
Full Terms & Conditions of access and use can be found at
https://informahealthcare.com/action/journalInformation?journalCode=dijn20

International Journal of Nanomedicine

ISSN: (Print) (Online) Journal homepage: informahealthcare.com/journals/dijn20

A Review on the Synthesis and Functionalization of
Gold Nanoparticles as a Drug Delivery Vehicle

Sundus Jabeen Amina & Bin Guo

To cite this article: Sundus Jabeen Amina & Bin Guo (2020) A Review on the Synthesis and
Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle, International Journal of
Nanomedicine, , 9823-9857, DOI: 10.2147/IJN.S279094

To link to this article:  https://doi.org/10.2147/IJN.S279094

© 2020 Amina and Guo.

Published online: 07 Dec 2020.

Submit your article to this journal 

Article views: 3724

View related articles 

View Crossmark data

Citing articles: 136 View citing articles 

https://informahealthcare.com/action/journalInformation?journalCode=dijn20
https://informahealthcare.com/journals/dijn20?src=pdf
https://informahealthcare.com/action/showCitFormats?doi=10.2147/IJN.S279094
https://doi.org/10.2147/IJN.S279094
https://informahealthcare.com/action/authorSubmission?journalCode=dijn20&show=instructions&src=pdf
https://informahealthcare.com/action/authorSubmission?journalCode=dijn20&show=instructions&src=pdf
https://informahealthcare.com/doi/mlt/10.2147/IJN.S279094?src=pdf
https://informahealthcare.com/doi/mlt/10.2147/IJN.S279094?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.2147/IJN.S279094&domain=pdf&date_stamp=07 Dec 2020
http://crossmark.crossref.org/dialog/?doi=10.2147/IJN.S279094&domain=pdf&date_stamp=07 Dec 2020
https://informahealthcare.com/doi/citedby/10.2147/IJN.S279094?src=pdf
https://informahealthcare.com/doi/citedby/10.2147/IJN.S279094?src=pdf


R E V I E W

A Review on the Synthesis and Functionalization 
of Gold Nanoparticles as a Drug Delivery Vehicle

This article was published in the following Dove Press journal: 
International Journal of Nanomedicine

Sundus Jabeen Amina1 

Bin Guo 2

1Atta-ur-Rahman School of Applied 
Biosciences (ASAB), National University 
of Sciences and Technology (NUST), 
Islamabad, Pakistan; 2Department of 
Pharmacological & Pharmaceutical 
Sciences, University of Houston, 
Houston, TX 77204, USA 

Abstract: Metal nanoparticles are being extensively used in biomedical fields due to their 
small size-to-volume ratio and extensive thermal stability. Gold nanoparticles (AuNPs) are 
an obvious choice for biomedical applications due to their amenability of synthesis, stabili-
zation, and functionalization, low toxicity, and ease of detection. In the past few decades, 
various chemical methods have been used for the synthesis of AuNPs, but recently, newer 
environment friendly green approaches for the synthesis of AuNPs have gained attention. 
AuNPs can be conjugated with a number of functionalizing moieties including ligands, 
therapeutic agents, DNA, amino acids, proteins, peptides, and oligonucleotides. Recently, 
studies have shown that gold nanoparticles not only infiltrate the blood vessels to reach the 
site of tumor but also enter inside the organelles, suggesting that they can be employed as 
effective drug carriers. Moreover, after reaching their target site, gold nanoparticles can 
release their payload upon an external or internal stimulus. This review focuses on recent 
advances in various methods of synthesis of AuNPs. In addition, strategies of functionaliza-
tion and mechanisms of application of AuNPs in drug and bio-macromolecule delivery and 
release of payloads at target site are comprehensively discussed. 
Keywords: gold nanoparticles, drug delivery, biological synthesis, functionalization, drug 
release

Introduction
Nanotechnology is referred to the designing and application of components which 
occur at the nano-scale: up to 10–1,000 nm in size.1 Nanotechnology encompasses 
the study of structural properties of nano-structures at the molecular and sub- 
molecular level along with their electrical, optical, and magnetic attributes. At 
present, nanotechnology is an interdisciplinary field which takes engineering, 
biomedicine, chemistry, and physics under one umbrella.2 The application of 
nanomaterials in different fields ranging from oil and gas and cosmetics to nano-
medicine has taken this world to the new era, which is the era of nanotechnology.3,4 

The best investigated nanostructures include carbon nanotubes, gold nanoparticles, 
liposomes, and paramagnetic nanostructures.5–8 Gold colloids are now increasingly 
utilized in different fields like chemistry, biology, engineering, and medicine. In the 
biomedical field they have vast applications in diagnostics, therapy, and 
immunology.9

