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Abstract: The growth of membrane nanotubes is crucial for intercellular communication in both 

normal development and pathological conditions. Therefore, identifying factors that influence 

their stability and formation are important for both basic research and in development of potential 

treatments of pathological states. Here we investigate the effect of cholera toxin B (CTB) and 

temperature on two pathological model systems: urothelial cell line RT4, as a model system of 

a benign tumor, and urothelial cell line T24, as a model system of a metastatic tumor. In par-

ticular, the number of intercellular membrane nanotubes (ICNs; ie, membrane nanotubes that 

bridge neighboring cells) was counted. In comparison with RT4 cells, we reveal a significantly 

higher number in the density of ICNs in T24 cells not derived from RT4 without treatments 

(P = 0.005), after 20 minutes at room temperature (P = 0.0007), and following CTB treatment 

(P = 0.000025). The binding of CTB to GM1–lipid complexes in membrane exvaginations or tips 

of membrane nanotubes may reduce the positive spontaneous (intrinsic) curvature of GM1–lipid 

complexes, which may lead to lipid mediated attractive interactions between CTB–GM1–lipid 

complexes, their aggregation and consequent formation of enlarged spherical tips of nanotubes. 

The binding of CTB to GM1 molecules in the outer membrane leaflet of membrane exvagina-

tions and tips of membrane nanotubes may also increase the area difference between the two 

leaflets and in this way facilitate the growth of membrane nanotubes.

Keywords: cancer cells, membrane nanotubes, cholera toxin

Introduction
Membrane nanotubes, as a novel intercellular communication mechanism, are extensively 

studied both structurally and functionally. They were found naturally occurring in many 

cell types (reviewed in1–5), and categorized into several types by different authors 

with respect to their proposed function and structural characteristics.6–8 The number 

of membrane nanotubes per cell may be affected by the cell membrane elasticity and 

composition, in which interacting anisotropic membrane constituents (proteins, lipids, or 

their complexes) could bend the cell membrane and stabilize highly curved anisotropic 

membrane regions.9–12 In particular, the clustering of anisotropic membrane constituents 

into lipid rafts at the outer leaflet of a cell membrane might lead to the outward bending 

of a membrane and to the initial growth of a membrane protrusion.13

Previous X-ray crystallography studies have revealed that cholera toxin from 

Vibrio cholerae consist of a toxic subunit A and a nontoxic pentameric subunit B. 

Subunit B binds to its receptor, pentasaccharide GM1, binding one GM1 molecule 

per subunit B monomer, while subunit A resides upon subunit B.14 After binding 

to GM1 molecules, which are localized in lipid rafts at the outer leaflet of the cell 
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membrane, these complexes are internalized and transported 

to the endoplasmatic reticulum and Golgi apparatus. In a 

cholera toxin, the A subunit is cleaved at the Golgi to yield 

the active derivative of the cholera toxin.14–16 In the present 

study, the effects of adding the nontoxic cholera toxin B 

(CTB) (without the A subunit) extracellularly on the stability 

and growth of membrane nanotubes was being investigated in 

nonmalignant and malignant urothelial cancer cell lines.

We report the differences in cell shape and intercellular 

membrane nanotube (ICN) numbers between a nonmalignant 

urothelial cell line RT4 and a malignant urothelial cell 

line T24. The RT4 cell line derives from a transitional cell 

papilloma of urinary bladder, in which cells are not malignant, 

demonstrating growth and motility characteristics of normal 

epithelial cells. In contrast, T24  cells are transitional cell 

carcinoma of urinary bladder, wherein cells show malignant 

behavior, spreading and separating during cell motility. The 

progression from a benign cell line to a malignant cell line has 

been correlated with specific mutations.17 Therefore, the 

comparison between the benign and malignant model systems 

reveals a continuous process, in which the observed higher 

number of ICNs in T24 cell lines can be considered as an 

increase during the development of a urothelial cancer.

CTB is a pentameric subunit of cholera toxin of Vibrio 

cholerae that binds specifically to the branched pentasac-

charide moiety of lipid ordered domain resident entity 

(ganglioside GM1) on the surface of target human intestinal 

epithelial cells.14–16 Therefore, CTB in conjunction with anti-

bodies to CTB (anti-CTB) is widely used as a marker for lipid 

ordered domains in cells. We suggest that the addition of CTB 

causes the lateral clustering of GM1 lipid rafts in the outer 

leaflet of a cell membrane. As a result, the membrane 

spontaneous curvature is locally changed, facilitating 

the formation of membrane protrusions in these membrane 

regions. The addition of anti-CTB reduces the number of 

membrane nanotubes, which might be due to the formation 

of CTB–GM1–anti-CTB protein network of nonzero shear 

elasticity that cannot be deformed into long tubes.18

Since cell metabolism determines at least partially the 

growth of membrane nanotubes, a change in the temperature 

of the growth medium may affect the expression level of 

membrane nanotubes. A previous experimental study showed 

that temperature treatment could cause phase separation of 

GM1 molecules, changing the diameter of giant unilamellar 

vesicles (GUVs).19 Therefore, it is crucial to elucidate the 

effects of temperature on ganglioside (eg, GM1) distributions 

and on the formation of membrane nanotubes.

Materials and Methods
Cell culture
Urothelial cell lines RT4 (Figure 1A) and T24 (Figure 1B) 

were cultured in a 1:1 mixture of advanced Dulbecco’s modi-

fied Eagle’s medium (Gibco, Invitrogen, Carlsbad, CA) and 

Ham’s F 12 (Sigma-Aldrich, St. Louis, MO), supplemented 

with 10% fetal calf serum (Gibco, Invitrogen), 5 µg/mL 

insulin, 5 µg/mL transferrin, 100 mg/mL hydrocortisone and 

5 ng/mL selenite (Gibco, Invitrogen), 1800 U/mL cristacyclin 

(Pliva, Zagreb, Croatia), and 0.222 mg/mL streptomycine-

sulfate (Fatol Arzneilmittel GmbH, Schiffweiler, Germany). 

Cells were incubated at 37°C in a humidified incubator in an 

atmosphere of 5% CO
2
.

