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Abstract: Numerous studies on the formulation and clinical applications of novel hemoglobin-based oxygen carriers (HBOCs) are 
reported in the scientific literature. However, there are fewer scientometric analysis related to HBOCs. Here, we illustrate recent 
studies on HBOCs using both a scientometric analysis approach and a scope review method. We used the former to investigate 
research on HBOCs from 1991 to 2022, exploring the current hotspots and research trends, and then we comprehensively analyzed the 
relationship between concepts based on the keyword analysis. The evolution of research fields, knowledge structures, and research 
topics in which HBOCs located are revealed by scientometric analysis. The elucidation of type, acting mechanism, potential clinical 
practice, and adverse effects of HBOCs helps to clarify the prospects of this biological agent. Scientometrics analyzed 1034 
publications in this research field, and these findings provide a promising roadmap for further study. 
Keywords: blood substitutes, trauma, hemorrhagic shock, organ preservation, anemia, risk management

Introduction
The clinical practice of blood transfusion typically involves component therapy, with red blood cells (RBCs) transfusion 
being the most widely used and prominent component in clinical conditions of severe blood disorders.1 The primary 
physiological function of RBCs is their unique oxygen-transport ability, with adaptive regulation in response to changes 
in the oxygen concentration in organic tissues, significantly improving survival.2,3

Nevertheless, RBCs for transfusion from donor blood have several limitations and inherent hazards, including the 
potential transmission of infectious diseases, non-hemolytic febrile reactions, and reperfusion injury.4 Additionally, 
blood-based products have a limited storage life of 42 days in refrigerated conditions and 1 day at room temperature. 
The physiology and circulation time in vivo of RBCs decrease over time due to the storage lesions.5,6 Beyond these 
existing challenges, the increased aging populations have led to a chronic shortage of clinical blood availability, which is 
falling to meet the demand for medical care. The COVID-19 pandemic has further exacerbated the imbalance between 
supplies and demands, as the number of eligible blood donors has decreased.7,8 As a result, the research efforts are 
focusing on new substitutes for RBCs to enhance the availability and applicability.

An ideal blood substitute should have the following characteristics: stable oxygen-transport capacity, minimal 
immunogenicity, an extended half-life, renal biocompatibility, the absence of disease transmissions, and simple metabolic 
clearance. Moreover, it should be amenable to ease of storage and produced at a large scale, thus having easy availability 
and portability. Given the inherent risks and notable drawbacks associated with blood transfusion therapy, scientists are 
of interests in searching for an alternative.
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As a novel substitute for RBCs, artificial oxygen carriers are being developed to mimic and even enhance the 
functions of endogenous blood components.9–13 To date, hemoglobin-based oxygen carriers (HBOCs) have been 
extensively studied and being a prospective erythrocyte substitute. It makes use of the excellent oxygen carrying and 
delivering properties of natural hemoglobin (Hb). However, it remains necessary to scrutinize their research models and 
the prevailing trends to promote further progress.14

Bibliometric analysis provides a useful tool for studying the global trends in a research field, as it highlights recent 
advancements, critical issues, existing gaps, and collaborations between researchers and institutions.15 The purpose of 
this study is to conduct a visual analysis and comprehensive review, demonstrate and discuss the current status and 
prospective development trends of HBOCs by using various graphs, and provide a scientific foundation for promoting 
clinical research and application.

Methods
Database
The data utilized in the present study were obtained from the Web of Science Core Collection (WoSCC) in Science 
Citation Index Expanded (SCIE) database on Web of Science (WoS). The SCIE database is a widely used database in 
bibliometric research and recognized as a preeminent literature citation database with global reach.16,17 The number of 
scientific publications available in WOS database exceeds that of other analogous databases, such as Scopus, Derwent, 
and CNKI (China National Knowledge Infrastructure). Thus, WOS is the most frequently used database for bibliometric 
analysis.16–18 To investigate the subject of interest, the search term “hemoglobin-based oxygen carrier” was employed, 
time frame for the literature search extended from 1991 to 2022 and language “English”. Several search conditions and 
restrictions were implemented during the search process in order to guarantee the results’ precision and exhaustiveness. 
After a thorough examination of the search results, a total of 1034 relevant publications were identified. To facilitate 
subsequent analyses, all relevant metadata including titles, authors, journals, abstracts, and other relevant information 
were systematically extracted and digitally recorded. Figure 1 is a flowchart of the study depicting the research 
methodology.

Visualization Tool
The present study employed several software tools, including VOSviewer 1.6.13, CiteSpace 6.1.1R6, Bibliometrix and 
Origin 2021, which are commonly employed for visualizing bibliometric data.19 We collected fundamental data, like 
authorship, institutional affiliations, geographical regions, publication venues, keywords, and reference lists.

VOSviewer, is a visualization program that employs a systematic analysis by creating bibliometric maps, was created 
by Van Eck and Waltman (Leiden University, the Netherlands).20 Compared to commonly used bibliometric software, 
VOSviewer concentrates on graphical presentation based on bibliometric network data, which consists of nodes and 
links. According to the VOSviewer’s visualization rules, each node reflects a specific parameter, such as country/region, 
journal, or keyword. The magnitude of a node is proportional to its frequency of occurrence, such as publication counts, 
keyword occurrences, or citations. The colors of nodes depict the co-occurrence analysis cluster to which the nodes 
belong.19

CiteSpace, a software, was created by Chaomei Chen (Drexel University, USA), which is a multi-dimensional, time- 
sharing, dynamic visualization analysis software.20,21 It possesses an advantage in academic searches of WoSCC in SCIE 
database, and some of its functionalities and key indicators facilitate more precise data processing.20 Multiple visualiza
tion methods are available in CiteSpace, particularly keyword burst detection, time span measurement and warm-cool 
color mapping. Keyword burst detection is used to identify sudden changes in nodes to represent that keywords were 
frequently cited within a specific period. Time span measurement provides a timeline view to track the research history, 
turning points, and research hotspots. In this study, we detected the burst of keywords and cited references by using 
CiteSpace 6.1.R6 to investigate the emerging literature and the recurrent keywords.22–24

Bibliometrix, a small package founded on R software, was developed by the Aria’s team.25 The data, which are 
exported from the WoS database and completed by the research team, are processed using the Bibliometrix package with 
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R software for visualization. The H-index is an effective instrument for evaluating the quantity and quality of academic 
papers published by scientists, nations, journals, or institutions.26 In bibliometric analysis, the most frequently employed 
indicators are the co-authorship rate, the co-occurrence rate, and the co-citation rate. Co-authorship analysis is based on 
a quantitative technique that emphasizes the interrelationships between different elements, while co-occurrence analysis 
is a process that accentuates interconnections between different institutions, authors and countries. Citation analysis is 
a statistical methodology that underscores the advantages of cited articles.