Gold nanoparticles provide an outstanding material for study due to the fact that 
they are one of the most stable, non-toxic, and easy to synthesize nanoparticles and 
exhibit various fascinating properties like assembly of various types and quantum size 
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effect.6 The optical behavior of gold nanoparticles is depen-
dent on their surface plasmon resonance (SPR), located in 
a wide region ranging from visible to the infrared region of 
the spectrum, which is determined by collective oscillation of 
conducting electrons. The range of the spectrum depends on 
various features of gold nanoparticles, including size and 
shape.9 Methods have been developed to synthesize these 
materials reproducibly, which can further be modified using 
countless chemical functional groups. Many new sensitive 
and specific assays are based on the gold nanoconjugates.

Gold nanoparticles have emerged as an excellent can-
didate for the application in delivery of various payloads 
to the target site.10,11 These payloads range from small 
drug molecules including drugs to large biomolecules like 
DNA, RNA, and proteins. Some drugs molecules do not 
require modification of a monolayer of gold nanoparticles 
for their delivery and can be directly conjugated with gold 
nanoparticles through physical absorption and ionic or 
covalent bonding.12 Whereas for the delivery of other 
payloads, gold nanoparticles require functionalization like 
PEGlyation,13 peptide and amino acid conjugation,14,15 or 
functionalization with oligonucleotides.16 Apart from that, 
another prerequisite for the efficient delivery of therapeu-
tic agents is their release. Various internal stimuli (glu-
tathione, pH and enzymes)17–19 and external stimuli (light, 
etc.)20 have been investigated for the efficient release of 
these payloads from gold nanoparticles.

Due to the vast amount of information available and 
the level at which it is being renewed we have chosen the 
generalized data from the past few years to present this 
review encompassing the most promising application of 
gold nanoparticles in drug delivery.

Synthesis of AuNPs
For the synthesis of AuNPs, there are two basic strategies 
that are used, which are “Top-Down” and “Bottom-Up” 
approaches. The top-down approach involves the synthesis 
of AuNPs starting from bulk material and cracking it into 
nanoparticles using different methods. In contrast, the 
bottom-up approach synthesizes nanoparticles starting 
from atomic level. Figure 1 shows the basic steps that 
are involved in the top-down and bottom-up approaches. 
Synthesis methods that involve the top-down approach 
include laser ablation,21 ion sputtering,22 UV and IR 
irradiation,23,24 and aerosol technology,25 whereas the 
reduction of Au3+ to Au0 is the bottom-up approach.

The formulation of AuNPs involves two main stages:

In the first stage the gold precursor, which is usually an 
aqueous gold salt solution, is reduced to gold nanoparticles 
using a specific reducing agent like citrate.

In the second stage the stabilization of gold nanoparti-
cles is done by a specific capping agent. The capping 
agents hinder the agglomeration of metallic nanoparticles.

Chemical Synthesis
Turkevich Method
This method for the synthesis of AuNPs was first reported 
in 1951. It is one of the most commonly used techniques 
for formulation of spherical AuNPs. AuNPs prepared 
using this method have the size in the range of 1–2 
nm.26 The basic principle of this technique involves the 
reduction of gold ions (Au3+) to produce gold atoms (Au0) 
by using some reducing agents like amino acids,27 ascor-
bic acid,28 UV light, or citrate.29,30 Stabilization of AuNPs 
is carried out by using different capping/stabilizing agents. 
At the beginning, the applications of Turkevich method 
were finite because of the limited range of AuNPs that 
could be synthesized by this technique. With the passage 
of time several advancements in the basic method have 
enabled researchers to extend the size range of particles 
synthesized using this method. In 1973, it was established 
that by varying the ratio of reducing as well as stabilizing 
agents, AuNPs of particular size with the range from 
16–147 nm can be produced.31–33 Figure 2A shows the 
basic method involved in the Turkevich method.

The Brust Method
This method was first reported in 1994 and involves a two- 
phase reaction to synthesize AuNPs with the size range of 
1.5–5.2 nm by using organic solvents.34 The method 
encompasses the use of a phase transfer such as tetraocty-
lammonium bromide to carry out transferring of gold salt 
to organic solvent from its aqueous solution (eg, toluene). 
The gold is then reduced by the use of a reducing agent 
such as sodium borohydride along with an alkanethiol. 
The alkanethiol carries out the stabilization of AuNPs.35 

As a result of this reaction the color changes from orange 
to brown.34,36 Figure 2B shows the schematic illustration 
of main steps involved in Brust method.

