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Editorial

Unraveling the multiple myeloma genome 
in the next-generation sequencing era: 
challenges to translating knowledge 
into the clinic

“...advances in sequencing technology have started an 
unprecedented exploration of the cancer genome.”

The origin and progression of human can-
cers is caused by the acquisition of genetic 
and epigenetic alterations. Over the last 
decades, significant efforts and techno-
logical advances were key in the charac-
terization of the cancer genome in a wide 
range of tumors. In 1976, Peter Nowell, 
following the observation of karyotypic 
heterogeneity in multiple tumor genomes, 
proposed a multistep process to explain the 
molecular basis of tumorigenesis [1]. This 
model was not only the first comprehen-
sive ana lysis of genetic heterogeneity and 
instability in the tumor clone, but also led 
for the first time to the concept of per-
sonalized medicine, where therapy should 
be individualized according to the genetic 
background observed in the tumor clone. 

In the mid-1980s, at the time that the 
molecular techniques to search for onco-
genes and tumor suppressor genes were 
developed, Renato Dulbecco pointed out 
in an influential article that sequencing the 
human genome was a critical priority, say-
ing that the research community was faced 
with two options: either keep discovering 
the genes important in cancer individually, 
or use a massive approach and sequence the 
whole genome [2]. 4 years later, the Human 
Genome Project was started. 

The Human Genome Project required 
several years of collaborative work from 
worldwide leading sequencing institutes and 

a budget of US$300 million to sequence the 
first single genome with seven-times cover-
age [3]. Now, 10 years after the completion 
of the first draft of the Human Genome 
Project, the incorporation of the massively 
parallel sequencing (also known as next-
generation sequencing) technologies has 
revolutionized the search for genetic altera-
tions in tumor genomes. The simultaneous 
catalog of all mutations, copy number aber-
rations and structural abnormalities in an 
entire cancer genome can be performed in 
one week using a single sequencer and for 
only US$5000. With the ultimate goal of 
offering the test for US$1000 in the near 
future, the implementation of next-gener-
ation sequencing in clinical practice will 
soon be a reality. 

“The Cancer Genome Atlas is 
running a 5-year program with a 

budget of US$275 million to 
analyze the genomic changes in 

more than 20 types of 
solid cancer.”

These advances in sequencing technol-
ogy have started an unprecedented explo-
ration of the cancer genome. The com-
plete genome of acute myeloid leukemia, 
breast cancer, glioblastoma, lung cancer, 
melanoma, ovarian and prostate cancer, 
among others, have already been described 
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and it is anticipated that most of the common and clinically rel-
evant human cancers will be analyzed in large scale in the com-
ing years. In this context, The Cancer Genome Atlas is running 
a 5-year program with a budget of US$275 million to analyze 
the genomic changes in more than 20 types of solid cancer [101]. 
Furthermore, The International Catncer Genome Consortium 
seeks to catalog more than 50 clinically relevant cancers in the 
next 10 years and The Cancer Genome Project of the Wellcome 
Trust Sanger Institute has a comprehensive ongoing project aim-
ing to sequence 4000 candidate cancer genes from a variety of 
cancer cell lines originated from solid tumors [102]. 

“...the majority of tumors analyzed until now have 
a considerable intertumor heterogeneity, resulting 
in large numbers of genes mutated infrequently.”

Significant advances have also been made in the study of hemato-
logical malignancies. In some malignancies, such as hairy cell leuke-
mia, a common affected gene was found in all cases. Thus, BRAF 
V600E mutation and the subsequent activation of the RAF-MEK-
ERK mitogen-activated protein kinase pathway is a widespread 
event in hairy cell leukemia, being found in all 48 patients recently 
analyzed, but absent in other hematological malignancies analyzed 
[4]. Conversely, the majority of tumors analyzed until now have a 
considerable intertumor heterogeneity, resulting in large numbers 
of genes mutated infrequently. The first acute myeloid leukemia 
patient sequenced showed ten nonsynonymous mutations in cod-
ing regions, eight of which have never been previously found in 
the disease [5]. More recently, the first whole-genome sequencing 
effort in chronic lymphocytic leukemia identified four genes that 
are recurrently mutated, but only one gene (NOTCH1) was affected 
in more than 3% of cases [6]. One of the biggest challenges is to 
reduce the complexity of the analysis by considering integration 
in molecular pathways affected, rather than single genes. In this 
context, two recent studies show a high prevalence of mutations 
affecting genes involved in histone modification and chromatin 
methylation in diffuse large B-cell lymphomas [7,8]. 

