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Abstract: The effects of different formulations and manufacturing process conditions on the 

physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is 

vital to have in-depth understanding of the material properties and governing parameters of its 

processes in response to different formulations. Understanding the mentioned aspects will allow 

tighter control of the process, leading to implementation of quality-by-design (QbD) practices. 

Computational intelligence (CI) offers an opportunity to create empirical models that can be 

used to describe the system and predict future outcomes in silico. CI models can help explore 

the behavior of input parameters, unlocking deeper understanding of the system. This research 

endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary 

mixtures, which were milled and compacted under systematically varying conditions. CI models 

were created using tree-based methods, artificial neural networks (ANNs), and symbolic regres-

sion trained on an experimental data set and screened using root-mean-square error (RMSE) 

scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) 

(in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) 

as inputs and porosity as an output. The resulting models show impressive generalization abil-

ity, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression 

(NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when 

presented with a challenging external validation data set (best achieved symbolic regression: 

NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling 

paradigm to more transparent predictive models. Predictive performance and feature selection 

behavior of CI models hints at the most important variables within this factor space.

Keywords: computational intelligence, artificial neural network, symbolic regression, feature 

selection, die compaction, porosity

Introduction
Pharmaceutical companies rely on solid dosage forms, which constitute a majority of 

the total manufactured and marketed product. Powder characteristics, manufacturing 

process parameters, and various other tangible entities have profound effects on the 

quality of a solid dosage form in a complex way. The quality of a solid dosage form, 

among other factors, can be assessed based on its hardness and porosity, which can 

be used as indirect measurements of its capability and rate to dissolve.1 In most cases, 

the complexity of relationships among the possible material parameters and upstream 

processes diminishes the understanding of the system as a whole.

Porosity, known as the ratio of volume of void space to the bulk volume and gen-

erally represented as a percentage, is an important property that controls the micro-

structure of the tablet during compression. It can assist in the understanding of the 

dispersion mechanism, behavior after ingestion, moisture penetration, and with certain 
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prerequisites, even bioavailability. Porosity measurements 

are also known to be relevant indicators of drug stability.2 

The effect of shape and porosity of granules has been stud-

ied by Johansson and Alderborn,3 suggesting that stronger 

tablets are formed when granules with irregular porosity are 

compressed. Theoretically, the porosity of a tablet can be a 

predictor of its dissolution behavior as well.4

Previous works on this topic have revealed that porosity 

influences tablet strength; lactose tablets with larger pores 

were weak5–7 and similar relationships were observed with 

other excipients such as glucose and mannitol.7,8 The impor-

tance of porosity as an indirect measurement of dissolution 

was demonstrated using rate of water uptake, and solvent 

penetration was studied in microcrystalline cellulose (MCC) 

tablets with different porosities. Results showed that tablets 

with 10% and 15% porosity take up water much faster (30 s) 

and expand by up to 50% of original thickness, while tablets 

with 5% porosity are much slower in water uptake behavior 

(148 s), in addition to showing less expansion.9 The corre-

lation of porosity with die compaction force has been well 

studied in the past.10,11 It was explained that tablets made from 

pharmaceutical powders do not exhibit the quasi-exponential 

trend proposed by Heckel12 for evolution of porosity against 

pressure. Pharmaceutical powders exhibit plastic deformation 

properties, while Heckel’s model works well with metal-

lic powders.11 Tablet brittleness has been described as an 

exponential growth function of porosity using a diverse set 

of pharmaceutical tablets by Gong et al.13

Data-driven empirical models established using compu-

tational intelligence (CI) methods can be used as surrogates 

to run in silico experiments to predict porosity. Use of CI 

offers reduction in experiments, leading to cost and time sav-

ings and broader understanding of the system. CI tools have 

been used in works addressing the pharmaceutical industry’s 

various problems, including tensile strength, porosity, and 

dissolution problems.14–18

Generally, modeling and simulation (M-and-S) is a huge 

area of science, in which various paradigms of modeling are 

used, mostly based on well-established theory. In pharma-

ceutical sciences, a broad area of molecular modeling, using 

ab initio techniques such as molecular docking offers profound 

examples of such an approach.19–21 However, when no such 

theory is present, only empirical modeling is a suitable alterna-

tive, in particular with data-driven modeling in focus.