Seed-Mediated Growth
The previous two methods can synthesize only spherical 
AuNPs; however, they can also be formulated in a number 
of geometries and shape such as rods.37,38 The most com-
monly used technique to synthesize rod shaped AuNPs is 
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seed-mediated growth. This method is based on the funda-
mental principle which involves first synthesizing seed 
particles by reducing gold salts. This reaction is done in 
the presence of reducing agents like NaBH4. The next step 

involves the transferring of the seed particles to a metal 
salt and a weak reducing agent like ascorbic acid which 
prevents further nucleation and speeds up the synthesis of 
AuNPs of rod shape. Shape and geometry of gold 

Figure 1 Top-down and bottom-up approaches for the synthesis of NPs. The top-down approach involves the transformation of bulk material by using energy to produce 
the powder form which is then transformed into smaller fragments with multiple layers and then to the monolayers leading to the formation of nanoparticles. On the other 
hand, the bottom-up approach uses the precursor molecules which are then ionized by using energy. Radicals, ions, and electrons thus produced are condensed to form 
clusters which are then transformed to nanoparticles.

Figure 2 (A) Turkevich method for the synthesis of AuNPs. (B) Series of steps involved in the Burst method for the synthesis of AuNPs.

International Journal of Nanomedicine 2020:15                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
9825

Dovepress                                                                                                                                                      Amina and Guo

http://www.dovepress.com
http://www.dovepress.com


nanoparticles depends on the concentration of reducing 
agents and seeds. Figure 3A shows schematic illustration 
of seed-mediated growth of short and long gold nanorods 
as reported by a study.39

Digestive Ripening
Digestive ripening is considered to be a convenient 
method to prepare monodispersed gold nanoparticles in 
the presence of excessive ligands (digestive ripening 
agents). The basic process comprises heating a colloidal 
suspension at high temperatures (~138ºC) for 2 minutes 
and then heating at 110ºC for 5 hours by using alkanethiol, 
as shown in Figure 3B. Temperature is the major factor for 
determining the size distribution of the gold colloids.40

In addition to these methods, other methods involve the 
use of ultrasonic waves for the synthesis of AuNPs.41,42

Advantages and Limitations of the Methods
Turkevich method is a fairly uncomplicated and reprodu-
cible procedure for the formulation of spherical particles 
with the size range 10–30 nm. But, as the size of particles 

increases above 30 nm, they become less spherical in 
shape with broader size distribution. Moreover, this reac-
tion gives low yield and involves the use of only water as 
a solvent.43 Brust method, on the other hand, involves an 
easy strategy for the formulation of thermal and air-stable 
AuNPs having controlled size and less dispersity. One 
possible limitation of Brust method is synthesis of 
AuNPs which are less dispersed and used of organic 
solvents immiscible with water, therefore, limiting their 
biological applications.44 Seed-mediated growth is 
a reliable method for the synthesis of rod-shaped AuNPs, 
but various factors affect the size of rod and so must be 
carefully controlled. In a study when higher concentrations 
of HAuCl4 were used it produced bigger seed rods with 
smaller aspect ratios. Temperature also plays a significant 
role in the synthesis of rods and at higher temperatures 
rods with lower aspect ratio were produced. Also, the 
number of seeds added to the reaction mixture must be 
critically considered to stimulate the growth of rods.45 The 
digestive ripening method is also an easy and valuable 

Figure 3 Series of steps involved in the synthesis of AuNPs. (A) Seed-mediated method. (B) Digestive ripening method.
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chemical technique to produce monodispersed nanoparti-
cles. Another benefit of this strategy is the high yield of 
nanoparticles.46 A possible disadvantage of the digestive 
ripening method is that controlling the shape of nanopar-
ticles via the digestive ripening process is difficult as it 
involves very high temperatures.47

In addition, chemical methods are inherited with their 
own limitations which include environmental and biocom-
patibility concerns. Some of the chemicals that are used in 
the synthesis of gold nanoparticles during chemical synth-
esis can affect our environment and are the cause of risks 
for administering them into the living organisms, thus 
limiting the biological applications of such NPs.48 

Therefore, various biological methods have been devised 
for the synthesis of AuNPs to limit these concerns.

Biological Synthesis
Recently, efforts have been made for biological synthesis 
of AuNPs, which is a clean, dependable, and bio-friendly 
alternative to harsh chemicals used in chemical synthesis 
reactions. The biological resources used in synthesis of 
nanoparticle range from simple bacterial cells to complex 
eukaryotes. Interestingly, the capability of organisms in 
synthesis of metal nanoparticles has given rise to a new 
thrilling approach toward the development of these biolo-
gical nano-factories.49 A plethora of organisms have been 
reported to carry out successful synthesis of AuNPs, ran-
ging from bacteria to plants, algae, and fungi.