Prior to the experiments cells were seeded onto sterile 

glass coverslips (Brand GmbH, Wertheim, Germany) and 

allowed to grow to approximately 40% to 50% and 70% 

RT4 T24

Control

20 min
RT

CTB
+

20 min
RT

CTB
+

37°C

A B

D

F

H

C

E

G

Figure 1 Phase-contrast microscope images of RT4 and T24  cells treated with 
either cholera toxin B (CTB) or temperature. Images of RT4 A) and T24 B) cells 
growing in normal conditions without any treatments (control experiments). Note 
that intercellular membrane nanotubes (ICNs) are not present between RT4 cells, 
while a few are present between T24 cells (arrow). Following their growth in normal 
conditions, the cells are moved to room temperature (RT) for 20 minutes, showing 
no significant change in the morphology of RT4 cells C), while T24 cells become 
more separated D). In conjunction with 20 minutes at RT, cells are treated with 
CTB. Note that in RT4 cells E) no ICNs are observed, while many ICNs (arrow) 
are present between T24 cells F). Finally, the combination of CTB and temperature 
incubation at 37°C induces rounding of RT4 cells and their detachment G), while 
T24 cells demonstrate large numbers of ICNs H). 
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to 80% confluency. T24 cell line was grown overnight and 

RT4 cells were left to grow for 48 to 72 hours.

Temperature dependence and CTB 
experiments
For controls, the growth medium was removed, and the cells 

were briefly washed with phosphate-buffered saline (PBS) 

warmed to 37°C and immediately fixed with 2% formal-

dehyde in PBS warmed to 37°C. A second set of cells was 

left in a humidified chamber at room temperature, approx. 

23°C, for 20 minutes in normal growth medium. Afterwards 

medium was removed and cells were washed and fixed in 2% 

formaldehyde in PBS at room temperature for 30 minutes.

A stock solution of fluorescent CTB conjugate (component 

A of Vybrant Alexa Fluor 488  Lipid Raft Labeling Kit 

[Molecular Probes, Invitrogen, Carlsbad, CA]) was diluted 

to a final concentration of 4 µg/mL in PBS and added to the 

washed cells on glass coverslip. Cells were incubated in CTB 

solution for 20 minutes either at room temperature or at 37°C 

in humidified chamber, then washed with PBS and fixed in 

2% formaldehyde in PBS for 30 minutes.

We followed the manufacturer’s protocol for labeling 

cells with anti-CTB antibodies. The temperature of PBS 

was always adapted to the temperature conditions of the 

experiments.

Actin labeling, immunofluorescence 
labeling, and microscopy
Cells treated with CTB were washed with PBS and fixed in 2% 

formaldehyde (Merk Schuthand, OHG, Germany) for 30 min-

utes (15 minutes for caspase-3 labeling). After washing with 

PBS, the cover slips were incubated in 0.25% Triton X-100 in 

PBS for 6 minutes at room temperature, washed 3 times in 

PBS, and incubated in 0.33 M sucrose in 0.2 M cacodylate 

buffer for 30 minutes. Samples were blocked in 2% bovine 

serum albumin (BSA; Sigma-Aldrich) in 0.2% NaN
3
 in PBS 

for 30 minutes at RT. Coverslips with cells were incubated in 

primary antibodies for 1 hour at 37°C or overnight at 4°C, 

then washed in PBS for 10 minutes and incubated in sec-

ondary antibodies for 30 minutes at 37°C. Actin labeling in 

16.7 µg/mL phalloidin (phalloidin-FITC) (Sigma-Aldrich) in 

20% methanol (Carlo Erba, Italy) in PBS for 30 minutes was 

performed after secondary antibody incubation and 10 min-

utes washing in PBS. Afterwards coverslips were decanted 

and embedded in vectashield-4′,6-diamidino-2-phenylindole 

(vectashield-DAPI) (Vector Laboratories, Peterborough, 

UK), and analyzed in a fluorescence microscope Axio-Imager 

Z1 microscope (Carl Zeiss Inc., USA). For active caspase-3 

labeling rabbit polyclonal antibodies (AbCam Ltd, UK) were 

used at concentration 15 µg/mL. As secondary antibodies 

goat anti-mouse antibodies conjugated with tetramethyl-

rhodamine isothiocyanate (TRITC) and the goat anti-rabbit 

antibodies conjugated with Alexa-Fluor® 555 (Molecular 

Probes, Invitrogen) were used.

Phase-contrast and fluorescence  
image acquisition
Cells were analyzed in a fluorescence microscope Axio-Imager 

Z1 microscope (Carl Zeiss Inc., New York, NY). Phase-con-

trast images were taken with 63× water immersion objective 

(numerical aperture [NA] = 0.95) and fluorescence images 

with Plan-Apochromat 63× (NA = 1.4, oil).

Morphometric analysis
Sampling was performed as follows: a cover glass with fixed 

cells was imaged with water immersion objective (63×). 

Images were taken at every second visual field, second 

horizontal, and second vertical axis. Afterwards 30 randomly 

chosen images were analyzed for each treatment by counting 

the cells and ICNs per image. Only membrane nanotubes 

that made contact between neighboring cells were counted 

as ICNs. The ICN density, ie, the number of ICNs per cell, 

was calculated as: ICN density = (total number of ICNs/total 

number of cells).

Testing for apoptosis
To assess whether exposing the cells to temperature treatment 

or the addition of CTB to RT4 and T24 cells induced apoptosis, 

cells were immunostained for active caspase-3 as a marker of 

apoptosis. The integrity of actin filaments was evaluated by 

labeling with phalloidin-fluorescein isothiocyanate (FITC) 

and the nucleus was labeled with DAPI.

Statistical analysis
All statistical comparisons between RT4 and T24 groups were 

performed using a t-test for independent samples.

Results
Control experiment
We compared two urothelial cancer cell lines: 1) the first was a 

nonmalignant cell line, RT4, which had a similar phenotype to 

normal cells; and 2) the second was a malignant cell line, T24, 

where cells were spread apart and showed extensive motility. 

The RT4 cell lines were grown in normal growth medium, 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

498

Kabaso et al

and fixed with prewarmed formaldehyde (Figure 1A). Note 

that the cell islands were tightly connected to each other, 

and that the cells at the edge of a cell island formed short 

filopodia. In addition, there were few ICNs present between 

cells, mostly at the edges of the cell island.

The T24 cell lines were also grown in normal growth 

medium at 37°C and fixed with prewarmed formaldehyde 

(Figure 1B). In contrast to RT4 cells, T24 cells grew partly 

one on top of the other (Figure 1B). Cells at the middle of 

the cell island were tightly connected by ICNs. The number 

of ICNs in T24 cells highly exceeded the number of ICNs 

in RT4 cells (Figure 1B, Figure 2).

Incubation at room temperature  
for 20 minutes
Following the growth of RT4 cells in normal conditions, the 

change in temperature to room temperature for 20 minutes 

did not cause any significant change in their morphol-

ogy (Figure 1C), while the cell edge retracted, forming a 

wave-like shape. In contrast, the same treatment of T24 cell 

lines caused a clear rounding of cells, occasionally forming 

ICNs between cells (Figure 1D).

