followed from the formalism that they
developed, termed metabolic control analy-
sis (MCA). These theorems are known as the
flux-control and concentration-control sum-
mation theorems [26,27]. These theorems
effectively demonstrate that, while small
changes in the activities of individual
enzymes (hence in their expression as the
proteome and transcriptome) have little
effect on metabolic fluxes, they can and do

have substantial changes
on metabolite concentra-
tions. This is why the
metabolome is normally
amplified relative to the
transcriptome and the
proteome. In extreme
cases, concentrations of
metabolites can change
without any change in

flux at all [28]. A tutorial on MCA (largely
written by Pedro Mendes) is available on my
website [101], while other reviews of MCA
include [29–31]. The converse of these analy-
ses is that if one wishes to increase fluxes
while minimizing changes in metabolite
concentrations, it is necessary to manipulate
the activities of many pathway enzymes
simultaneously [32]. Finally, it should be
noted that MCA is really a version of a local
sensitivity analysis for small changes in para-
meters, and although this can be of substantial
value [33–35], there are many other strategies
that may be more global and more powerful
(albeit while sacrificing the summation
theorems) [36–39]. 

‘There are many reasons why 
it is appropriate to 

concentrate on the 
metabolome, the most 

significant being that it hinges 
upon the properties of 

networks, and is thus an issue 
of systems biology.’
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A pipeline for metabolomic biomarkers
Central to modern experimental design and bioinformatics is
the concept of a pipeline or workflow of individually linked
steps that must be performed correctly to achieve the desired
results [14,15,40–42]. In metabolomics, such a pipeline (largely
illustrated rather shamelessly here with our own work)
includes [43]: 

• Design of the experiment (to include adequate sample sizes
without confounding variables [44])

• Optimization of the instruments that perform the measure-
ments [45,46]

• Various kinds of data preprocessing, such as deconvolution,
normalization and outlier removal [47,48]

• Data storage in well-architected databases obeying international
standards [49,50]

• A variety of supervised and unsupervised schemes for classifying
the samples into different groups [7,47,51–56]

Finally, it is vital to note that the methods of multivariate
statistics and machine learning that are employed for this are at
once both very powerful and very dangerous [57,58], and it is all
too easy to produce clusters or models that are simply statisti-
cal artifacts [59–63]. Only the methods of external validation can
overcome this [44,64], and frankly, the liter-
ature is absolutely full of complete rubbish
resulting from a combination of over-opti-
mism in the face of ostensibly positive
findings, statistical ignorance and the fear
of journals to scrutinize data too carefully
lest they find something unpleasant. Our
view is that we can only hope to see a seri-
ous improvement in the situation when all the data and meta-
data from which conclusions are drawn are made publicly
available in electronic form [44]. Marking data properly with
suitable ontologies or other semantic markups [65,66] is also
vital to allow enhanced reasoning over the internet [67–71].
With apologies to Marshall McLuhan, we consider that ‘the
Markup is the Model’ [13,72].

Metabolomic biomarkers are increasingly becoming available
In a sense, metabolomics is only chemical pathology writ large,
since metabolites are, of course, widely used in disease diagnosis
today; however, the number of such metabolites presently used is
pathetically small (e.g., glucose, cholesterol, creatinine, urea, uric
acid and triglycerides). By contrast, the number of metabolites
we know about in humans is continually climbing [15,73,74], albeit
that there are many molecules considered or known to be pro-
duced by humans that are not yet in these databases (for one
unexpected example, see [75], and for another recent one, see [76]).
Some areas of metabolism, such as transmembrane transport
and metabolic transactions involving metals, are especially
poorly represented. Our own experience is that, in many cases,
considerable numbers of metabolites that are not previously rec-
ognized or used in disease diagnoses will be found when modern
methods of metabolomics are applied [77–79]. 

Ushering in the future: metabolomic biomarkers meet 
systems biology
One property of biological systems is that they are controlled by
their parameters. In the case of metabolic networks, these are the
concentrations (activities) of enzymes, the concentrations of
fixed flux-generating metabolites, and the kinetic and binding

constants (e.g., Km and kcat) of the enzymes
and their effectors. The variables of the sys-
tem, which can be modeled in any number
of modeling packages (e.g., Gepasi [80–82]

and Copasi [83]), are then the metabolite
concentrations and fluxes over time and in
the steady state (should such exist), and
variables are the effects and not the causes

of a system’s behavior. It is curious then that we are concentrat-
ing on measuring variables rather than parameters [20], since
this then leads to an ‘inverse problem’ [84] or ‘system identifica-
tion’ problem [85] in which we seek to infer the parameters from
the variables [86,87]. We must attack these problems from both
sides, simultaneously creating the parameterized metabolic
network models while constraining their possible forms and

Box 1. Why metabolomics?

• It is downstream: changes in the metabolome (metabolite concentrations, not fluxes) are amplified relative to changes in the 
transcriptome and the proteome, and are numerically more tractable.

• There is no need for whole genome sequences or large expressed sequence tag databases for each species.

• Metabolic profiling is much cheaper with very much higher throughput compared with proteomics and transcriptomics, making it 
feasible to examine large numbers of samples from organisms that have been grown under or exposed to a wide range of conditions.

• The technology is generic as a given metabolite (unlike a transcript or protein) is the same in every organism that contains it.

• Metabolic networks have thermodynamic and stoichiometric constraints that can make them easier to understand than, for 
example, signalling networks.

• Metabolomic methods have already been shown to be highly effective.

• Compendia of genome-wide metabolomes and metabolic networks are available.

‘…we can only hope to see a 
serious improvement in the 
situation when all the data 
and meta-data from which 
conclusions are drawn are 
made publicly available in 

electronic form.’
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values using the measured metabolomes as constraints. Bring-
ing these disparate data together will best be acheived by adopt-
ing workflow strategies in an environment such as Taverna
[14,15,40,41,88], because:

• Metabolic networks have major thermodynamic and stoichio-
metric constraints [23,89]

• Amplification is inherent in metabolomics [5,90]

• Metabolomics experiments are cheap and can thus be per-
formed on many samples with many replicates [91]

I am confident that we will have good systems biology models
of metabolism and metabolomics long before the same can be

said of gene or protein networks. Provided that the search and
validation steps are performed correctly, the prospects for finding
metabolomic biomarkers are excellent.
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