Results
Global Publishing Trends and Forecasts
The temporal evolution of the published literature on HBOCs reflects the annual fluctuation in international scholars’ 
interests. Figure 2 depicts the annual statistics of HBOCs-related literature data in the WOSCC between 1991 and 2022. 
This dataset consists of 1034 publications, including articles and reviews. The line graph representing the annual 
publication frequency demonstrates that the publication trend can be partitioned into three distinct sub-periods: 
a period of noticeable growth (1991–2009), a period of rapid decline (2009–2014), and a period of gradual growth 

Figure 1 Flow chart of scientometric analysis.
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(2014–2022). In the 1990s, blood scarcity emerged as a critical global issue, prompting significant research efforts on 
major research institutions and pharmaceutical ventures to develop blood substitutes that could satisfy military and 
civilian needs. This research fervor culminated in 2009. The emergence of significant safety concerns resulted in 
controversy and the halting of HBOCs-related research by the US Food and Drug Administration (FDA), leading to 
a sharp decline in research publications after 2009. After 2014, more evidence emerged, signaling a renewed interest in 
HBOCs-related research.

Distribution of Major Research Directions
Figure 3 shows the scholarly classification of publications pertaining to HBOCs, and it is noteworthy that approximately 
29% of the literature is focused on the research area of biomedical engineering, biomaterials, and molecular biology. 
Currently, a global imbalance between supply and demand has prompted numerous countries and institutions to engage in 
the active research and development of artificial blood. As a biological pharmaceutical product, artificial blood requires 
multidimensional research on its composition, physicochemical properties, and pharmacological mechanisms, as well as 
a comprehensive evaluation of its efficacy and safety. Additionally, as a blood substitute, HBOCs have been extensively 
employed in various clinical fields, for instance, hematology, critical care medicine, anesthesiology, peripheral vascular 
disease, and organ transplantation, as evidenced by pertinent publications in these areas. The findings of such research 
unequivocally demonstrate the expansive application prospects and potential of HBOCs.

Country and Regional Cooperation Distribution
Based on the results of international cooperation in various countries and regions, research on HBOCs-related topics has 
been conducted in 36 different countries and regions. According to the geographical distribution of global productivity 
(Figure 4A), the majority of articles were published in North America, Asia, and European nations. Table 1 shows the top 
ten countries/regions with the most published papers on this topic, and Figure 4B displays the annual publication counts 
for these nations/regions between the years 1991 and 2022. The highest number of publications (555 papers, 53.675%) 
came from the United States, indicating that this country has contributed most to HBOC research. The following 

Figure 2 Annual publications between 1991–2022.

https://doi.org/10.2147/DDDT.S422770                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2023:17 2552

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 3 Distribution of major research directions.

Figure 4 (A) Geographical distribution map based on the total publications of different countries/regions. (B) The changing trend of the annual publication quantity in the 
top ten countries/regions from 1991 to 2022. (C) The international collaborations’ visualization map of countries/regions.
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countries are China, Japan, Italy, France, Canada, Romania, England, and the Netherlands. Meanwhile, American works 
were cited 6199 times, significantly surpassing China in second place (1228 times). This information also demonstrates 
that the United States has been a driving force in the study of HBOCs, which may be attributable to the greater emphasis 
on scientific investigation in developed countries.

Figure 4C indicates that there is close cooperation among countries in HBOC research, as the development of blood 
substitute currently becomes a global challenge, the urgent need for clinical scenarios related to artificial blood 
substitutes is more common, especially in developed countries, making HBOC research an urgent issue to be addressed. 
Consequently, nations and regions should strengthen cooperation to advance this research field.

Contributions of Institutions
Regarding publications on HBOCs, the research contributions were made by a total of 484 institutions, with Table 2 
presenting the top ten high-output institutions. According to the institution rankings, it is noteworthy that the United 

Table 1 The Top 10 Productive Countries/Regions Related to HBOCs Research

Rank Country/Region Counts % of Total Publication (%) Total Citations Average Citations

1 USA 555 53.6750 6199 26.05

2 China 216 20.8897 1228 14.98

3 Germany 101 9.7679 701 15.24

4 Japan 94 9.0909 681 20.03

5 Italy 55 5.3191 382 21.22

6 France 48 4.6422 342 14.25

7 Canada 44 4.2553 332 20.75

8 Romania 30 2.9014 248 41.33

9 England 30 2.9014 222 55.50

10 Netherlands 25 2.4178 195 16.25

Abbreviation: HBOCs, hemoglobin-based oxygen carriers.

Table 2 The Top 10 Productive Institutions Related to HBOCs Research

Rank Institution Articles Country Total Citations Average Citation Global Rank

1 The Ohio State University 67 USA 339 5.06 112

2 University of California San Diego 58 USA 827 14.26 32

3 Sichuan University 51 China 184 3.61 196

4 US Food and Drug Administration 41 USA 647 15.78 713

5 University of California, Davis 35 USA 394 11.26 63

6 University of Pennsylvania 35 USA 228 6.51 14

7 Johns Hopkins University 34 USA 244 7.18 15

8 University of Chinese Academy of Sciences 34 China 182 5.35 74

9 University of Parma 34 Italy 162 4.76 501

10 Waseda University 33 Japan 301 9.12 579

Abbreviation: HBOCs, hemoglobin-based oxygen carriers.
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States featured prominently, with 6 research institutions ranking among the top 10. Of these, the Ohio State University 
ranked first (with 67 publications), followed by the University of California, San Diego (with 58 publications). In the 
context of research on HBOCs, it is notable that the institutions making the largest contributions from China were 
Sichuan University (with 51 publications) and the University of Chinese Academy of Sciences (with 34 publications). 
Moreover, high citation frequency serves as a key metric indicating an increase in cited papers within a certain period. It 
is postulated that the University of California, San Diego, FDA, and University of California, Davis, achieved break
through progress in HBOCs-related research during a certain period, as evidenced by the sudden surge in citation 
frequency. Of the top 5 research constitutions run into the top 100 according to the global rank.