CTB + incubation at room temperature 
for 20 minutes
The shape of RT4 cells did not significantly change after 

treatment of CTB for 20  minutes at room temperature 

(Figure 1E). The CTB-induced effects included rounding of 

the cell edge, formation of irregular protrusions, and formation 

of few ICNs. On the other hand, T24  cells became more 

rounded, and irregular protrusions and ICNs were formed 

along the edges as a result of CTB treatment (Figure 1F). 

The T24  cells were rather heterogeneous in binding CTB 

and their responses to it, while no such heterogeneity was 

observed in RT4 cells.

CTB + incubation at 37°C
In RT4  cells, CTB induced rounding of the cells and 

their detachment from the substratum (Figure  1G). The 

cell detachment and acquisition of spherical shape was 

expressed even more in T24  cells after CTB treatment at 

37°C. In addition, irregular protrusions poked upward from 

the cell surface, while numerous ICNs connected 2 or more 

adjacent cells (Figure 1H).

Morphometric analysis
To evaluate the effect of CTB and temperature treatments 

in RT4 and T24  cells, the numbers of cells and of ICNs 

were counted in acquired images. The ICN density was 

calculated in each image. Summary statistics for the 

differences in ICN density between RT4 and T24 cells after 

different treatments are shown in Figure  2 and Table  1. 

Without any treatment there was a significant increase 

in ICN density of T24  cells compared with RT4  cells 

(RT4 = 0.0165 ± 0.0415; T24 = 0.2667 ± 0.3917, P , 0.01). 

Due to additional 20  minutes at room temperature, 

the ICN density was significantly greater in T24  cells 

(RT4 = 0.0114 ± 0.0476; T24 = 0.4157 ± 0.5483, P , 0.01), 

indicating the susceptibility of T24  cells to change in 

temperature. CTB treatment in conjunction with 20 minutes 

of incubation at room temperature significantly increased 

ICN density (RT4 = 0.0458 ± 0.2668; T24 = 2.1006 ± 2.6136, 

P , 0.01). In addition, the combined treatment of CTB and 

physiologic temperature (37°C) showed a deleterious effect 

on ICN numbers and cell count (RT4 = 0.0012 ± 0.0052; 

T24 = 0.9656 ± 0.6665, P , 0.01), which was due to cell 

damage and not apoptosis (Figure 3).

**

**

**
**

RT4

T24

Number of ICNs per cell

IC
N

 d
en

si
ty

0

0.5

1

1.5

2

2.5

3

Control 20 min
RT

CTB + 
20 min RT

CTB + 
37ºC

Figure 2 Summary statistics of changes in intercellular membrane nanotube (ICN) 
densities of treated RT4 and T24 cell lines. The control case was not treated. 
Note that both 20 minutes at room temperature (RT) and cholera toxin B (CTB) 
treatments significantly (P , 0.01**) increase the ICN density among T24  cells 
compared with among RT4 cells.
Note: Data are means ± standard deviation.

Table 1 Statistical data on the density of ICNs for the different 
treatments in RT4 and T24 cells

Cell type Treatment Number Mean SD

RT4 Control 21 0.0165 0.0415
RT4 20 minutes RT 24 0.0114 0.0476
RT4 CTB + 20 minutes RT 34 0.0458 0.2668
RT4 CTB + 20 minutes 37°C 20 0.0012 0.0052
T24 Control 34 0.2667 0.3917
T24 20 minutes RT 33 0.4157 0.5483
T24 CTB + 20 minutes RT 28 2.1006 2.6136
T24 CTB + 20 minutes 37°C 30 0.9656 0.6665

Abbreviations: RT, room temperature; ICNs, intercellular membrane nanotubes; 
CTB, cholera toxin B.
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Testing for apoptosis
To assess whether exposing RT4 and T24 cells to temperature 

treatment or whether the addition of CTB induced apoptosis, 

cells were immunostained for active caspase-3. As a marker for 

cell shape and integrity labeling of actin filaments, phalloidin-

FITC was added, and as a marker for the nucleus, DAPI was 

used (Figure 3). Lowering the temperature to room temperature 

did not trigger apoptosis at the given experimental conditions 

in RT4 or T24 cells, whereas CTB did cause cell damage in 

some T24 cells treated with CTB at 37°C (Figure 3).

Reversing the induced growth  
of membrane nanotubes
Binding of CTB to the cell membrane of RT4 (Figure 4A) 

and T24 (Figure 4B) induced growth of thin specific mem-

brane nanotubes with semivesicular structures at the ends 

of the tips attached to the substratum (arrows). Moreover, 

some of the induced membrane nanotubes made contact with 

RT4 T24

Control

20 min
RT

CTB
+

20 min
RT

CTB
+

37ºC

Figure 3 Cell testing for apoptosis using actin filament and nucleus fluorescence 
markers. To assess whether exposing cells to an ambient temperature or addition 
of cholera toxin B (CTB) to RT4 and T24  cells induced apoptosis, cells are 
immunostained for the integrity labeling of actin filaments with phalloidin-fluorescein 
isothiocyanate, the integrity of the nucleus with vectashield-4′,6-diamidino-2-
phenylindole (top insets), and the integrity of the cells using caspase-3 (bottom 
insets). Note that neither temperature nor CTB treatments trigger apoptosis in RT4 
and T24 cells. However, CTB does cause cell damage in some cells, mostly at 37°C.

CTB

CTB
+

anti CT-B

A

C D

B

Figure 4 Reversing the induced growth of membrane nanotubes by the addition 
of anti-cholera toxin B (CTB). The addition of CTB to RT4 A) and T24 B) cells 
reveals the growth of membrane nanotubes (arrows), as well as membrane lipid 
rafts (marked by fluorescent CTB–GM1 complexes) at the tips and entire length of 
membrane nanotubes. Note that some membrane nanotubes (ICNs) make contact 
with a neighboring T24 cell (b; arrowheads), and the presence of a microvesicular 
structure at the tip of membrane nanotubes (close up view). The addition of anti-CTB 
causes the retraction of membrane nanotubes in both RT4 C) and T24 D) cells.

a neighboring cell (Figure 4B; arrowheads). Staining of the 

cell membrane was more or less uniform. Subsequently, 

binding of anti-CTB almost entirely abolished tubulation of 

the membrane, leading to patchy staining of the membrane 

(Figures 4B, D). Anti-CTB (pentameric antibodies) might 

cross-link (intercalate) CTB units, facilitating phase separa-

tion of lipids and proteins into more stiff microdomains with 

nonzero shear elastic modulus, which do not allow the growth 

of membrane nanotubes in RT4 (4B), and T24 cells (4D).