The aim of this work is to create data-driven intelligent 

models using well-known and established approaches to 

compute the porosity of tablets based on average granule size, 

proportion of MCC, and die compaction force. Furthermore, 

it aims to show that CI models can be represented in the 

form of an equation as a result of modeling through sym-

bolic regression – a shift from the black box paradigm to 

transparency. Last, this work attempts to dissect CI models 

to ascertain which of the input variables are more important 

to predict porosity. The models are based on experimental 

data generated by Perez-Gandarillas et al.22

Materials and methods
ethics
Since this study is conducted purely in silico, no ethics review 

was sought or granted here.

Training data
The experimental data set contains records of binary tablets 

made from MCC and lactose. Powder mixtures were roll 

compacted under constant conditions. Ribbons were milled to 

produce granules of three different size ranges (315–500; 630–

800, and 800–1,000 μm). In continuation of the process, the 

feed powders (binary mixtures) and their granules from each 

size range were die compacted using six different die compac-

tion forces. The experiments were done in triplicates.22

The tablets were characterized through the porosity. 

Therefore, the porosity is an outcome (Table 1A). After 

ejection, the tablet dimensions (diameter and thickness) were 

measured with a digital micrometer (Mitutoyo, Takatsu-ku, 

Japan), and tablet mass was weighed with an electronic bal-

ance (CP224S). These data were used to calculate the relative 

density (ρ
r
) of each tablet, as follows:

  

ρ
ρr

t

=
4

2

m

hDπ
 

(1)

where m is the mass, h is the tablet thickness, D is the tablet 

diameter, and ρ
t
 is the true density of each binary mixture.

Once the relative density is obtained, the porosity (ε) is 

calculated as follows:

 
ε ρ= −1

r  
(2)

Validation data
An additional data set from single-powder tableting experiments 

was used to validate the CI models. The data set is explained in 

Perez-Gandarillas et al.23 The validation set is composed of data 

generated by varying roll compaction over two sets of tooling 

(cheek plates and sealed rim rolls) and two roll compaction 

forces (4 kN/cm and 8 kN/cm). The ribbons were milled under 

constant settings and granules were compacted under seven 
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different die compaction forces (Table 1B). Variation in roll 

compactor tooling and roll compaction/die compaction forces 

introduces a challenge to trained CI models.

Model training
The models were built using three different approaches:

1. Tree-based predictive models

i. Decision trees (Cubist)

ii. Random forests (randomForest)

2. Artificial neural networks (ANNs) (monmlp)

3. Symbolic regression (rgp).

Extensive combinations of algorithm parameters in all 

the approaches were tried. The data set was divided into 

10 folds, where nine of the folds were used for training and 

one for testing. Tenfold cross-validation (10cv) is a renowned 

method to create a “real-world” depiction of a problem from 

the data representing it.24 Models were selected based on their 

RMSE values calculated according to Equation 1. The RMSE 

values are a measure of the differences between the predicted 

and the observed values and are completely independent of 

the modeling technique. Hence, they are reliable and widely 

accepted measures for evaluating a model. R statistical envi-

ronment was used to create the models.

 
RMSE pred obs= ∑ −





1
2

n
( )

 
(3)

where “pred” is the predicted value from the models, “obs” 

is the observed value from the experiments, and “n” is the 

total number of test cases.

The RMSE values were normalized using Equation 2.

 

NRMSE
RMSE

=
−

×
X X

max min

100

 

(4)

where RMSE was calculated in Equation 1, X
max

 and X
min

 are 

the highest and the lowest observed values for the outcome 

in the data set, respectively.

