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Key Paper Evaluation

Multiple sclerosis (MS) is a devastating disease 
of the CNS characterized by demyelination and 
axonal damage. Although its pathophysiology 
is complex and many details are still poorly 
understood, the disease appears to be medi-
ated by T cells specific for CNS antigens – also 
referred to as autoreactive or encephalitogenic 
T cells – that migrate into the CNS and attack 
the myelin sheath with subsequent neuronal 
damage [1]. While there is disagreement as to 
why these cells develop, two closely related 
cytokines, IL‑12 and IL‑23, help them real-
ize their encephalitogenic potential [2,3]. These 
heterodimeric cytokines each have one unique 
subunit (IL‑12p35 or IL‑23p19) and one shared 
subunit (IL12/23p40). Neutralizing these 
cytokines via an antibody directed against the 
shared IL12/23p40 subunit ameliorates experi-
mental autoimmune encephalomyelitis (EAE) in 
animal models for MS, in both rodents [4–6] and 
primates [7,8]. The significant treatment effect 
observed in animal models was the impetus for 
the clinical trial currently under review [9].

It is important to consider the mechanisms 
by which IL‑12 and IL‑23 contribute to demy-
elinating pathology in order to understand and 

critique the recent findings in humans. Both 
cytokines are produced by antigen-presenting 
cells (e.g., dendritic cells or macrophages) 
in response to an immune challenge. Once 
secreted, IL‑12 and IL‑23 direct the differ-
entiation of naive T cells. T cells exposed to 
IL‑12 differentiate into proinflammatory, IFN-
γ-secreting, Th1 cells. While most Th1 cells 
do not react to self proteins and are effective 
in clearing infections, encephalitogenic popu-
lations can develop and cause demyelination. 
MS patients have an abnormally high number 
of Th1-differentiated, autoreactive cells [1]. 
Similarly, the recently discovered IL‑23 causes 
a population of IL‑17-producing T  cells to 
expand. These are sometimes referred to as 
Th17 cells and are also believed to contribute 
to an encephalitogenic response [3,4]. 

In addition to promoting T-cell differentiation, 
IL‑12 promotes their migration into the CNS 
by upregulating adhesion molecules, including 
P-selectin glycoprotein ligand (PSGL-1) and 
the chemokine receptor CCR5 [10,11]. Mates for 
these receptor/ligand pairs, including P-selectin 
and CCL3/MIP1α, are expressed significantly 
in the CNS during the early stages of EAE, 
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and neutralizing either receptor/ligand pair limits leukocyte 
trafficking into the CNS [12,13]. Blocking T-cell transmigration 
into the CNS has proved an effective strategy for ameliorating 
demyelinating disease in animal models [13,14] and is the pri-
mary mechanism of action for the MS disease-modifying agent 
natalizumab [15].

Although IL‑12 increases the encephalitogenic potential of 
T cells [2], it is not essential for demyelinating disease. Mice 
deficient in IL‑12p35 can still develop EAE [16]. Mice defi-
cient in IL‑12/23p40, however, are not susceptible and nei-
ther are those deficient in IL‑23p19 [17,18]. Thus, while both 
IL‑12 and IL‑23 drive the production and expansion of T cells 
with encephalitogenic potential, only IL‑23 is necessary for 
the induction of disease in animal models. Interestingly, IL‑23 
does not appear to be critical during disease maintenance; once 
encephalitogenic T cells have developed, lack of IL‑23 is not 
protective [19].

Methods & results
The authors of the current study enrolled 249 patients with 
a diagnosis of relapsing–remitting MS (RR-MS), with an 
expanded disability status scale (EDSS) score from 0 to 6.5, 
and at least two MS relapses in the previous 2 years or one 
relapse in the previous 6 months. No subjects had received any 
immunomodulating treatments within 3 months of screen-
ing. This Phase II study was performed at 38 sites in North 
America, Europe and Australia. The trial design was rand-
omized, double-blind and placebo-controlled. Enrolled patients 
were randomly assigned 1:1:1:1:1 to placebo or ustekinumab 
27, 90 or 180 mg every 4 weeks or ustekinumab 90 mg every 
8 weeks. All patients received subcutaneous injections of pla-
cebo or drug weekly from weeks 0–3 (induction phase) and 
then every 4 weeks during weeks 7–19 (maintenance phase) 
except for the ustekinumab 90 mg every 8‑weeks group, which 
received drug every 8 weeks with a placebo substitute at weeks 
7 and 15. The primary end point was the cumulative number of 
new gadolinium-enhancing T1-weighted lesions from baseline 
to week 23 on serial cranial MRI.