Contributions of Authors
H-index serves as a reliable measure for assessing scientific achievements and academic contributions of a particular 
researcher. The H-index measures a scholar’s rate of citation and indicates the total number of articles that have been at 
least H times cited.27 Table 3 lists the most creative ten authors ranked by their publications related to HBOC studies. 
Palmer AF (55 articles, USA), Sakai H (38 articles, Japan) and Alayash AI (33 articles, USA) had published the most 
papers. Professor Palmer is a global leader in the development of novel blood substitute research for multiple uses in 
transfusion medicine and tissue engineering, and he is currently working to develop more safer and commercially viable 
RBC substitutes.28 Prof. Alayash has received the most total citations (8526 times) and the greatest H-index (49). Prof. 
Alayash’s research group is dedicated to assessing the safety and efficacy of blood substitutes, they are trying to analyze 
the complexities associated with the interaction of Hb and vascular system and attempting to tackle toxicities.29

Analysis of Journals and Co-Cited Journals
The research on HBOCs involved a total of 389 academic journals. Table 4 lists the top twenty journals in the field of 
HBOC studies. Among the 389 journals that issued papers on HBOCs, Artificial Cells, Nanomedicine, and Biotechnology 
published the most with 108 (10.44%), followed by Shock (30, 2.90%) and Transfusion (28, 2.70%). The top ten journals 
included eight American publications and two British publications.

Among the top twenty journals, eight had an impact factor greater than 5 scores and ranked the Q1 according to 
Journal citation reports criteria, including Artificial Cells Nanomedicine & Biotechnology (6.355), Anesthesia and 
Analgesia (6.627), American Journal of Physiology-Heart and Circulatory Physiology (5.125), Critical Care Medicine 
(9.296), Free Radical Biology and Medicine (8.101), Anesthesiology (8.986), Antioxidants & Redox Signaling (7.468), 

Table 3 The Top 10 Authors with Most Publications Related to HBOCs Research

Rank Authors Articles H-Index Total Citations Institution Country Articles Fractionalized

1 Palmer AF 55 42 6126 The Ohio State University USA 17.40

2 Sakai H 38 22 1353 Keio University Japan 6.85

3 Alayash AI 33 49 8526 US Food and Drug Administration USA 13.66

4 Jahr JS 29 12 357 University of California, Los Angeles USA 5.68

5 Cabrales P 28 7 162 University of California San Diego USA 7.37

6 Li T 26 6 134 Third Military Medical University China 3.43

7 Driessen B 24 9 221 University of California, Los Angeles USA 4.62

8 Mccarrron R 24 5 82 University of Washington USA 2.81

9 Tsuchida E 24 7 440 Waseda Bioscience Research Institute Singapore 4.38

10 Buehler PW 23 6 339 University of Maryland USA 5.00

Abbreviation: HBOCs, hemoglobin-based oxygen carriers.
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Table 4 The Top 20 Journals with Most Publications Related to HBOCs Research

Rank Counts % of Total  
Publication (%)

Journal Country H-Index IF (2021) JCR (2021) Total Citations Average 
Citations

1 108 10.44 Artificial cells nanomedicine and biotechnology USA 57 6.355 Q1 108 2.63

2 30 2.90 Shock USA 122 3.533 Q2 228 7.6

3 28 2.71 Transfusion England 138 3.337 Q3 298 10.64

4 26 2.51 Journal of Trauma and Acute Care Surgery USA 192 3.697 Q2 340 13.08

5 25 2.42 Artificial organs England 79 2.663 Q3 209 8.71

6 21 2.03 Anesthesia and analgesia USA 208 6.627 Q1 309 14.71

7 20 1.93 American journal of physiology heart and circulatory physiology USA 208 5.125 Q1 324 16.2

8 18 1.74 Biotechnology progress USA 135 2.909 Q3 197 10.94

9 16 1.55 Critical care medicine USA 282 9.296 Q1 197 12.31

10 14 1.35 Journal of applied physiology USA 240 3.88 Q2 143 10.21

11 12 1.16 Biochimica et biophysica acta proteins and proteomics Netherland 153 4.125 Q3 149 12.42

12 12 1.16 Free radical biology and medicine USA 277 8.101 Q1 86 7.17

13 11 1.06 Anesthesiology USA 245 8.986 Q1 120 10.91

14 11 1.06 Antioxidants redox signaling USA 203 7.468 Q2 87 7.91

15 9 0.87 Biomaterials England 397 15.304 Q1 97 10.78

16 9 0.87 Microvascular research USA 93 3.75 Q3 98 10.89

17 8 0.77 Biochemistry USA 260 3.321 Q3 56 7

18 8 0.77 Biotechnology and bioengineering Germany 198 4.395 Q3 27 3.38

19 8 0.77 Clinical chemistry USA 226 12.167 Q1 95 11.88

20 8 0.77 Critical care clinics England 76 3.879 Q2 61 7.63

Abbreviations: HBOCs, hemoglobin-based oxygen carriers; IF, impact factor; JCR, journal citation reports; Q, quartile in category.
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Biomaterials (15.304) and Clinical chemistry (12.167). Among the top twenty journals, the impact factor of Artificial 
Organs was the lowest at 2.663.