CI methods
Decision trees – cubist
Cubist is a tree-based modeling approach wherein a linear 

model is fit iteratively, resulting in a set of linear models at 

each node starting from the root to the last node of the tree. 

Cubist is an ensemble-based technique. All variables that are 

covered by a linear function at a single node are then dis-

carded from the future iterations for that particular tree. This 

process is recursively continued until all the input variables 

have been covered by a single or a set of rules in a tree. This 

is also known as the separate-and-conquer approach. At every 

step, the response of the model is analyzed and adjusted to 

be used by the next model, until the final model is achieved. 

The final prediction is a simple average of the predictions 

from each tree in the ensemble.25

random forest
Random forests are well known tree-based models. One 

model is shaped by numerous trees in the collection. Indepen-

dent trees are generated based on sample data randomly taken 

out of the training data set. Errors exhibited by individual 

trees are collectively representative of the generalization 

error of the randomForest model.26 An extensive search for 

the best architecture was carried out using a 10cv scheme, 

followed by training of the best-performing architecture on 

the full data set.

anns – monmlp
Monmlp is the implementation of ANN in R. ANNs with 

monmlp are generalized feed-forward ANNs that work in a 

monotone fashion using the backpropagation (BP) algorithm 

Table 1 characteristics of Mcc tablets and the various compaction conditions

Statistical 
parameters

Die compaction 
force (KN)

MCC proportion (%) Average granule 
range (μm)

Roll compaction 
force (kN/cm)

Porosity (%)

(a) experimental parameters for training data
Minimum 2 25 80 Fixed at 11.02; 

not used in the 
training models

0.17
Maximum 14 100 900 0.46
Median 6 50 408 0.26
Mean 6.84 54 481.9 0.27

(B) experimental parameters for external validation data
Minimum 2 Fixed at 100% 80 0 0.14
Maximum 15 350 8 0.47
Median 8 350 4 0.21
Mean 8.14 296 4.8 0.24

Abbreviation: Mcc, microcrystalline cellulose.
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enhanced by the nonlinear minimization algorithm (nlm) for 

training. Neural networks imitate the structure of the human 

brain, whereby information is passed on between neurons 

in the form of synapses. Monmlp allows two hidden layers 

of neurons, with hyperbolic tangent and linear activation as 

transfer functions.27 In monmlp, signals move forward from 

the input layer through sigmoid neurons before reaching the 

linear output layer.

Neurons in each layer consist of N inputs (X
i
), which 

multiplies by the proper generated weight element (W
i,j
) for 

the layer named j. Summation of the weighted inputs plus bias 

(b
j
) produces the input (n

j
) for the activation function, using 

which the output of each neuron (y
i
) can be calculated.

Moreover, different activation functions, such as hyper-

bolic tangent sigmoid (TAN-SIG) transfer function, loga-

rithm sigmoid (LOGSIG) transfer function, and pure linear 

(PURELIN) transfer function, are the potential transfer 

functions that can be used in each layer.28 The neural net-

work package monmlp was run extensively to find the best-

performing network architecture with 10cv. The whole data 

set was used to retrain the model on the best architecture.

symbolic regression by rgp
Genetic programming (GP) is a bioinspired algorithm based 

on evolution principles to solve complex problems. A com-

plex problem is broken down into smaller, simpler problems 

with random solutions. These solutions are then evolved 

through the biologically mimicked process of variation and 

selection until the end condition is reached or a workable 

solution is generated. Thus, rgp is an implementation of GP 

methods in the R environment.29 Package rgp results are 

simple representations of the problem without being exposed 

to a priori information. rgp offers various options for initial-

ization, variation, and selection procedures inherent in GP. 