Bacteria
Microorganisms have been reported to be an excellent 
candidate for the synthesis of both intracellular and extra-
cellular AuNPs.50–52 The negatively charged cell wall of 
bacteria can electrostatically interact with positively 
charged Au(III) ions. During the intracellular synthesis, 
gold ions are transported inside the cell where enzymes 
and biomolecules carry out the synthesis of AuNPs. On the 
other hand, during extracellular synthesis the gold ions are 
trapped on the cell membrane by membrane enzymes. 
These enzymes on the membrane or reductase enzymes 
secreted out by the microbial cell can carry out the synth-
esis process outside the bacterial cell.53 Extracellular 
synthesis, however, is more fascinating as it does not 
require extra downstream processing steps which are 
required for the separation of nanoparticles from the intra-
cellular matrix. A study has shown that, during the extra-
cellular synthesis reaction NADPH-dependent enzymes 
are secreted by bacteria which can reduce Au(III) ions to 

Au0 such as nitrate reductase secrete by Pseudomonas 
denitrificans. The results showed that the action reductase 
enzyme diminished once AuNPs had been synthesized.54 

Shah et al55 reported that both NADH and NADH- 
dependent enzymes function as a scaffold or nucleating 
agent for the synthesis reaction. Singh et al reported that 
Rhodopseudomonas capsulate secreted NADH and 
NADH-dependent enzymes during extracellular synthesis 
of AuNPs. The transfer of electrons from NADH carried 
by NADH-dependent enzyme causes the reduction of 
Au(III) to Au0, resulting in the synthesis of AuNPs.51 

Thermomonospora sp. (Order: Actinomycetes) was 
reported to carry out intracellular enzymes mediated 
synthesis of AuNPs by achieving the reduction of Au(III) 
ions at the surface of membrane and mycelia.56 Similarly, 
Shewanella algae efficiently carried out enzymes mediated 
bioreduction of AuCl4− ions to AuNPs which were found 
to be dispersed in periplasmic membrane of bacterium.57 

Certain materials produced by microbial cells like pro-
teins, enzymes, and organic substances can act as capping 
agents to stabilize nanoparticles and, hence, prevent their 
agglomeration.58 Micro-organisms possess certain reduc-
tase enzymes which can reduce metal salts to metal nano-
particles with narrow size distributions and 
monodispersity. By altering the essential growth para-
meters, the shape and size of AuNPs can be controlled. 
Synthesis of AuNPs using bacteria is a tedious reaction 
and requires additional precautionary measures while 
handling bacteria, and also takes hours and days as bacter-
ial cultural is a time consuming process. These drawbacks 
have limited the use of bacteria for the synthesis of 
AuNPs.59

Fungi
Fungi have also been used as a biological source for the 
synthesis of AuNPs. Fungi secrete a number of biomole-
cules, including metabolites and extracellular enzymes, 
such as hemicellulose, acetyl xylem esterase, 3-glucanase, 
cell wall lytic enzyme β-1, etc., which have been reported 
to play a role during the synthesis of metallic 
nanoparticles.60 Numerous studies have reported the 
synthesis of gold nanoparticles using unicellular and mul-
ticellular fungi.61,62 A fungal species Fusarium oxysporum 
was used in a study for the extracellular synthesis of Au- 
Ag alloy NPs by the reduction action of nitrate-dependent 
enzyme and shuttle quinone.63 A fungal species 
Verticillium has also been reported to carry out intracellu-
lar synthesis of AuNPs. AuNPs were found to be trapped 
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in the cell membrane and the cell wall of fungi, indicating 
that Au3+ ions were bio-reduced by the reduction action of 
reductase enzymes in fungi.64 A study on the biosynthesis 
of AuNPs from Phanerochaete chrysosporium proved that 
laccase was the enzyme secreted by the fungi for extra-
cellular synthesis of AuNPs and, for intracellular synth-
esis, ligninase was found to be responsible.65

Plants
Phytonanotechnology has gained attention with time as it 
comprises an eco-friendly, cheap, and rapid process for the 
synthesis of nanoparticles. A number of studies have 
reported biosynthesis of AuNPs using different plants or 
plant extracts involving the use of harmless bio- 
components from plants to carry out the reduction and 
capping of AuNPs, reducing the waste generation and 
limiting the requirement for additional purification steps. 
Numerous bio-components present in plants such as flavo-
noids, phytosterols, quinones, etc., play a role in the synth-
esis of AuNPs because of the functional groups which 
speed up the reduction and stabilization of AuNPs.66 