Table 5 shows the twenty most cited journals. Artificial Cells, Nanomedicine, and Biotechnology (857 citations) 
ranked first, followed by Transfusion (568 citations) and Journal of Biological Chemistry (533). JAMA – Journal of the 
American Medical Association (157.335), Science (63.714), Blood (25.476), Proceedings of the National Academy of 
Sciences of the United States of America (12.779), The New England Journal of Medicine (176.079), and Nature (69.504) 
were journals with an impact factor greater than 10 scores. The majority of research on HBOCs centered on the 
development of novel formulation, pharmacological mechanisms, as well as the evaluation of efficacy and safety. In 
comparison to the analysis of journals, the number of highly cited journals has significantly increased, indicating that 
research in these journals is more fundamental or theoretical in nature.

Co-Cited References Analysis
The term “co-citation” refers to the situation in which one or more references are cited in common by one or more 
publications.30 The top ten co-cited documents on HBOC research are presented in Table 6. The highly co-cited 
papers cover a range of types including meta-analysis,31 randomized controlled trials,32,33 and reviews.34,35 Within 

Table 5 Top 20 Co-Cited Journals Related to HBOCs Research

Rank Counts Co-Cited Journal Country H-Index IF (2021) JCR (2021)

1 857 Artificial cells nanomedicine and biotechnology USA 57 6.355 Q1

2 568 Transfusion England 138 3.337 Q3

3 533 Journal of biological chemistry USA 528 5.486 Q2

4 514 Critical care medicine USA 282 9.296 Q1

5 513 American Journal of Physiology Heart and Circulatory 
Physiology

USA 208 5.125 Q1

6 473 Journal of applied physiology USA 208 5.125 Q1

7 458 Journal of Trauma and Acute Care Surgery USA 192 3.697 Q2

8 384 Anesthesia and analgesia USA 208 6.627 Q1

9 327 Artificial organs England 79 2.663 Q3

10 293 Journal of laboratory and clinical medicine Germany 110 8.49 Q2

11 283 Proceedings of the National Academy of Sciences of the United 

States of America

USA 805 12.779 Q1

12 281 Anesthesiology USA 245 8.986 Q1

13 277 Biochemistry USA 260 3.321 Q3

14 261 Jama-journal of the American medical association USA 709 157.335 Q1

15 253 Shock USA 122 3.533 Q2

16 236 Bioconjugate Chemistry USA 177 6.069 Q2

17 227 The New England Journal of Medicine England 1079 176.079 Q1

18 225 Nature England 1276 69.504 Q1

19 218 Blood USA 484 25.476 Q1

20 215 Science USA 1229 63.714 Q1

Abbreviations: HBOCs, hemoglobin-based oxygen carriers; IF, impact factor; JCR, journal citation report; Q, quartile in category.
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Table 6 The Top 10 Cited References Related to HBOCs

Rank Citations Title First Author Journal Year Country H-Index IF (2021) JCR (2021)

1 685 Cell-free hemoglobin-based blood substitutes and risk of myocardial 
infarction and death: a meta-analysis

Natanson C Jama 2008 USA 709 157.335 Q1

2 536 Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe 
traumatic hemorrhagic shock: a randomized controlled efficacy trial

Sloan EP Jama 1999 USA 709 157.335 Q1

3 489 Rate of reaction with nitric oxide determines the hypertensive effect of 
cell-free hemoglobin

Doherty DH Nature 
Biotechnology

1998 USA 463 68.164 Q1

4 424 Oxygen carriers (“blood substitutes”)–raison d’etre, chemistry, and some 
physiology

Riess JG Chemical Reviews 2001 USA 745 72.087 Q1

5 398 The first randomized trial of human polymerized hemoglobin as a blood 
substitute in acute trauma and emergent surgery

Gould SA Journal of the 
American College 

of Surgeons

1998 USA 186 6.532 Q2

6 358 Systemic and pulmonary hypertension after resuscitation with cell-free 

hemoglobin

Hess JR Journal of Applied 

Physiology

1993 USA 208 5.125 Q1

7 344 Oxygen therapeutics: can we tame haemoglobin? Alayash AI Nature Reviews 

Drug Discovery

2004 England 348 112.28 Q1

8 318 Arterial blood pressure responses to cell-free hemoglobin solutions and 

the reaction with nitric oxide

Rohlfs RJ The journal of 

biological chemistry

1998 USA 528 5.486 Q2

9 302 MP4, a new nonvasoactive PEG-Hb conjugate Vandegriff KD Transfusion 2003 England 138 3.337 Q3

10 225 Polymerized bovine hemoglobin solution as a replacement for allogeneic 
red blood cell transfusion after cardiac surgery: results of a randomized, 

double-blind trial

Levy JH The journal of 
thoracic 

Cardiovascular 

Surgery

2002 USA 201 6.195 Q1

Abbreviations: HBOCs, hemoglobin-based oxygen carriers; IF, impact factor; JCR, journal citation reports; Q, quartile in category.
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the top ten co-cited references, four articles focused on the development and synthesis of novel HBOCs, three 
articles focused on clinical trials, and four articles focused on its physiological toxicity. The most frequently cited 
article is a meta-analysis reported in 2008.36 This study summarized distinct trials from diverse populations (ie, 
elective surgery or trauma), different comparisons (crystalloids, colloids, or blood), and HBOC preparations with 
varied physicochemical properties. The conclusion revealed significant associations between HBOCs and risk of 
death.36 Due to concerns identified by this report, FDA mandated all ongoing and future trials of HBOCs in the 
United States.

Some academicians have harshly criticized the flawed methodological and conclusive validity of the study.37–39 

Consequently, numerous commercial enterprises shifted their target indication or relocated their operations outside 
the United States. This probably be the reason why a sharp decline on HBOC research during 2009–2014. The co- 
citation timeline view demonstrates that all references form 14 clusters with active co-citations between them 
(Figure 5).

Keywords Analysis
Keywords are a fundamental component of scientific articles, and high-frequency keywords reflect current issues and 
frontiers in a specific research field.40 The statistical analysis of keywords can effectively and rapidly identify essential 
topics within specific academic disciplines.41 Co-occurrence keyword analysis of HBOCs shows in Figure 6. The 
VOSviewer software clustered keywords into five main clusters and used different colors to represent these clusters 
(Figure 6A). In the literature on HBOC studies, the most frequently appearing keywords are “hemoglobin” (106), 
followed by “blood substitutes” (77) and “hemoglobin-based oxygen carriers” (59). The keywords that appear in citation 
bursts indicate that their citation frequency has significantly increased over a certain period of time, which can confirm 
whether a research field is in a popular stage during a certain period and also highlights emerging topics.42 As shown in 
Figure 6B, we were able to obtain the top 25 keywords with the strongest citation using keyword burst analysis. These 
keywords cover a wide range of HBOC-related research subjects, including animal models of vitro trials, chemical 
modification mechanism, evaluating outcomes, and clinical applications.