GP implements a tree structure representation to show the 

mathematical equations. The tree structure is composed of 

two parts: function set (nodes) and a terminal set (leaves).30 

The function set can be chosen through the operators {+, -, 

*, /, sin, cos, log, abs}, mathematical functions, conditional 

statements, or even the user-defined operators. In addition, 

the terminal set includes constants and model variables.31,32

To find the best solution, different runs were conducted 

by iterating over GP tuning parameters. The most important 

tuning parameters are maximum size of the chromosome, 

the number of generations, and population size.30 The size 

of the chromosome, which governs the maximum length of 

the equation, was varied from 5 to 100. The population size 

was set to 1,000, and the number of generations was set to 

500 million evolution steps divided into 100 stages.

These equations can be optimized by different strategies.33,34 

For this experiment, equations were created on the whole 

data set, and then selected ones were optimized using the 

simulated annealing (SANN) algorithm, followed by a quasi-

Newton (Broyden–Fletcher–Goldfarb–Shanno [BFGS]) 

method.35,36

independent feature selection by fscaret
The package fscaret allows semiautomatic feature selection, 

working as a wrapper for the caret package in R. Fscaret 

is specialized for in silico feature selection experiments, 

whereby approximately 120 different packages are used to 

fit models.37 Input feature ranking is extracted from trained 

models by using weighted averages. Sum of squared errors 

(SSE), mean squared errors (MSEs), and RMSEs are used to 

evaluate models. fscaret has been successfully implemented 

in recent studies.38,39

Results and discussion
Approximately 10,000 models with different architectures 

were developed using the CI methods mentioned herein. 

External validation of the models was done using a data 

set on tableting with MCC under different roll compaction 

conditions.

Model performance
Results for best models from all the different CI methods are 

shown in Table 2. All CI methods perform well on the data 

sets. The multiple linear regression (MLR) model, shown 

in Table 3, does not represent the process adequately (15% 

error), suggesting that nonlinearity needs to be addressed 

with a robust method. Figure 1 shows the predicted vs 

observed graph for the MLR model. Hence, to find a suitable 

Table 2 nrMse for 10cv and external validation tests for all ci methods

Data set Multivariate linear  
regression (lm)

Cubist  
(Cubist)

RF  
(randomForest)

Monmlp  
(monmlp)

Symbolic  
regression (rgp)

average of 10cv 15 3 3 1 4
external (unknown to models) – 3 7 6 3

Abbreviations: 10cv, tenfold cross-validation; ci, computational intelligence; nrMse, normalized root-mean-square error; rF, random forest.
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model, decision trees, ANNs, and GP algorithms were used. 

RGP was performed as an early-stage experiment at this 

point. Nonetheless, RGP shows results comparable to those 

from other methods, which is evidence that evolutionary 

computational methods are quite robust and can fit complex 

data well.

ann model
ANNs show best 10cv generalization results among all the 

experiments conducted, although they fail to maintain the 

performance on the external data set. A simple network of 

two hidden layers of 13 and 11 nodes, respectively, with 

10 ensembles and 100 iterations was found out to be the 

best-performing architecture. Hyperbolic tangent was used 

as the transfer function within the ANN (Figure 2).

Recent works39,40 demonstrate the ANN as a much coveted 

CI modeling tool. ANNs show plausible results in super-

vised learning, a behavior that can be attributed to the high 

generalization ability of the ANNs. Moreover, 10cv ANN 

models exhibit a meager 1% normalized root-mean-square 

error (NRMSE) (Table 1). Although ANNs are robust, are 

widely used, and have great generalization capabilities, they 

are generally black-box models. The resulting ANN models 

cannot be dissected with certainty to establish how different 

input features are interacting with each other to predict 

porosity. Furthermore, ANN models are unstable where 

retraining could lead to a slightly different understanding 

of the system. The source of instability and inconsistency 

lies within the design and strategy used to train an ANN. 