Ustekinumab did not show improvement in the primary end 
point for any treated group versus placebo. Moreover, there were 
no differences between groups in the number of clinical or objec-
tive relapses. There were no changes in the median EDSS scores. 
A dose-dependent increase in ustekinumab serum concentration 
was demonstrated, but it was not assessed in cerebrospinal fluid. 
Adverse effects were observed with similar frequencies in treated 
patients compared with placebo.

The investigators concluded that, although ustekinumab is well 
tolerated, it is not effective in reducing the cumulative number of 
gadolinium-enhancing T1 lesions in multiple sclerosis.

Discussion & significance
This study failed to show any therapeutic benefit when neutra
lizing IL‑12/23p40 in patients with MS. Yet benefit was consist-
ently observed in animal models. Can we conclude from this 
that, despite preclinical evidence, IL‑12/23 does not play a role 

in human MS? We feel that the subject population and methods 
chosen for this study may have obscured any true effect that 
existed. Ustekinumab is unlikely to become a broad-spectrum 
agent, effective for treating all types of MS; however, future 
studies may demonstrate a narrower role in treating a subset of 
patients with very early disease. 

When designing a clinical study, it is important to select a 
patient population appropriate for the drug being tested. In the 
current study, recruited subjects had a wide range of MS-related 
disability; indeed, their EDSS scores were as high as 6.5, which 
means that those patients required constant bilateral assistance 
(e.g., crutches, walker or braces) to walk 20 m without rest-
ing. Such severe disability typically develops after many years 
of disease, yet, as discussed above, the contributions of IL‑12 
and IL‑23 to pathology all appear to occur in early disease – 
when naive T cells are first differentiating and migrating into 
the CNS. Clinically, patients at this stage of disease have mild 
symptoms or are asymptomatic. Correspondingly, in the pre-
clinical studies leading up to this trial, animals were treated 
with neutralizing antibody before or very shortly after the first 
signs of disease [4–8]. Neutralizing the cytokine after years of 
disease, after naive T-cells have already differentiated into Th1 
and Th17 cells and migrated into the CNS is likely far too late 
to have a clinical effect.

A second consideration is that, although preclinical studies 
showed that IL‑12 upregulated molecules involved in leukocyte 
trafficking into the CNS [10,11], there is no guarantee that the same 
mechanisms are at work in humans or that manipulating IL‑12 
would effectively modify leukocyte trafficking. Indeed, while IL‑12-
induced PSGL-1 and CCR5 may recruit T cells to the inflamed 
CNS in humans [20,21], molecules such as α-4β-1 integrin also play 
a large role [15]. Moreover, since IL‑12 is not the only regulatory 
agent for PSGL-1 and CCR5, neutralizing this upstream molecule 
is likely to be less effective in decreasing leukocyte infiltration than 
targeting the adhesion molecules directly.

Finally, it is unlikely that ustekinumab consistently passed the 
blood–brain barrier (BBB) in this study. Thus, while peripheral 
IL‑12 and IL‑23 may have been neutralized, immune cells already 
in the CNS may not have been affected. Certainly, most antibod-
ies do not enter the CNS when the BBB is intact and, at the start 
of this study, only approximately 50% of patients exhibited evi-
dence of BBB disruption in the form of a gadolinium-enhancing 
lesion [1]. This is problematic since IL‑12 and IL‑23 localize to 
MS lesions [22,23] and may be playing additional roles at the site 
of pathology [24]. 

Expert commentary & five-year view
In our view, while IL‑12 and IL‑23 likely contribute to the 
pathogenesis of MS, their primary effect seems to be early in the 
disease course, driving the differentiation of encephalitogenic 
T cells and promoting their entry into the CNS.

The therapeutic window for ustekinumab, by extension, would 
be during very early disease; it would not be expected to modify 
advanced MS. Indeed, by the time patients experience symptoms, 
demyelinating lesions may have been present for months or years. 
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Thus, while a clinical trial of ustekinumab in patients with a 
clinically isolated syndrome suggestive of MS might yield positive 
results, it is not surprising that the current study, which incorpo-
rated many patients with chronic disease, did not demonstrate 
benefit. Owing to the lack of clinical signs and symptoms in early 
MS, IL‑12 and IL‑23 may not be feasible targets for ameliorat-
ing disease, even though it is likely that they are important for 
disease pathogenesis. 
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