Figure 5 Reference timeline view.
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However, this is not sufficient to provide readers with a full understanding of the research area. The analysis of data 
can reveal the overall structure and interdependencies of linked field and literature.43 We subsequently categorized these 
keywords into four dimensions: HBOC types, physiological mechanism, clinical scenario, and adverse event, respec
tively. Results after manually placing the keywords in each dimension are shown in Figure 7. The modification frequently 
appeared most was cross-linked Hb, followed by liposomal-encapsulated Hb and polymerized bovine Hb (Figure 7A). 
The physical actions of HBOCs and measured indicators briefly summarized from keywords analysis are demonstrated in 
Figure 7B. Based on the efficacy of such complexes, this category set primarily includes oxygen delivery and oxygen 
consumption. Regarding clinical scenario, HBOCs are typically applied to hypovolemic and ischemic-hypoxic diseases, 
with hemorrhagic shock being the most common disease in the field (Figure 7C). Adverse events are focused on the 
safety of HBOCs in pre-clinical and clinical trials, with nitric-oxide scavenging induced hypertension being the most 
frequent one (Figure 7D).

Discussion
Hb plays an essential role for life activities and its deficiency or disorders may lead to severe syndrome conditions. 
Researchers have been interested in the topic of modifying Hb and improving its oxygen transport function over the three 
decades. Here, we conducted various bibliometric approaches to visualize the studies for HBOCs from different 
perspectives, and thoroughly summarize the historical development and research frontiers. In the following sections, 
we will develop the discussion of this review in detail in accordance with the classification of keywords.

Sources of Hb for HBOCs
The Hb for most HBOC products sourced from expired human blood, fresh bovine or porcine blood, and some marine 
invertebrates. The fundamental principle of HBOCs design is to regulate the oxygen loading and unloading capacity of 
the Hb utilized. Human Hb relies on regulatory effector molecule, 2,3-diphosphoglycerate, to maintain its P50 within 
a specific range (26–28 mmHg).44 Bovine Hb, in contrast, has chloride-dependent oxygen affinity and is more thermally 
stable during separation and processing.45 Moreover, Johnstone et al46 suggested that bovine RBCs are less prone to 
hemolysis, exhibit less fragility, and produce fewer serum reactions in vitro tests than swine RBCs. Hb molecules derived 
from marine invertebrates are not packed within RBCs or other types of membranes. They exhibit intrinsic superoxide 
dismutase (SOD)-like activity, allowing them to deplete reactive oxygen species,47 while also demonstrating significant 
oxygen transport efficiency.48,49 Considering the availability, processing, and efficacy, bovine blood has emerged as the 
preferred commonly used raw material for HBOCs.50

Figure 6 (A) VOSviewer network map of co-occurrence analysis of all keywords of HBOCs-related studies. (B) Top 25 keywords with the strongest citation bursts on 
HBOCs from burst analysis of keywords.
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Types of HBOCs
The initial attempt at developing HBOCs involved stoma cell-free Hb, which, when removed from the protective 
environment of RBCs, rapidly dissociates from tetramer into dimers, ultimately resulting in glomerular damage and 
kidney failure.51,52 Meanwhile, the free radicals generate by heme portion inflicted severe harm to vital organs. As 
a consequence of these deficiencies, considerable effort has been devoted to stabilizing and optimizing the functionality 
of the Hb molecule.

To circumvent inherent limitations, Hb must be chemically modified or encapsulated within the protective carrier 
shell to reduce its toxicity (Figure 8). Internal cross-linking, polymerization, conjugation, and surface modification are 
specific chemical modification strategies for cell-free Hb. Internal cross-linking involves connecting Hb monomers with 
cross-linking agents to form oligomers; polymerization entails the aggregation of Hb molecules into larger polymer 
complexes; conjugation involves attaching Hb with other molecules (such as polyethylene glycol, PEG) to soluble non- 
hemoglobin polymers. These strategies increase Hb’s stability, decrease its toxicity, and lengthen its half-life. 
Encapsulation aims to simulate the in vivo environment of RBCs by encapsulating Hb and enzymes inside artificial 
RBCs with lipid or other biodegradable membranes.

The Typical Chemically Modified HBOCs
Despite the fact that several HBOCs products have progressed to clinical phase, only Hemopure® (HBOC-201, HbO2 

Therapeutics Corporation, USA) is commercially available for human use on a global scale.38,53 Cross-linked bovine Hb 
was polymerized with glutaraldehyde to create this product, which after extensive purification contains 13.6 g/dL of Hb 
in a Ringer’s solution with a pH of 7.6–7.9.54 Instead of a single Hb molecule, these polymers consist of four or five Hb 
molecules with a total molecular weight of 250 kDa. The half-life of HBOC-201 is 16 to 20 hours, slightly reduced to 8.5 
hours in patients with liver disease. Additionally, it can be kept for three years at ambient temperature. In clinical trials, 

Figure 7 (A) Type of HBOCs. (B) Physiological mechanism. (C) Clinical scenario. (D) Adverse event.
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HBOC-201 was found to substantially improve patient survival and decrease the requirement for blood transfusions 
during cardiac surgery.55

Encapsulation Strategies
The conception of Hb-encapsulated delivery system was initially proposed by Chang et al in the 1950s and 1960s.56,57 

Encapsulated HBOCs products are manufactured in a manner that maximizes their resemblance to RBCs, which was 
accomplished by utilizing various effector molecules or reductive enzymes within micro- or nano-sized (up to 500nm) 
encapsulation platforms. The encapsulated Hb products demonstrated more advantages than acellular Hb products, 
including relief from hypertension, increased half-life, and extended shelf life.58