Possible mechanisms for CTB-facilitated 
membrane nanotube formation
To explain the induced growth of membrane nanotubes 

with semivesicular structures at their tip following the 

addition of CTB, we propose that the binding of CTB to 

GM1–lipid membrane complexes at the outer leaflet of the 

cell membrane increases the local area difference between 

the two leaflets. The formation of GM1–lipid complexes at 

the tip of membrane nanotubes may affect the membrane 

curvature. The initial aggregation of GM1 molecules may 

contribute to the formation of a membrane protrusion of 

positive curvature (Figure 5B). The accumulation of a few 

A B
GM1-lipid

Hout = 0

Hin = 0 Hin < 0

Hout > 0

Aggregate 
of GM1-lipids

Figure 5 Schematic diagram for the effects of GM1 interaction on membrane curvature. 
Single GM1 molecules have zero intrinsic (spontaneous) curvature A). Small membrane 
protrusions are formed due to the interaction between GM1 molecules, where it is 
assumed that small GM1 aggregates have positive intrinsic curvature B).27,28 Hout and Hin 
are the mean curvature of the outer and inner cell membrane leaflets, respectively.
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aggregates may further bend the membrane, contributing an 

additional protrusive force. On the other hand, the addition 

of flat CTB and the formation of less curved CTB–GM1 

nanodomains would reduce the spontaneous curvature of the 

tip region of the nanotubes, explaining the observed vesicular 

region at the tips of membrane nanotubes (Figure 7C).

The model
To test the hypothesis that the initial formation of a mem-

brane nanotube is driven by the aggregation of CTB–GM1 

complexes (Figure 7B), we constructed a model to study the 

effects of strong binding of CTB to GM1 molecules. The 

purpose of our model is to test whether the positive spon-

taneous curvature of CTB–GM1 complexes and the strong 

binding of GM1s to CTB are sufficient to drive a membrane 

instability causing the growth and coalescence of membrane 

protrusions (Figure 7).

This model was based on our previous model, in which 

the membrane curvature was coupled to spontaneous curva-

ture of membrane inclusions.20–22 According to the radius of 

curvature at the tip of membrane nanotubes, the spontaneous 

curvature of CTB–GM1 complexes was approximated by a 

positive value of 5 µm−1. The underlying assumption of the 

present model was that membrane inclusions, ie, CTB–GM1 

complexes, contributed negative binding (interaction) energy 

(−αn). For the sake of simplicity, the modeled membrane 

contour of RT4 or T24 cells was considered to be nearly flat. 

The free energy of the model was:

	

F H Hn n h

k Tn n n Jn
J

n
n dsB s

s

= −( ) + −( ) +


+ ( ) − + ∇



∫
1

2

2 2

2 2

κ σ α γ

ln ( ) ,

	 (1)

where κ is the membrane bending rigidity, n is the density 

of CTB–GM1 complexes, H is the local mean membrane 

curvature, H  is the parameter describing the intrinsic mean 

curvature of the CTB–GM1 complexes, n is the area fraction 

of CTB–GM1 complexes, nH is the spontaneous curvature 

of CTB–GM1 complexes, n
s
 is the saturation density, σ is the 

membrane surface tension, α is a proportionality constant 

describing the binding energy between CTB–GM1 complexes, 

γ  is a restoring spring due to the force of the cytoskeleton, J is 

the direct nearest-neighbor interaction energy between CTB–

GM1 complexes, and ds = d
m 
⋅ dl is an element of membrane 

area, where d
m
 is the dimension of membrane perpendicular to 

the contour and dl is a line element along the contour. h(x) is the 

magnitude of small deformations from the flat membrane.

The first term describes the bending energy due to 

the mismatch between the membrane curvature and the 

spontaneous curvature of the CTB–GM1 complex. The 

second term describes the effective membrane surface tension 

and the binding energy between CTB–GM1 complexes. The 

third term describes an external trapping of the membrane, 

which can be represented as the force of the cytoskeleton 

inside the cell. The fourth term gives the entropic contribution 

due to the lateral thermal motion of CTB–GM1 complexes in 

the membrane in the limit of small n. The fifth term describes 

the nearest neighbor attractive interactions between CTB 

and GM1, and the sixth term prevents the sharp changes in 

the CTB–GM1 density. The derivation leading to Eq. (1) is 

a one-dimensional version of the more general expressions 

derived in previous studies.23,24 These expressions recover 

the familiar form for small undulations of a flat membrane 

in the Monge gauge form. See the supplementary material 

for the membrane contour forces and fluxes derived from the 

derivation of the free energy as well as the list of parameter 

values incorporated in our model.

Results of our numerical simulations revealed that the 

coupling between the CTB–GM1 density and the membrane 

curvature led to the formation of membrane protrusions, 

which coalesced into a larger membrane protrusion 

(Figure 6). Figure 6 shows how the initial straight membrane 

contour evolves from a multiprotrusion shape (dotted line) 

at intermediate time to a coalesced membrane protrusion 

(solid line) at steady state (Figure  6B). Furthermore, the 

A

B C

Schematic model
CTB-GM1

CTB-GM1 densityMembrane shape

Complex
Outside
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1 2 3 4 5
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Figure 6 The effects of cholera toxin B (CTB) binding to GM1  molecules on 
membrane shape and filament densities. A) The schematic model is a nearly straight 
membrane contour, which describes a segment of an RT4 or T24 cell. Numerical 
simulations of the flat shape membrane reveal the steady state shapes of membrane 
amplitudes B) and CTB–GM1 densities C), given that α = 0.013 and H  = 5 µm-1 
(see Supplementary material for more information). The amplitude h(x) is the 
value of the membrane deformation. The initial condition is a flat membrane with 
a random perturbation of small amplitudes (,1%) in the CTB–GM1 density around 
the uniform value of n0  = 0.1. The intermediate time (in dotted line) is after 400 
seconds, and the steady state time (in bold line) is reached within 600 seconds.
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CTB–GM1 density distribution demonstrates a similar 

evolution to the one observed in the membrane shape 

dynamics (Figure 6C).

Discussion
Numerous studies have revealed the growth of membrane nan-

otubes in different cell types under normal and pathological 

states.1–8 In particular, previously it has been shown that 

ICNs that connect between neighboring cells are frequently 

observed in malignant (transformed) cancer cell lines (T24) 

of urothelial origin.4,8 So far, the comparison of ICN density 

between nonmalignant and malignant cancer cell lines was 

not investigated. We here report the differences in cell shape 

and ICN density between nonmalignant (RT4) and malignant 

(T24) urothelial cell lines not only in normal conditions, but 

also during the application of CTB and temperature (Figure 1). 