Although nearly every part of plants has been reported to 
successfully carry out the synthesis of AuNPs, leaves are 
most commonly used. The difference in the level of var-
ious compounds present in different plants and even in 
different parts of a plant affects the synthesis of AuNPs. 
For example, a study has reported the effect of difference 
in level of phenolic contents present in leaves and fruit of 
Garcinia mangostana plant on the synthesis of AuNPs. As 
the leaves are rich in phenolic content so the rate of 
synthesis of AuNPs was faster in the presence of leaves 
than fruit.67,68 Moreover, recently the synthesis of gold 
nanoparticles using medicinal plant Acorus calamus and 
Cassia auriculate has been reported.69,70

Reactive compounds; Lignans [(+)-pinoresinol, (+)- 
medioresinol], alkaloids, flavonoids, steroids (sitosterol- 
3-0-glucoside), and terpenoids present in the leaves of 
Justicia glauca have been reported to complete the synth-
esis reaction of AuNPs in 1 hour. AuNPs had spherical and 
hexagonal morphology and were 32 nm in size.71 Leaves 
of the Terminalia arjuna plant also carried out the synth-
esis of AuNPs within 15 minutes. AuNPs synthesized in 
this study were 20–50 nm in size and had spherical mor-
phology. The author claimed that the reactive compounds 
Arjunetin, leucoanthoc-yanidins and hydrolysable tannins 
present in leaves of Terminalia arjuna contributed to the 
synthesis of AuNPs.72 Similarly, the leaves of olive plant 
and Cassia auriculata were shown to complete the 

synthesis reaction of AuNPs in 20 minutes and 10 minutes, 
respectively. The active metabolites and biomolecules in 
the leaves of the olive plant are proteins, oleuropein, 
apigenin-7-glucoside, and luteolin-7-glucoside, which 
resulted in the formation of spherical and anisotropic 
AuNPs with the size range of 50–100 nm.73 

Polysaccharides and flavonoids are the major active sub-
stances in the leaves of Cassia auriculata and AuNPs 
synthesized from leaves of this plant were 15–25 nm in 
size and had spherical and anisotropic morphology.70 

Mangifera indica leaves used by Philip74 synthesized 
spherical AuNPs within 2 minutes of reaction time. The 
size of AuNPs was found to be in the range of 17–20 nm. 
Terpenoids, flavonoids, and thiamine are the active com-
pounds present in mango fruit, which might have contrib-
uted to the synthesis of AuNPs.

Apart from leaves, various other parts of plants, includ-
ing fruits, roots, stems, etc., have been used for the synth-
esis of AuNPs. The fruit of Citrus maxima was used in one 
study and synthesized spherical AuNPs with the size range 
of 15–35 nm within 5 minutes of reaction time. Proteins, 
terpenes, and ascorbic acid were the major compounds that 
were claimed to act as reducing agents during reaction.75 

The high phenolic content of Sambucus nigra (elderberry) 
was the major factor in the synthesis of AuNPs.76 Apart 
from that, flowers of Lonicera Japonica contain amino 
acids as active compounds and successfully synthesized 
AuNPs of triangular and tetrahedral morphology with the 
size range of 8 nm in the reaction time of 1 hour.77 

Similarly flowers of the Moringa oleifera plant synthe-
sized AuNPs of size 3–5 nm. This plant was reported to 
contain a high content of flavonoids, carotenoids, phenols, 
sterols, and amino acids, which were claimed to be respon-
sible for carrying out the reduction reaction during the 
synthesis process.78 Various types of roses have been 
demonstrated to possess the reducing ability for the synth-
esis of AuNPs.79,80 Similarly, banana and mango peels can 
synthesize AuNPs with the sizes 50 nm and 6.03±2.77 to 
18.01±3.67 nm, respectively. Banana peels synthesized 
spherical shaped AuNPs and mango peel synthesized 
quasi-spherical shaped AuNPs. The reaction time for 
both processes was 20 and 25 minutes, respectively.81,82 