The frequently mentioned HBOC refers to Hb encapsulated in liposomes, which involves entrapping Hb within the 
bilayer structure of liposomes.59 Liposomes are stable vesicles composed of phospholipid molecules that can encapsulate 
a variety of nanoscale biological molecules. Liposomes can shield Hb from immune system attacks, prolong its half-life, 
and modulate its oxygen affinity and release to better suit the requirements. In addition, liposomes surface-modified with 
PEG can lessen toxicity, increase circulation lifetime up to 60 hours, and decrease nitric oxide (NO) scavenging. PEG 
increases their half-life but decreases their antigenicity, thereby enhancing their targeting specificity to certain sites and 
imparting water-solubility. They are also compatible with the human immune system, thereby protecting it from immune 
system assaults and extending its half-life within the body.60 Moreover, encapsulation diminished Hb’s high viscosity and 
high colloidal osmotic pressure.61,62

Furthermore, to better simulate the intracellular environment of RBCs and control oxidative damage, Hb molecules 
are cross-linked with superoxide dismutase, catalase, and carbonic anhydrase, forming a soluble poly- 
nanobiotechnological complex.9,13 This novel soluble nanobiotechnological complex not only eliminates oxygen radicals 
and prevents ischemia-reperfusion injury but enhances the function of RBCs.9 Other enzymes, such as adenosine and 
reduced glutathione, can be added to alleviate hypertensive reactions.11 However, due to the exorbitant cost of 
commercially purified enzymes, the cost-benefit of using them must still be considered in practical applications. 
Despite this, there are some challenges, including the difficulty in controlling the rate of Hb release, immune system 
response, and the high production cost. This technique is therefore still in research phase and requires further investiga
tion to demonstrate its safety and efficacy.

Physicochemical Parameters and Brief Evaluation System
Over the past three decades, studies related to HBOCs have primarily focused on optimizing their physicochemical 
properties to improve efficacy and safety. The primary objective of developing HBOCs was to restore volumetric 
oxygen-carrying capacity following acute blood loss.63 Specifically, whether a particular HBOC improves microvascular 

Figure 8 Hemoglobin modifications mechanisms.
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perfusion of vital organs and fully restores oxygen to hypoxic tissues, thereby correcting any accumulated oxygen debt, 
depends on their physicochemical properties.

Physicochemical Parameters
The critical properties include molecular size, Hb concentration, osmolarity, viscosity, oxygen affinity, pH value and 
purity. The possible active mechanisms of these variables are presented in Table 7. The molecular size and Hb 
concentration of HBOCs not only influence the viscosity, oncotic pressure, and dosage of final product, they also affect 
the total volume of therapeutic fluids administrated to patients. It has been demonstrated that HBOCs with smaller 
molecular weight and greater oxygen diffusion coefficients cause vasoconstriction and confine blood to the capillary 
bed.64,65

In macroscopic circulation, viscosity is an essential factor in the delivery of oxygen from organ to tissues. Basically, 
HBOCs have a lower viscosity than whole blood, and hemodilution consequently occurs during resuscitation treatment. 
However, hemodilution decreases the viscosity of whole blood and systemic vascular resistance, thereby enhancing the 
state of blood flow in systemic circulation.66

In microcirculation, many factors are involved in this regulatory process. The shear stress experienced by endothelial 
cells of small vessels is proportional to viscosity and osmotic pressure.67 A decrease in microcirculatory shear stress 
triggers endothelial cell downregulation leading to NO production.68,69 HBOCs with high osmolarity theoretically keep 
the microcirculation, while its hemodilution effect to some extent balances the high colloidal osmolarity.70,71 

Polymerized tetramers have lower colloidal osmolality than stable Hb tetramers or surface-modified tetramers and 
therefore may be less effective in maintaining microcirculation.

The small terminal arteries modulate the microcirculation according to the partial oxygen pressure, thereby adapting 
to oxygen demand of tissues.72 Factors that determine oxygen delivery to the small arteries include the oxygen 
concentration of the blood, the ability for Hb to unload oxygen and to diffuse into vascular endothelium. Oxygen affinity 
is an important parameter measured by P50 value to determine the ability of oxygen transporting and releasing in tissues.9 

A right shift observed in oxygen dissociation curve facilitates oxygen release to tissues and improves resistance to 
changes in oxygen consumption or blood pressure, whereas the oxygen equilibrium curve only exhibits an advantage 
under conditions of severe hypoxia. The oxygen-transport efficiency of human RBCs is 23%.72 RBC substitutes, 
therefore, only improve oxygen-transport efficiency and facilitate release when its oxygen affinity is equal to or lower 
than that of RBCs.

In addition to the factors mentioned above, the pH formulation of HBOCs can be shown to have a measurable effect 
on the blood’s pH, with the fact that Hb has some buffering capability within the physiologic range.73 Lastly, 

Table 7 Physiochemical Parameters and their Active Mechanisms on HBOCs

Parameter Conception or Active Mechanisms

Molecular size ● Rate of extravasation;
● Alteration of vasoactive response

Hemoglobin concentration ● Solution viscosity and oncotic pressure;
● Affects amount of concurrent fluid volume administered

Oxygen affinity ● Ease of direct oxygenation;
● Indirect autoregulatory responses to oxygenation

Viscosity ● Direct hemodynamic influence on organ performance

Oncotic pressure ● Volume expansion on hemodynamics

pH value ● Buffering capacity may influence blood pH

Purity ● Residual modification agents or endotoxin exhibit toxic effects

Abbreviation: HBOCs, hemoglobin-based oxygen carriers.
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formulations of toxic residuals and endotoxin-contaminated materials that may induce cardiac dysfunction have been 
reported.74,75

The Brief Evaluation System for HBOCs
From resuscitation perspectives, fluid therapy following hypovolemia requires immediate restoration of blood volume 
which firstly recovers hemodynamics and function and finally tissue oxygenation. We theoretically propose a concise 
evaluation system to illustrate its effectiveness and safety (Figure 9). Hemodynamics and tissue oxygenation are main 
dimensions to demonstrate effectiveness. Hemodynamics is mainly affected by blood vessel flow and vascular resistance. 
A series of significant clinical indicators can be determined through techniques. The conditions of tissue oxygenation are 
calculated by oxygen delivery and consumption, which are primarily illustrated by partial oxygen pressure, oxygen 
saturation, and oxygen tension. Nonetheless, the absence of methods for measuring partial oxygen pressure was 
a significant limitation. Regarding safety, we consider that toxicity and injury should comprise endothelia, tissue and 
organ injury ranging from macro to micro perspective. These injury-related conditions are obtained from laboratory tests, 
histopathological sections, and molecular biology techniques respectively.