Statistical analyses reveal that the ICN density in T24 cells is 

significantly increased compared with RT4 cells in normal 

conditions (RT4 = 0.0165 ± 0.0415; T24 = 0.2667 ± 0.3917, 

P , 0.01). Furthermore, significant increases in ICN densi-

ties were observed during CTB treatment at physiologic 

temperature (RT4 = 0.0012 ± 0.0052; T24 = 0.9656 ± 0.6665, 

P , 0.01), and during CTB treatment at room temperature 

(RT4 = 0.0114 ± 0.0476; T24 = 0.4157 ± 0.5483, P , 0.01) 

(Figure 2, Table 1). In addition, T24 cells are of irregular 

shapes and separated, which makes them morphologically 

different from the benign phenotype of RT4  cells, which 

are firmly bound to each other (Figure 1). Testing for cell 

apoptosis using fluorescence markers for actin filaments 

and the nucleus demonstrated that neither lowering the 

temperature nor the addition of CTB triggered apoptosis in 

RT4 or T24 cells (Figure 3). In addition, the induced growth 

of membrane nanotubes can be reversed or prevented by the 

application of CTB antibodies (anti-CTB) (Figure 4).

Based on the experiment data, we discuss the following 

hypotheses. Firstly, the observed increases in ICN densities 

during the transformation from benign to malignant urothelial 

cells could be concomitant with increases in the membrane 

densities of GM1 and cholesterol molecules. Secondly, based 

on structure data of CTB-GM1 complexes and insight from 

the theory of membrane elasticity,14,15,24 we suggest that the 

binding of CTB to GM1s reduces the spontaneous curvature 

of GM1 aggregates, explaining the observed increased diam-

eter of the tip region of membrane nanotubes (Figure 4A, B). 

Thirdly, the clustering of GM1 molecules by CTB causes the 

formation of isotropic nanodomains at the outer leaflet of cell 

membranes, facilitating the growth of spherical membrane 

exvaginations (Figure 7B).

In previous studies, the effects of adding CTB were 

investigated using GUVs.25,26 Since the radius of GUVs is 

between 20 and 30  µm, the membrane is practically flat 

compared with the radius of curvature at the tip of membrane 

nanotubes. It has been shown that the addition of CTB to 

GUVs induced invagination, where CTB–GM1 complexes 

may stabilize a negative membrane curvature.25,26 These results 

are in agreement with those of the present study, in which the 

addition of CTB reduced the membrane curvature, forming 

a spherical tip in membrane nanotubes. The underlying 

mechanism is due to the flat crystal structure of CTB,14 

whereby binding to more than 1 GM1 molecule reduces the 

spontaneous curvature of a GM1 aggregate (Figure 7).

Gangliosides such as GM1s are pentasaccharides of strong 

hydrophilic character,27 which are docked into the outer leaflet 

of cell membranes by a ceramide hydrophobic moiety. It has 

been shown that GM1 pentasaccharides are aggregated at the 

highly curved edges of caveolae, where the large positive 

curvature is stabilized by hydrogen bonds between the sugar 

moieties of neighboring GM1s.27 In another study, cholera 

toxin (CT) and Shiga toxins have been implicated in the 

formation of invaginations,25,26 where it has been suggested 

that the positive curvature at the neck region of caveolae is 

stabilized by the aggregation of GM1s.25 Previous theoretical 

analyses demonstrated that the curvature of small nanodo-

mains is changed when gangliosides with bulky headgroups 

such as GM1s come together, which is driven by the increased 

number of hydrogen bonds between neighboring sugar 

moieties.27,28 Accordingly, we propose that the aggregation 

of GM1 molecules may generate the positive membrane cur-

vature mediating the initial growth of membrane nanotubes 

(Figures 5 and 6). Consequently, alterations in the amounts 

of GM1s in T24 malignant cancer cell lines may account for 

the observed increases of ICN densities compared with RT4 

benign cancer cell lines (Figures 1 and 2).

To shed light on the mechanisms by which CTB facilitates 

the formation of membrane nanotubes, the model employed 

in the present study has shown that CTB could have a 

role in the initial growth of membrane nanotubes (Figure 6). 

In particular, the binding of more than 1 GM1 molecule by 

CTB brings GM1s into close contact, facilitating the coales-

cence of small membrane protrusions into a single larger 

membrane protrusion (Figure  6). The resulting negative 

interaction energy between neighboring GM1s complexes 

may counterbalance the loss of configurational entropy 

during the process of lateral sorting of GM1s, driving the 

initial dynamical instability.10,20,22 From the crystal structure 

of CTB,14 it is possible to conclude that the native CTB has 
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a flat shape. Consequently, the spontaneous curvature of 

CTB–GM1 complexes is less positive than the spontaneous 

curvature of pure GM1 complexes (Figure 5). The present 

dynamic model shows that a positive spontaneous curva-

ture of CTB–GM1 could drive a positive feedback loop in 

which the aggregation of CTB–GM1 complexes would not 

only bend the membrane but also lead to further attraction 

of CTB–GM1 complexes. This relationship is evident from 

the mirror image of CTB–GM1 densities and membrane 

amplitude distributions (Figure 6B, C).

The growth of long membrane protrusions is not favorable 

for the Helfrich bending energy along anisotropic nanotubular 

regions. It has been demonstrated that the mild depletion 

of cholesterol and the degradation of actin filaments do not 

impair the stability of nanotubular structures.8,10 This stability 

could be due to prominin anisotropic nandomains along 

the tubular regions of membrane nanotubes (Figure 7C). 