Apart from the above-mentioned parts of plants, rhizomes 
of turmeric,83 yam beans,84 ginger,85 and seeds of cocoa,86 

pulp of green pepper,87 bark of bay cedar,88 galls of zebra 
wood,89 latex of Hevea brasiliensis,90 nuts of Areca 
catechu,91 and effluent from palm oil mill92 were found 
to carry out the synthesis of AuNPs.
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Algae
There are a few studies which have demonstrated the synth-
esis of gold NPs using algae. A few species of both marine 
and fresh algae were used in these studies. Among the 
marine red algae, Gracilaria corticata,93 Acanthophora 
spicifera,94 and Galaxaura elongata,95 and marine brown 
algae, Stoechospermum marginatum,96 Ecklonia cava,97 

Sargassum wightii,98 Cystoseira baccata,99 Laminaria 
japonica,100 and Turbinaria conoides101 have been pre-
viously reported to carry out the synthesis of AuNPs. On 
the other hand, biomass from freshwater algae including 
Prasiola crispa,102 Lemanea fluviatilis,103 and Chlorella 
pyrenoidusa104 can also synthesize AuNPs. Previous stu-
dies have shown that hydroxyl and carbonyl groups present 
in algal biomass can act as reducing agents for carrying out 
the synthesis of AuNPs. It has also been shown that these 
group can also act as the capping agent for gold 
nanoparticles.105–107 Table 1 shows the list of various 
organisms that have been reported to carry out successful 
synthesis of AuNPs.

Biomolecules
Molecules synthesized by living organisms to speed up their 
biological processes of the body are known as biomolecules 
and these include macromolecules such as amino acids, 
nucleic acids, carbohydrates, and lipids. Previous studies 
have reported the synthesis of gold nanoparticles using 
chitosan which does not only act as a reducing agent but 
also as a stabilizing agent during synthesis reaction.108 

Apart from that, starch is another polysaccharide used for 
the synthesis of AuNPs. In an alkaline environment starch 
can be degraded into short chains having carboxyl groups 
and the –OH group of carboxylic acid can reduce Au3+ ions 
to gold nanoparticles.109 Among proteins, consensus 
sequence tetratricopeptide repeat proteins and corn protein, 
α-zein can be used to carry out the synthesis reaction of 
AuNPs.110,111 The biological method of synthesis of AuNPs 
can conveniently overcome the complications of biosafety 
of the chemicals used for the generation of AuNPs.

Advantages and Limitations of Biological Synthesis
Synthesis of AuNPs using biomass from bacteria is an 
advantageous process as some species of bacteria are not 
affected by the presence of heavy metals. Also, the extra-
cellular synthesis approach produces pure nanoparticles as 
compared to the intracellular synthesis process which 
requires additional purification steps. Conversely, cultur-
ing of bacteria is a slow and tedious process so the 

synthesis reaction of AuNPs can take a long time compris-
ing hours and even days. On the other hand, fungi produce 
a large quantity of proteins and reactive compounds. 
Therefore, the reaction process can be easily scaled 
up.112–114 Moreover, as compared to bacteria it is easier 
to culture and grow fungi. But preparing biomass from 
fungi for the synthesis reaction requires careful steps as it 

Table 1 Various Types of Living Organisms That Can Carry 
Either Intracellular or Extracellular Synthesis of AuNPs

Name of Organism Intra/ 
Extracellular

Reaction 
Type

References

Bacteria

Deinococcus 

radiodurans

Extra/intra Reduction [311]

Bacillus cereus Extra Reduction [50]

Pseudomonas 

aeruginosa

Extra Reduction [312]

Rhodopseudomonas 

capsulate

Extra Reduction [51]

Rhodococcus Intra Reduction [313]

Marinobacter pelagius Extra Reduction [52]

Bacillus megaterium Extra Reduction [112]

Fungi

Neurospora crassa Intra Reduction [61]

Trichothecium sp. Extra/Intra Reduction [314]

Candida albicans Extra Reduction [315]

Penicillium 

brevicompactum

Extra/Intra Reduction [316]

Algae

Rhizoclonium fontinale Intra Reduction [317]

Sargassum wightii Extra Reduction [98]

Tetraselmis kochinensis Intra Reduction [318]

Prasiola crispa Extra Reduction [102]

Shewanella Extra Reduction [319]

Plants

Magnolia kobus Extra Reduction [320]

Sesbania drummondii Intra Reduction [321]

Coriandrum sativum Extra Reduction [322]

Tanacetum vulgare Extra Reduction [323]