Potential Clinical Practice
Trauma and Hemorrhagic Shock
Hemorrhagic shock (HS) resulting from uncontrolled blood loss is the leading cause of mortality in trauma patients 
following blunt or penetrating injuries, both in military and civilian contexts.76,77 The administration of whole blood as 
a resuscitation fluid for traumatic hemorrhage is widely recognized in tactical combat casualty care. Yet, the transporta
tion of whole blood to remote units has been a logistical challenge due to the rigorous cold chain requirements.78 HS is 
characterized by inadequate blood perfusion, which results in a deficiency of cellular substrates and hypoxia to vital 
organs.78 Blood viscosity is significantly altered in HS due to hemodilution and decreased hematocrit, which directly 
affects microvascular function. Damage to the microcirculation caused by severe shock delays the return to adequate 
perfusion, consequently contributing to the development of lactic acidosis and further exacerbating the associated 
outcomes.79,80

Several HBOC agents have been tested its efficacy in preclinical animal model of HS. In hypoxic tissue environment, 
they facilitate oxygen diffusion from erythrocytes to vascular endothelial cells, enhance oxygen transport in micro
circulation and increase the uniformity of oxygen flux cross capillaries.81,82 In an animal model of HS combined with 
traumatic brain injury, SanFlow significantly improved MAP and heart rate and decreased intracranial edema, acidosis, 
and hyperkalemia.83 It provided brain protection and tackles the toxicity associated with cardiovascular and renal 
failure.84 Despite the early HBOCs demonstrated efficacy in preclinical animal models, they did not yield clinical 

Figure 9 The brief evaluation system for HBOCs in vivo and in vitro trials.
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benefits in subsequent human trauma trials.85 Clinical investigations pertaining to HBOCs conducted in the context of 
trauma have not exhibited a universal advantage in relation to the avoidance or reduction of RBC transfusion or 28-day 
mortality.86

Recently, a multi-institutional clinical trial has been initiated by experts from the US Army Institute of Surgical 
Research and Emergency Medicine and the University of Terrebonne in South Africa to evaluate the efficacy of 
resuscitating trauma victims with synthetic blood products prior to hospital admission. The project aims to assess the 
impact of HBOC-201 in comparison to conventional fluid resuscitation on the mortality rate within a 24-hour period.87 

Meanwhile, researchers from the University of Maryland are currently spearheading a research initiative aimed at 
assessing the safety and efficacy of a new blood substitute in the context of multiple trauma scenarios.88 Thi Modern 
experimental platforms, sophisticated modelling methods, machine learning algorithms and multiple complementary 
animal models are all to be used in this project. The goal is to modify the product to suit environmental climate 
applications, guaranteeing its durability in harsh conditions for extended periods. This project is anticipated to enhance 
treatment alternatives for trauma patients globally, particularly those affected by war, natural calamities, and other 
emergency situations. The execution of these initiatives would yield novel perspectives towards the management of 
trauma.

Organ Preservation and Transplantation
One of the common and inherent complications in harvesting and organ transplantation is ischemia-reperfusion 
injuries.89,90 The contemporary preservation techniques involve hypothermic storage in a solution that comprises 
electrolytes, amino acids, and other substances with the aim of maintaining cell integrity. Even though there are 
techniques for reducing aimed at reducing enzyme activity that may reduce the risk of ischemia, an efficient oxygen 
delivery system is still required. Hemo2-life (M101) is a biotechnological product that consists of unaltered cell-free Hb 
derived from a marine worm.47 The assessment of the M101 has been conducted in both organ preservation and 
resuscitation contexts.

A biological substance may be incorporated into preservation fluids for organs to regulate oxygen levels in hypoxic 
environments and mitigate the decline of oxygen concentration in tissues. Preclinical animal studies have demonstrated 
that M101 improves the quality, function, and prognosis of diverse organs in kidney, lung, and heart 
transplantations.47,90,91 Kaminski et al89 observed that M101 enhances long-term kidney function under refrigerated 
conditions. Additionally, the study showed the progression of interstitial fibrosis and tubular atrophy in the kidney under 
mechanical perfusion.89 Prior study found that the effects of M101 on porcine kidney transplantation were similar to 
those of pure oxygen and that M101 supplementation helped to restore post-transplant renal function and reduced post- 
transplant adverse effects, regardless of whether pure oxygen was added.92 A multicenter study evaluating the safety of 
the effects of M101 in the preservation of 60 deceased donor kidneys showed better renal function after kidney 
transplantation with an organ preservation solution containing HBOC agents and significantly reduced the occurrence 
of delayed graft function recovery and shortened the time to recovery of renal function.93 Phase I clinical studies for 
kidney transplantation have demonstrated the safety of M101 for both patients and grafts.94

In an ongoing investigation, M101 is added to the conventional organ preservation solution for patients with end- 
stage renal disease undergoing kidney transplantation to prevent delayed graft function. This study is in a clinical Phase 
II study and is expected to be used in the clinical organ transplantation discipline.95