Prominins may also reduce the anisotropic membrane bending 

energy, facilitating the growth of membrane nanotubes.5,8,10

Besides the curvature-generation mechanism of GM1s 

initiating the formation of membrane nanotubes, GM1s 

may also have an indirect effect through the recruitment 

of I-BAR domain proteins attached to the inner membrane 

surface (Figure 8). Previous studies have shown that I-BAR 

domain proteins, bound to the inner leaflet, can generate a 

negative membrane curvature and mediate the actin nucle-

ation machinery.29–31 In contrast, at the outer leaflet the same 

membrane curvature is considered to be positive rather than 

negative (Figure 8). Therefore, the induced negative curva-

ture by aggregates of GM1s could lead to the recruitment of 

I-BAR domain proteins (Figure 8). To conclude, the outward 

membrane bending during the initial growth of a membrane 

nanotube may be generated by GM1s and I-BARs at the outer 

and inner leaflets of cell membranes, respectively. Further, the 

attached I-BAR proteins may induce actin self-assembly and 

in this way promote the elongation of membrane nanotubes 

(Figure 8).32

While the addition of CTB in conjunction with anti-

CTB is widely used as a marker for lipid ordered domains 

in cells,14,15 the functional effects of formed microdomains 

of GM1s, CTB, and anti-CTB are not clear. We here suggest 

that anti-CTB binds more than one CTB molecule, thereby 

forming membrane microdomains or protein networks, which 

not only increase the membrane bending rigidity but also the 

B

D

A

C

CTB-GM1-lipids
complex

R2 > R1

R2

GM1-lipid
Phospholipid

Prominin
anisotropic
nanodomains

Anti CTB

R1

Figure 7 The effects of cholera toxin B (CTB) and prominins on the initial formation and stability of membrane nanotubes. Due to positive spontaneous curvature of GM1 
aggregates (see Figure 5B), such small GM1 aggregates would sense and stabilize small membrane protrusions A). The binding of each CTB molecule to a few GM1 aggregates 
would lead to the aggregation of CTB–GM1 complexes, thereby driving the coalescence of small membrane protrusions into a large spherical protrusion B). Due to flat shape 
of CTB it is assumed that bound CTB reduces the spontaneous curvature of GM1 aggregates. The neck region of the membrane protrusion attracts anisotropic membrane 
nanodomains such as prominins, which facilitate and stabilize the growth of membrane nanotubes C). The addition of anti-CTB (pentameric antibodies) may cross-link 
(intercalate) CTB units, thereby leading to the formation of stiff microdomains that do not allow the growing of membrane nanotubes D).
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membrane shear modulus (Figure 7D).18,33 As a result, the 

bound network of CTB molecules at the membrane would 

prevent the formation of new membrane nanotubes as well 

as destabilize those already formed.

In the present study, it was also revealed that lowering 

the temperature of the medium may cause the retraction of 

ICNs in T24 cells (Figure 2). The effects of temperature in 

RT4 cells are not as clear, since the corresponding changes in 

ICN densities due to temperature change are not significant. 

The possible explanation for temperature-dependent changes 

in T24  cells is that a temperature change in the growth 

medium may alter the cell metabolism mediating the mecha-

nisms responsible for the growth of membrane nanotubes. In 

addition, the temperature treatment may reduce or increase 

the fluidity of the membrane to a level that is not optimal 

for the binding of membrane proteins at the highly curved 

regions of ICNs. In addition, the application of temperature 

(eg, cooling to room temperature) might cause the exces-

sive internalization of CTB–GM1 complexes, leading to 

the depletion of GM1 molecules from the outer leaflet of 

the cell membrane.

Lipid rafts are suggested to be detergent-resistant 

microdomains that are enriched with cholesterol and glycos

phingolipids (eg, GM1) molecules. Various enzymes and 

membrane receptors, crucial for intracellular signaling 

and cell survival, are also found in lipid rafts. Previously, 

it has been demonstrated that malignant cancer cells have 

high cholesterol content in their cell membranes, leading to 

increased densities of lipid rafts.34 Furthermore, the depletion 

of cholesterol levels in malignant cancer cells did cause their 

eventual cell death, while the other noncancer cells were less 

sensitive to cholesterol depletion.34 Accordingly, malignant 

cancer cells were shown to be more sensitive to raft binding 

toxins, suggesting the development of novel therapeutic 

drugs that target the organization of lipid rafts.34,35 The results 

of the present study indicate that the high fluorescence label 

at the tip of membrane nanotubes may demonstrate the 

accumulation of lipid rafts. Thus, it remains to be elucidated 

whether the cholesterol and GM1 cell contents, which are 

important constituents of lipid rafts in urothelial cancer cells, 

are greater than those of their normal counterparts. Finally, 

due to the high content of lipid rafts in prostate and breast 

cancer cells,36,37 the membrane composition and spatial 

organization of membrane constituents within lipid rafts 

might also be altered.

According to X-ray crystallography structures of CT 

bound to GM1 pentasacharide, only the B subunits bind 

the GM1 molecules, while the A subunit is important for 

the toxicity of the CT.14,15 Nonetheless, the endocytosis of 

CTB–GM1 membrane complexes and their further transport 

towards the endoplasmatic reticulum might cause the reorga-

nization of the actin cytoskeleton, leading to cell damage.15 

Using actin filament fluorescence markers (phalloidin-FITC), 

the present study has revealed the integrity of actin filaments, 

indicating that the CTB–GM1 complexes are probably not 

Hout > 0

Hin > 0

Actin
filaments GM1 I-BAR protein

Figure 8 Schematic diagram for the recruitment of I-BAR domain proteins and actin 
filaments by GM1 aggregates. The positive and negative curvatures at the outer and 
inner leaflets are induced by a GM1 aggregate. Consequently, I-BAR domain proteins 
are attracted to the negative curvature at the inner leaflet of a cell membrane. The 
I-BAR domain proteins would further bend the membrane, while activating the actin 
nucleation machinery. The nucleation of actin filaments would drive a membrane 
protrusive growth, elongating the membrane protrusion.
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internalized at room temperature (Figure 3). In contrast, 

the addition of CTB at physiologic temperature does show 

reorganization of the actin cytoskeleton, which might be due 

to enhanced internalization of CTB–GM1 complexes.

The experimental results and theoretical discussion of 

the present study set the stage for future experiments that 

could test the biophysical mechanisms responsible for the 

observed alterations in the frequency of ICNs in RT4 and 

T24 cancer cell lines. Experiments can be designed to reveal 

changes in the distribution of membrane constituents and 

to evaluate the efficacy of lipid raft toxins in normal and 

cancer cells. In particular, there could be a difference in 

the numbers of GM1 rafts between RT4 and T24 urothelial 

cancer cells, explaining the CTB-dependent increases in the 

densities of membrane nanotubes. To conclude, the relation-

ship between the formation of membrane nanotubes and 

malignancy of the cell could be important not only for the 

basic knowledge of cellular function but also the develop-

ment of therapeutic technology for cancer treatment in the 

next generation.
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The model
To test the hypothesis that the initial formation of a mem-

brane nanotube is driven by the aggregation of CTB–GM1 

complexes, we constructed a model to study the effects of 

strong binding of CTB to GM1 molecules. The model is an 

extension of previous theoretical work,20,22 and the present 

aim is to test whether the less positive spontaneous curvature 

of CTB–GM1 complexes as well as the strong binding of 

CTB are sufficient to drive an instability causing the growth 

and coalescence of membrane protrusions.