Abelmoschus esculentus Extra Reduction [324]
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is complicated to separate mycelia from culture filtrates. 
Manipulation of the genetic makeup of eukaryotes to pro-
duce desired proteins is also challenging. Also, some spe-
cies of fungi are pathogenic.115–117 Synthesis of AuNPs 
using plants based material is a facile and uncomplicated 
process. Various attributes of AuNPs such as shape and 
size can be regulated by controlling the reaction para-
meters. Additionally, the reaction process is fast and eco-
nomical. The disadvantage of using plants for the 
synthesis of AuNPs is that the identification of reactive 
components is difficult as plant biomass comprises a large 
number of organic components.118–120 Synthesis of AuNPs 
from algal biomass is also easy and simple, but algae take 
a lot of time to grow so the overall process can become 
tedious and time consuming. Biomolecules on the other 
hand contains various functional groups which can aid in 
the synthesis of AuNPs. Contrarily, as different biomater-
ials show different reducing ability it is imperative to first 
determine their reducing ability before using them in the 
synthesis reaction.110,111,121,122

Stabilization of AuNPs
Nanoparticles can be stabilized using a stabilizing agent 
which basically assists in maintaining repulsive forces to 
overcome Wan der Vaal forces in the solution of nanopar-
ticles to avoid agglomeration.123 During the chemical 
synthesis of AuNPs sodium borohydride or sodium hydride, 
sodium citrate or ascorbic acid may act as capping and 
stabilizing agents for AuNPs. However, during the biologi-
cal synthesis of AuNPs, stabilization of nanoparticles can 
be successfully achieved by using the bio-material rich in 
antioxidant properties. The large variety of reactive com-
pounds present in the biomass can take part in the synthesis 
and stabilizing process. Various studies have reported the 
synthesis of highly stable AuNPs via green approach. 
AuNPs synthesized from Actinidia deliciosa showed 
a zeta potential value of −22.3 mV,124 whereas two different 
types of AuNPs synthesized from Cannabis sativa showed 
zeta potential values of −12.3 mV and −20.6 mV.125 The 
high values of zeta potential mean that AuNPs are highly 
stable due to the presence of high surface charge which 
prevents agglomeration. Various studies have reported that 
phenolic compounds,126 terpenoids,127,128 proteins,129 and 
nicotinamide adenine dinucleotide54 might act as stabilizing 
and capping agents during the biological synthesis of 
AuNPs.

Moreover, changing the concentration of gold salt used 
for the synthesis reaction, pH, and temperature can also 

provide control over the size and geometry of AuNPs. 
Derjaguin Landau VerweyOverbeek theory (DLVO) 
explains the whole process for stabilization of metallic 
nanoparticles.130,131 The stabilization of NPs done by 
using various capping agents can be divided into three 
different categories, including steric, electrostatic, and uni-
fication of steric and electrostatic stabilization.132

Electrostatic Stabilization
Ionic groups present in the liquid dispersion media can 
attach to the surface of a colloidal nanoparticle giving rise 
to a charged layer. As a result, an equal number of oppo-
sitely charged ions will border the colloidal nanoparticles 
giving rise to overall electro-neutral double layers.

This stabilization which involves an electric double 
layer originating from the presence of both repulsive as 
well as attractive forces between the nanoparticles as 
a result of the action of some ionic composites is shown 
in Figure 4A. These ions include polyoxyanions, carbox-
ylates, as well as fluorides. This type of stabilization 
involving electrostatic repulsions inhibits the agglomera-
tion of nanoparticles in the solution phase. Electrostatic 
stabilization is regulated by controlling certain significant 
variables including pH, concentration, and temperature.133

Steric Stabilization
Steric stabilization hinders the free movement of metal 
nanoparticles during synthesis reactions. Stabilizing agents 
used in this type of stabilization include various functional 
groups such as hydroxyl groups, surfactants, and different 
oligomers/polymers. This results in the generation of 
a protective layer by the assimilation of the stabilizing 
agent at the outer surface of nanoparticles which plays 
an important role in the stability of metallic 
nanoparticles.134 The mechanism of steric stabilization is 
shown in Figure 4B.

Electrosteric Stabilization of AuNPs
The stability of metallic nanoparticles in solution phase 
can also be maintained by another type of stabilization 
which involves unification of electrostatic and steric stabi-
lization. A polyelectrolyte employed as a polymeric sur-
factant gives combined effects of electrostatic and steric 
stabilization in one molecule. A double electric layer 
around the nanoparticle is generated by an ionic surfactant 
possessing extended end chains and polar head group 
which offers steric repulsion within the nanoparticles, 
thus preventing the agglomeration and giving rise to 
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a mutual stabilization system.135 Figure 5 shows the sta-
bilization of AuNPs by the unification of steric and elec-
trostatic interactions.