Anemia
HBOC-201 is currently being administrated in “compassionate use” initiatives for Jehovah’s Witness individuals who 
suffered from severe autoimmune hemolytic anemia or refusal of natural blood.55,94,96 For clinicians, the prompt 
recognition of patient requirements and comprehension of attributes of HBOCs are crucial for ensuring safety and 
expeditious administration, thereby potentially preserving lives. Davis reported97 that three critically ill patients with 
sickle cell disease suffering from multiple organ failure were successfully saved after the use of HBOC-201. The present 
study suggests that it has the capacity to offer oxygen support in the management of individuals experiencing sickle cell 
crisis, until the Hb levels have been replenished to meet the metabolic demands.
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Gomez et al98 observed that a Jehovah’s Witness who was diagnosed with acute lymphoblastic leukemia experienced 
significant anemia (with a Hb level as low as 3.1 g/dl) during chemotherapy. However, during HBOC-201 infusion, the patient’s 
Hb level remained within the range of 3.6–5.3 g/dl, and there were no observed instances of ischemia or compromised organ 
function.98 Gomez et al also documented instances of double solid organ transplant recipients with critical drops in Hb levels (2 g/ 
dl) in both renal and pancreatic cases. However, following HBOC-201 infusion, Hb levels increased to 6.8 g/dl.99 The results 
indicate that HBOC-201 offers sufficient oxygen supply to the tissues during the period of bone marrow erythrocyte recovery.100 

Even these studies show that HBOC-201 is safe and feasible for use in anemia, larger randomized clinical trials with more high- 
quality data are required to validate the effectiveness, safety, and acceptability.

Potential Applications in Other Fields
Numerous clinical applications proposed the utilization of HBOCs for the prevention or treatment of acute ischemic 
diseases.101 This encompasses a variety of prospective uses. Tumor hypoxia represents a significant characteristic of the 
microenvironment of solid tumors within the context of tumor therapy.102 The oxygen-deficient environment enhances 
further tumor deterioration, reduces the efficacy of therapeutic treatments, thus leading to drug resistance, etc.103,104 

HBOCs possess a greater capacity to efficiently perfuse the anomalous microcirculatory system of neoplastic growths, 
thereby facilitating the provision of essential oxygen for the purpose of chemotherapy and radiation therapy.105,106 

Additionally, HBOCs are expected to be applied to treat ischemic and hypoxic diseases such as limb ischemia,102 wound 
healing,107 sepsis,108 etc.

Adverse Events and Treatment Strategies
It is critical to comprehend how HBOCs affect vital organs and their physiological processes in patients as well as in 
healthy groups. HBOCs have various safety concerns: vasocontraction,109 gastrointestinal complications ranging from 
abdominal pain and gastroesophageal reflux syndrome to necrotizing pancreatitis,110 hemoglobinuria,111 volume 
overload,112 elevated liver enzymes,113,114 oxidation distress,115 coagulation disorders116 and iron deposition, etc.117

The traditional explanation for hypertension as an adverse reaction is the scavenging of NO in endothelial cells, which reduces 
their vasodilatory capacity.118,119 Additionally, free Hb affects the blood osmolarity, leading to alterations of blood volume and 
subsequent cardiovascular complications.120 To mitigate this effect, a variety of strategies have been clinically suggested, for 
instance, employing inhaled NO during HBOCs infusion, and antihypertensive therapies have been suggested to mitigate this 
effect.121

In the absence of antioxidant enzymes in cell-free Hb binds to oxygen, forming free radicals like superoxide, 
hydrogen peroxide, hydroxyl radicals, and oxidized iron-based porphyrins.122 The heme iron of HBOCs undergoes auto- 
oxidation, resulting in the production of superoxide. Oxidative stress exacerbates NO scavenging, leading to vasocon
striction and reduced oxygen delivery. Improper regulation of cell-free Hb increases the risk of ischemia-reperfusion 
injury, thereby increasing potential risks.123

Furthermore, the susceptibility of extracellular Hb to oxidation and conversion to high-iron Hb is increased as a result 
of NADPH reductase depletion. Hemoglobinemia with high-iron Hb levels exceeding 50% may affect heart, metabolism, 
and coagulopathy.124 However, high-iron hemoglobinemia rarely occurs after the infusion of HBOC-201, and its levels 
are easily treatable when they do usually not exceeding 15–20%. Treatment with ascorbic acid and methylene blue has 
been successfully to avoid oxidation effects of free Hb.125

There have also been reports of more severe adverse events like myocardial infarction, heart failure, arrhythmias, and 
cerebrovascular accident.126 It is worth considering that certain situations where complementary therapies are unavailable, 
patients may face higher risks than adverse reactions associated with HBOCs. Although current HBOCs may not be equivalent 
to allogeneic RBC transfusions, they still serve as a temporary source of oxygen for critically injured patients who require 
transfusions (eg, battlefield, emergency settings, or cases where patients refuse transfusions) until their hematopoietic system can 
generate enough RBCs.55,127,128 Nonetheless, conducting more trials to assess the effectiveness and safety of HBOCs is necessary 
to determine the most suitable clinical situations and to balance the benefits and risks of HBOCs.110

Due to the current unfavorable environment and lack of government support, the development of new HBOCs is 
facing funding shortages.129 However, in such circumstances, it is essential to coordinate the efforts of academia, 
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industry, and government to promote the development and clinical application of HBOCs.129 Academia provides 
technical support and theoretical foundations for HBOC development through fundamental research and attracts invest
ment from both industry and government. Industry can offer experience and expertise in large-scale production, assist in 
translating laboratory research into marketable products, and generate commercial profits. The government can provide 
start-up capital and regulatory support, such as streamlining approval processes and providing regulatory guidance, thus 
to accelerate the entry of HBOCs into the market. It is anticipated that the new generation of HBOCs will breakthrough 
current restrictions and revolutionize the practices in the wide range of environmental conditions, thereby making 
significant contributions to human health.

Conclusion
The study utilized scientometric analysis method to examine the SCIE database’s literature on HBOCs over the three decades, 
with the aim of elucidating the prevailing trends in current research hotspots. Our results demonstrated the research trends, major 
research directions, productive countries, and institutions that have focused on HBOCs. Through statistical analysis of sciento
metrics, the most productive country, institute, field, journal and most-cited journal, co-cited reference, and keywords were 
identified. Meanwhile, the review provides a comprehensive summary of the type, physiological mechanism, clinical application 
scenarios, potential adverse events and its management strategies for HBOCs based on the analysis of the most frequent keywords. 
These not only provide the historical development and current research hotspots on HBOCs across different stages but also the 
grey areas that require further investigation.
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