Our model is a coarse-grained model, whereby we do not 

describe the detail of the molecular-scale level. The minimal 

length-scale along the membrane that is relevant to this model 

is of the order of 100 nm. The model is written as a set of 

equations of motion for the continuum fields that describe 

the membrane shape and density of CTB–GM1 complexes, 

including the actual forces acting on the membrane, and the 

details of the membrane elasticity. For the sake of simplicity, 

the modeled membrane contour of RT4 or T24 cells is con-

sidered to be nearly flat. The bending energy part of the free 

energy of the model is based on the Helfrich energy form.24 

The free energy expression includes also the CTB–GM1 bind-

ing, configurational entropy, and direct-interaction energy:

	

F H Hn n h

k Tn n n Jn
J

n
nB s

s

= − + − +


+ − − + ∇



∫
1

2

1

2 2

2 2

κ σ α γ( ) ( )

(ln( ) ) ( )  ds,

� (1)

where k is the membrane bending rigidity, n is CTB–GM1 

density, H is the local mean membrane curvature, H  is 

the parameter describing the intrinsic curvature of the 

CTB–GM1s, n
s
 is the saturation density of CTB–GM1s on 

the membrane, σ is the membrane surface tension, α is a 

proportionality constant describing the effective adhesion 

interaction between CTB and GM1s, h = h(x) describes the 

shape of the contour, γ is a restoring force of cytoskeleton, 

J is the direct nearest-neighbor interaction energy between 

CTB and GM1s, and ds = d
m
 ⋅ dl is an element of membrane 

area, where d
m
 is the dimension of membrane perpendicular 

to the contour and dl is a line element along the contour. Note 

that k equals 4 times the k used in Helfrich.24

The first term gives the bending energy due to the 

mismatch between the membrane curvature and the spon-

taneous curvature of a CTB–GM1 complex. The term -αn 

describes the negative adhesion energy between CTB 

and GM1s. The third term describes an external trapping of 

the membrane, which can be represented as the force of the 

cytoskeleton. The fourth term gives the entropic contribution 

due to the lateral thermal motion of the CTB–GM1 in the 

membrane in the limit of small n. The fifth term describes the 

nearest-neighbor attractive interactions between CTB and 

GM1s, and the sixth term prevents the sharp jumps in n.

Derivation of the curvature force  
on the membrane
We derive the equations of motions of the membrane contour 

using the derivation of the free energy [Eq. (1)] with respect 

to the membrane coordinate and CTB–GM1 concentration.21 

To take into account the drag due to viscous forces, we 

assume for simplicity only local friction forces,20,21 with 

coefficient ξ.

The equation of motion of the membrane is

	
ξ δ

δ
∂
∂

⋅ = −


r
t

n F s t
n

( , )
	 (2)

where ξ is the coefficient of the local friction force due 

to viscous drag of the fluids surrounding the membrane, 


r  is the radial vector in the (x, y) coordinate system, 

t is time, 


n is the normal direction, and δF(s, t)/δn is the 

derivation of Eq. (1) with respect to the x and y directions. 

Here we consider only the changes along the y direction. 

The derivation of the free energy is projected to give the 

forces normal to the membrane contour.21 The following 

is the list of parameter values incorporated in our model: 

ξ = 125 s-1gr, D = 0.002 µm2s-1, Λ = D/k
B
T, α = 0.013 gr s-2, 

γ  = 0.0004 grs-2, n
s
 = 10 µm-2, k = 100 k

B
T, H  = 5 µm-1, 

J = 0.00035 grs-2, and σ = 0.001 grs-2.

We next derive the forces at the membrane, by treating it 

as a “one-dimensional membrane”, ie, a thin strip of width w, 

with a bending modulus and tension coefficient. The free 

energy of this membrane is given in Eq. (1), and is used 

to derive the local restoring forces by the usual derivation 

method. Since the overall contour length is not constant in 

our system, the derivation of the coordinates has to be taken 

with respect to their absolute index u along the contour, 

which is constant. In these terms the curvature H appearing 

in the Helfrich part of the free energy24 is written as (standard 

differential geometry)

	

H
xy xy

x y
=

−

+

 

 

2 2
, 	 (3)
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where the ⋅ symbol denotes differentiation with respect to the 

index of the point along the contour, and the free energy is

	
F w H x y du= +





+∫
1

2
2 2 2

1

κ σ   ,	 (4)

where ds du s x y/ = = +  

2 2 . The derivation of this free 

energy gives the forces, for example in the x-direction

	
F

F

x

d

du

F

x

d

du

F

xx = − = −
∂
∂

δ
δ

δ
δ  

2

2
. 	 (5)

The resulting equations of motion from this derivation 

gives very long expressions, which are not amenable to 

easy analysis, although they can be used for the numerical 

simulations. In order to arrive at simpler expressions we will 

develop the terms in Eq. (5), and simplify at the end by assum-

ing that the arc-length separation between the nodes along the 

contour are all the same. This is maintained as the simulation 

progresses by using the spline routine to rediscretize evenly 

the contour as its length evolves.

The first term on the r.h.s. of Eq. (5) is

	

δ
δ

δ
δ

F

x
H

x

s
H

H

x
s

 

= +
∂
∂

2 2 , 	 (6)

where 
δ
δ




  

x

s
x x y

x

s
= + =

∂
∂/ .2 2

	

d

du

F

x
sHH x sH x s H

H

x

H
H

x
s Hs

H

δ
δ 

  





 



= + +
∂
∂

+
∂
∂

+
∂
∂

2 2

2 2

2 2

2

′ ′ ″ ′

′
xx

,
	 (7)

where ∂ ∂ = −H x ys x H s/ /  

3 3 ′ . We therefore need to find 

an expression for 
y  (and 

x), by using the definition of 

H x y y x s= −( )/′ ′  

2  and:   s x x y y= +′ ′ . The final expressions 

that we get are:   y sy s x H= +′ ′2 , and   x sx s y H= −′ ′2 . We will 

now assume that s is independent of u, so that  s s= = 0. The 

last term in Eq. (7) becomes

	

∂
∂

= −
∂
∂

H

x s s
x H

′
′

 

2
( ). 	 (8)

The second term on the right hand side of Eq. (5) is

	

∂
∂

=
−F

x

Hy

s 

2 ′
	 (9)

and we get

	

d

du

F

x
s

s
Hy

2

2

2

2
2

∂
∂

= −
∂
∂

 ( ).′ 	 (10)

We now write H in terms of s as: H H n x y y x= ⋅ = − +


ˆ ″ ′ ″ ′, 
where: 



H x x y y= +″ ″ˆ ˆ, and ˆ ˆ ˆn y x x y= − +′ ′  so that

H y x x y′ ′ ″′ ′ ″′= − +

	 H y x x y y x x y″ ″ ′″ ″ ′″ ′ ′= − + − +( ) ( )4 4 	 (11)

There is another force contribution from the membrane 

tension, giving a term of the form: F sxx ∝  ″, so in the 

normal direction we get: F s y x x y s Hn = − + = σ σ( ) ,′ ″ ′ ″
where we used the identity: x y′ ′2 2 1+ =  and therefore: 

2 02 2( ) ( )/x x y y x y s′ ″ ′ ″ ′ ′+ = ∂ + ∂ = .