Weights in the ANN are generated at random to expedite 

the learning process while the process of learning itself 

is deterministic. Hence, the randomness introduced while 

generating the weights could lead to a completely different 

model after retraining.

symbolic regression
GP is a stable, a transparent method that can offer structural 

insights into the models. Symbolic regression exhibits a good 

model fit (4% 10cv error, 3% external). The advantage of 

symbolic regression is that the result can be represented in 

the form of a mathematical formula.41 The model for poros-

ity can be represented as in Equation 4. A regression plot is 

shown in Figure 3.

Table 3 Mlr model statistical parameters

Intercept Die compaction force (kN) MCC proportion Granule fraction range

estimate 3.486e–01 -2.041e–02 1.242e–01 -1.094e–05
standard error 8.743e–03 8.284e–04 1.289e–02 8.426e–06
t-value 39.874 -24.634 9.633 -1.299
P-value 2e–16 2e–16 1.22e–14 0.198

Note: adjusted R-squared: 0.8899.
Abbreviations: Mcc, microcrystalline cellulose; Mlr, multiple linear regression.

⋅

Figure 1 Predicted vs observed graph for Mlr.
Abbreviation: Mlr, multiple linear regression.

⋅

Figure 2 Predicted vs observed graph for ann.
Abbreviation: ANN, artificial neural network.
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The model represents the outcome of porosity with high 

accuracy (4% 10cv error).

 

Porosity In
In In

=
− − + +( )

C

C X X X C
1

2 2 2 1 3
2 ( )

 

(5)

where C
1
 =1.52888, C

2
 =2.415892, C

3
 =7.28763, X

1
 is the 

die compaction force (in kilonewtons), and X
2
 is the MCC 

proportion (as fraction).

external validation
Data from additional tableting experiments was used to 

test the trained models. Tablets were made with MCC. The 

external data set was particularly challenging for the models 

because roll compaction conditions were kept constant in 

the training data set while being systematically changed in 

the external data set. Table 1 shows the results of external 

validation. The models were able to predict porosity with 

substantial accuracy using unseen input data. The external 

data set is composed of experiments with two different roll 

compactor tooling (cheek plates and rim rolls) and two dif-

ferent roll compaction forces (4 kN and 8 kN) for each. The 

variety of roll compactor settings introduces variance in the 

external data set unknown to the trained models. Although 

CI systems are not known for their extrapolation abilities,42 

the models presented herein are able to extrapolate success-

fully in a small range. Regardless of the complexity in the 

external data set, the rgp model represented by Equation 4 

makes accurate predictions of the test cases from all different 

tooling and force conditions (Figure 4). Table 4 shows the 

levels of accuracy of prediction for the external validation 

data set. Non-roll-compacted powder is predicted with the 

most accuracy (NRMSE: 7%), followed by prediction of roll 

compaction using rim rolls at 4 kN (NRMSE: 9%).

Model description
Further analysis of trained CI models gives interesting 

insights into the governing parameters within this tableting 

experiment.

Feature selection by gP
Symbolic regression model exhibits feature selection 

behavior. The resulting model represents two inputs in the 

equation as compared to the original three inputs presented 

to it while training. Feature selection process discards the 

input variables which are not contributing decisively toward 

the outcome; in this case, the average granule fraction size. 

Considering granule fraction range as a disposable input 

characteristic for the outcome of porosity is contrary to pre-

vious works,43 but justified within the range of this training 

data set.22 A comparison between the GP model and the ANN 

model shows that the average granule fraction size does not 

exercise significant effect on the outcome (Figure 5), also 

supported by MLR (Table 3). ANN model does not perform 

feature selection on its own and is bound to use all three 

inputs in the final model. Therefore, GP model discarding 

the average granule fraction size makes it less complex and 

improves performance on the external data set (Table 2).