“In some malignancies, such as hairy cell leukemia, 
a common affected gene was found in all cases.”

Remarkably, one of the most significant efforts at this point 
has been focused on the characterization of the multiple mye-
loma (MM) genome. The first whole genome sequencing map 
was recently obtained from 38 MM patients [9], being currently 
one of the best-characterized tumors. The most remarkable find-
ings obtained from initial analysis were mutations affecting genes 
involved in protein translation and in histone methylation, as 
well as activating mutations of the NF-kB pathway in a subset 
of patients. This study provides the first snapshot of the genomic 
landscape of MM at one single time point.

Recently, the Multiple Myeloma Research Foundation 
announced a 1000-patient study for an 8-year program. This 
integrated and collaborative effort will enroll at least 1000 newly-
diagnosed MM patients who have not yet initiated therapy [103]. 

Interestingly, this study will be performed in sequential patient 
samples from initial diagnosis through the course of treatment, 
over a minimum of 5 years, in order to identify how the cancer 
genome background may affect the clinical progression and indi-
vidual response to treatment. Moreover, multiple US centers will 
participate, thus potentially including patients enrolled in more 
than 30 clinical trials for MM treatment.

A key point facing the extraordinary amount of data being 
generated is the ability to differentiate the mutations that confer 
a selective growth advantage to the neoplastic clone (also called 
driver mutations) from the remaining mutations that do not 
confer growth advantage (also called passenger mutations)[10]. 
Another characteristic of the tumor genome to be highlighted 
comes from recent studies showing that the clonal architecture 
and evolution often resembles the multibranching rather than 
the linear evolution model [11,12]. From the standpoint of therapy 
strategy and novel drug discovery, the heterogeneous tumors 
present an obvious challenge.

“Reducing the timeframe from the bench to the 
bedside is probably the biggest challenge that 

the research community will face in the  
post-genomic era.”

Genetic studies have achieved a central role in the study of 
MM, as they become a critical component in the risk-based strati-
fication of the disease [13–15]. Indeed, gene-expression profiling 
has been successfully implemented as a risk-stratification tool in 
MM [15]. Significant advances have also been made in recent years 
in MM drug development, essentially with the incor poration 
of proteasome inhibitors and thalidomide-related immuno-
modulatory drugs [16–18]. Although several mechanisms of action 
have been proposed to explain the antimyeloma effect of these 
molecules [19–21], the precise molecular mechanisms and targets 
through which these molecules exert their effects remains unclear. 
Moreover, MM patients still have an unmet medical need when 
it comes to those who have relapsed or whose disease is refractory 
to available drugs. We are expecting that the systematic and com-
prehensive ana lysis covering the MM genome, transcriptome and 
methylome will provide a paradigm shift in diagnosis, prognosis 
and treatment, initially with available therapies and with more 
personalized therapies in the long term.

The main challenge for the following years is to find potential 
‘Achilles’ heels’ to be exploited for drug discovery, and rapidly impel 
the translation of these insights into new clinical strategies and 
therapeutic options for MM patients. The paradigm from gene 
discovery to successful therapeutic intervention is the fusion gene 
BCR-ABL, found in almost all chronic myeloid leukemia (CML). 
The encoded protein is a constitutive active tyrosine kinase that 
has been successfully targeted with the development of the tyrosine 
kinase inhibitor imatinib [22]. However, from the initial discovery of 
the translocation t(9;22) in CML, it took another 41 years before 
imatinib was approved for use in CML patients. The paradigm 
has the potential to be rapidly extended to other cancers, includ-
ing MM. Reducing the timeframe from the bench to the bedside 
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is probably the biggest challenge that the research community will 
face in the post-genomic era.
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