Putting everything together, the normal force acting on 

the membrane due to curvature and tension is

F F n y F x Fx y= ⋅ = − +


ˆ ′ ′

	

= − ∇ − +(
− ⋅ ) +







s H H y y x x

H n s H

1

2
2 2

3

2

3

κ

σ

( )

( )

′ ′″ ′ ′″

� (12)

	
κ σ = −∇ − ⋅ +  

2 31
ˆ( )

2
s H H n s H



  � (13)





s y x x y H n s H
1

2
2 34 4 3κ σ( ( ) ( ) )( ) ( )′ ′− − ⋅ +

where we used the identity: x y′ ′2 2 1+ = , and therefore:

2(x ′x ″ + y ′y ″ ) = ∂(x′2 + y ′2)/∂s = 0, and -(x ″ 2 + y ″ 2) = -H2

We need forces per unit length, whereas we calculated 

above the forces per unit u, so we divide by 
s and finally get

	
κ σ( ) .( ) ( )y x x y H H′ ′4 4 33

2
− −





+ � (14)

CTB–GM1s with spontaneous curvature

When there are CTB–GM1s with spontaneous curvature, 

the free energy.

(Eq. (4)) changes to

	
F w H Hn n x y du= − + −( ) +∫ κ σ α( ) ( )2 2 2

1

  	 (15)

where n the density of CTB–GM1s along the contour, which 

may not be uniform. Expanding the quadratic term we get: 
H HHn Hn2 22− + ( ) . The derivation of the first term was 

done above (all the variations are of the integrand times 

the s factor).

The new contributions to the forces acting on the mem-

brane are (normal force per unit length)

	
= ⋅ = − ′ + ′, , ,ˆspon n spon spon x spon yF F n y F x F


	 (16)
= − −( )κ

2
22 2( ) ( )Hn H Hn nHH″

and
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	 α= ⋅ = −, ˆ .tension n sponF F n nH


	 (17)

Fluxes and diffusion of CTB–GM1s

The conservation equation for the CTB–GM1s along the 

contour becomes

	

1 1 12













s

sn

t

D

s
sn

s n
sn

s

F

ns
s

s s
∂
∂

= ∇ + ∇ ∇ 





( ) ( ) ,
Λ δ

δ
	 (18)

where the number of CTB–GM1s in each unit contour length 

is N snns=   (n
s
 is the saturation concentration of the CTB–

GM1s), F is the energy functional of Eq. (1), and the deriva-

tive along the contour is ∇ = ∇s u s/  . We therefore get

	

∂
∂

+
∂
∂

= ∇ + ∇ ∇





n
t

n
s

s
t

D
s

sn D
k Tn s

n F
ns

B s
u u











2
2( ) δ

δ
� (19)

where e is the energy per unit length, ie, the integrand in 

Eq. (15) with respect to ds.

If the number of CTB–GM1s is conserved, even though 

we allow the membrane overall length to change, then 

Eq. (19) is correct. If however there is a reservoir of mem-

brane that allows it to change in length, then this membrane 

can include lipids and CTB–GM1s, so that the total number 

of CTB–GM1s is not conserved when the membrane length 

changes. In this case the change in the density due to length 

changes is removed, as it is assumed to be balanced by the 

currents into/out of the reservoir. Eq. (19) is then modified 

by removing the second term on the left hand side.

In our calculations, a nonlinear tension was employed, 

and as a result, the length of each membrane segment changed 

very little, so the second term on the left hand side of Eq. (19) 

was neglected.

Numerical realization of the model
Discretization of the model
Since the flat shape model represents a segment of 

the whole cell, we used periodic boundary conditions. 

Thus, the number of grid points N equals the number of 

discretizations. In our model, the density n of element i 

is given by:

	
n

N

si
i

i

=
∆

.	 (20)

The boundary conditions
We employed periodic boundary conditions. The first and 

second derivatives of the function along the x direction were 

calculated using the following explicit Euler method:

∂
∂

=
−+ −x

s

x x

s
n n

i

1 1

2∆

	

∂
∂

=
− +− +

2

2
1 1

2

2x

s

x x x

s
n n n

i∆
.	 (21)

where the subscripts n, n+1, n-1 represent the current, 

next, and previous nodes, respectively. The derivatives 

of the function along the y direction were calculated in a 

similar manner. For the calculations of derivatives of the 

first point, the last point was added before it. While for the 

calculation of derivatives of the last point, the first point 

was added after it.

The derivation of the free  
energy equation
The derivation of the free energy is projected to give the 

forces normal to the membrane contour.21 We now list 

the forces derived from the derivation of the free energy 

[Eq. (1)]21

	
F H H n n H H Hc = −∇ + ∇ + −





κ 2 2 2 2 31
2

1
2 	 (22)

	 F
t
 = (σ - αn)H	 (23)

	 F
s
 = -2γ  y	 (24)

	 F
e
 = k

B
Tn

s
(n1n(n) - 1)H	 (25)

	
F J n

n
n HJ

s

= − + ∇






2 21 ( ) 	 (26)

where F
c
 is the force due to the curvature energy mismatch 

between the membrane curvature and the spontaneous cur-

vature of the CTB–GM1s, F
t
 is the membrane tension force, 

F
s
 is the spring restoring force, and F

J
 is the force due to the 

nearest-neighbor interaction of the CTB–GM1s. F
e
 arises 

from the entropy of the CTB–GM1s in the membrane, which 

acts to expand the length of the contour.

We now calculate the dynamics of the CTB–GM1 

density, using the following conservation equation

	

∂
∂

= −∇⋅ = ∇ ∇





−
∂

∂
n

t
J

n
n

F

n

n

g

g

ts
s s

 Λ δ
δ

,	 (27)

where Λ is the mobility of CTB–GM1s and 


J  is the total 

current of CTB–GM1 on the membrane, which includes the 

following terms

	
J

H
n n Hatt s

= ∇
κΛ 	 (28)

	
J

H
n n ndisp

s
= − ∇

κΛ 2
	 (29)
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J

J
n n n

J

n
n nagg

s
s

= ∇ + ∇
Λ Λ

2
3 	 (30)

	 J
diff

 = -D∇n	 (31)

where J
att

 is the attraction flux resulting from the interaction 

between the CTB–GM1s through the membrane curvature, 

J
disp

 is the dispersion flux due to the membrane resistance 

to CTB–GM1 aggregation due to their membrane bending 

effects, J
agg

 is the flux due to the direct CTB–GM1 aggregation 

interactions, and J
diff

  is the usual thermal diffusion flux, which 

depends on the diffusion coefficient, D  =  Λk
B
T. The last 

term in Eq. (27) arises from the covariant derivative of the 

density with time on a contour whose length evolves with 

time.23 In this term g  is the matrix tensor, which in our one-

dimensional contour is simply the line element dl. This term 

ensures that the total number of CTB–GM1s is conserved as 

the contour length changes.
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