Further RSM analysis based on the GP equation shows 

that variation in the amount of MCC does not have a profound 

effect on the porosity of the tablet, while an increase in the 

die compaction force considerably reduces the porosity of 

tablets (Figure 6), a behavior that can be attributed to particle 

rearrangement followed by plastic deformation during the 

compression stage.44

Feature selection on the external data set to 
establish the surplus of discarded variables
Plausible performance of the trained CI models on a signifi-

cantly different external data set could be an occurrence of 

chance. To study this in detail, important features from both 

the data sets were compared. Feature selection experiments 

using fscaret were run independently on the external data set. 

Confirmatory models were developed with a variation of 

input vectors using the tree-based learning method Cubist. 

The resulting top features of the external data set are in agree-

ment with the features used to train the models. The results 

confirm that the die compaction force is the most important 

variable, with roll compaction force, roll compaction tooling, 

Figure 3 Predicted vs observed graph for rgp (nrMse: 4%).
Abbreviations: nrMse, normalized root-mean-square error; rgp, r-genetic 
programming.
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Figure 4 Model performance on external data set.

percentage of material in the formulation, and granule frac-

tion range displaying much lower ranking. Models developed 

without the information of roll compaction force, roll com-

paction tooling, and granule fraction range predict porosity of 

tablets accurately (Table 5: experiments with two and three 

inputs). The successful modeling shows that these variables 

do not contribute to the outcome within this design space. 

The results strongly suggest redundancies in the original 

data set, which, once removed, do not affect the prediction 

of porosity within the factor space. Correlation analysis of 

the original data set reveals that porosity is highly correlated 

to die compaction force (Figure 7).
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Table 4 rMse and nrMse for external validation data set using 
rgp model

System RMSE NRMSE

cheekplates (4 kn) 0.0314 10
cheekplates (8 kn) 0.0401 14
rim rolls (4 kn) 0.0309 9
rim rolls (8 kn) 0.0387 13
Feed powder 0.0254 7

Abbreviations: nrMse, normalized root-mean-square error; rMse, root-mean-
square error.

Figure 5 Surface plot showing the influence of average granule fraction size on 
porosity based on the monmlp model.
Abbreviation: monmlp, Monotone Multi-layer Perception neural network.

Figure 6 Surface plot showing the influence of MCC and die compaction force on 
porosity based on rgp model.
Abbreviations: Mcc, microcrystalline cellulose; rgp, r-genetic programming.

Table 5 Performance metrics for different input combinations of 
training and test data sets

Data set and input numbers MLRa Decision treesa

Training data with three inputs 8% (0.89) 3.4% (0.97)
Training data with two inputs 8% (0.89) 3.4% (0.96)
Test data with five inputs 11% (0.90) 1% (0.99)
Test data with three inputs 10% (0.90) 1% (0.99)
Test data with two inputs 11.7% (0.78) 5.2% (0.95)

Notes: anrMse and R2 are presented. all experiments were done in 10cv mode 
of data representation. Mlr and decision trees were implemented in r using lm 
command and cubist package, respectively. 
Abbreviations: 10cv, tenfold cross-validation; Mlr, multiple linear regression; 
nrMse, normalized root-mean-square error.

Figure 7 correlation plots for (A) training and (B) test data.
Abbreviations: avg, average; Mcc, microcrystalline cellulose.
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Conclusion
CI models for MCC-based tablets are presented herein. The 

models have been rigorously tested internally using 10cv and 

then externally validated by using a challenging data set. The 

models exhibit reliable prediction behavior, with the best 

achieved 10cv-NRMSE of 1% on using ANNs. The models 

also exhibit understanding of the tableting process within the 

design space. The equation for porosity is presented as the 

result of symbolic regression models with 10cv-NRMSE of 

4% and external validation NRMSE of 3%. Presentation of 

CI models in the form of an equation makes them transpar-

ent to scrutiny and shows how the input variables interact 

with each other plus contribute toward the specific outcome 

of porosity. Contrary to common knowledge, roll compac-

tion parameters such as tooling and compression force do 

not influence the porosity of tablets. Such conclusions are 

confined to the local design space and cannot be treated as 

general rules governing the tableting process.
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