Advantages and Disadvantages of 
Stabilization Methods
Although electrostatic stabilization is easier to maintain in 
colloidal media, there are certain limitations to it. Firstly, 
electrostatic stabilization cannot be achieved in electrolyte 
sensitive media. Additionally, due to strong forces of inter-
actions between oppositely charged ions it is impossible to 
separate agglomerated particles. Moreover, it cannot be 
applied to multiple phase systems as different solids establish 
distinct surface charge and surface potential. As compared to 
the electrostatic stabilization, which is a kinetic stabilization 
method, steric stabilization is a thermodynamic stabilization 
method; therefore, particles can be redispersed. It is also not 
sensitive to electrolytes and can be applied to multiple phase 
systems.

Properties of AuNPs
AuNPs exhibit properties which are different from those 
shown by bulk material. These properties of AuNPs 
depend on their size and shape. Gold nanoparticles exhibit 
a wide variety of colors which include brown, purple, blue, 

orange, and red in the solution form, and the color also 
depends on the size of the particles. Gold nanoparticles 
exhibit the SPR band in the range of 500–550 nm, which 
also depends on the size of nanoparticles.136–138 The SPR 
band arises due to the collective oscillations of conduction 
electrons caused by the incident photon. Such a band is 
absent in AuNPs of very small size, particularly those 
which have a diameter <2 nm as well as in the bulk 
materials.139,140 Apart from the size of the particles, the 
shape of nanoparticles, ligands, temperature and charge 
also influence SPR of AuNPs.141,142 If the gold nanopar-
ticles exist in the form of aggregates there is a red shift in 
SPR which results in the broadening of SPB resulting in 
the change of color of particles from red to blue.143

AuNPs also exhibit the property of quenching flores-
cence of proximate fluorophore by inducing the deactiva-
tion pathway. This is done by generation of an excellent 
overlap between the SPB of AuNPs and emission spectra 
of fluorophores.144,145 This phenomenon is called fluores-
cent resonance energy transfer (FRET) and has been 
observed in AuNPs as small as 1 nm in size.146` AuNPs 
can also cause quenching by another process called photo-
induced electron transfer (PET) during which AuNPs 
accept the photon and cause the quenching of 
fluorescence.147

Figure 4 (A) Electrostatic stabilization of gold nanoparticles. (B) Steric stabilization of gold nanoparticles.
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AuNPs have been widely applied as surface enhanced 
Raman scattering (SERS) substrate for the detection of 
various elements in living cells. The basic mechanism of 
SERS is caused by two major amplifications that result in 
the increase in the cross-section of Raman scattering; first 
being the electromagnetic enhancement. The resonance of 
applied light field along with the collective oscillations of 
electrons of nanostructures cause amplification in the local 

electric field at nanoparticle surface. Second is the short 
range chemical enhancement caused by the alteration in 
polarizability of molecules due to its charge-transfer inter-
action with the surface of nanoparticles.148

The oxidation reduction reactions of AuNPs make 
them efficient tools for applications in electrochemical 
sensing1149,150 and electronic devices.151,152 On the other 
hand, the applications of AuNPs in the field of 

Figure 5 Unification of electrostatic and steric stabilization. Gold nanoparticles surround the ionic surfactants having polar ends and extended side chains. The area with 
high local concentration of stabilizer hinders the agglomeration of AuNPs.
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imaging153,154 and sensing155,156 can be attributed to their 
surface enhanced raman scattering (SERS). Studies show 
that AuNPs can be used for calorimetric sensing157,158 and 
laser ablation159,160 because of their SPR, whereas flores-
cence quenching properties of AuNPs make them well 
suited for the applications in the field of material 
engineering161,162 and sensors development.163,164

Melting point of gold nanoparticles changes with the 
change in the size of particles. Gold nanoparticles are shown 
to have a lower melting point as compared to the bulk materi-
als. This decrease in the melting point is because of the fact 
that the attractive forces of interaction of core get weaker due 
to a decrease in the number of neighboring atoms. As a result 
of this, the interaction between inner and surface atoms is 
reduced and surface atoms get higher surface energy. This 
leads to the decrease in the melting points.165,166 Electrical 
properties of AuNPs are also reported to be different from that 
of bulk material. As the particle size decreases the surface area 
is increased which causes a decrease in electrical 
conductivity.167 However, different materials can be used in 
combination to enhance their electrical and optical properties. 
For example, AuNPs can be used to enhance electrical and 
optical properties of zinc oxide nanoparticles.168

Anisotropic AuNPs
The physical and chemical properties of AuNPs greatly 
depend on the shape and size of AuNPs. AuNPs of spherical 
shape can be synthesized by isotropic growth on gold nuclei. 
On the other hand, gold nanoparticles of different shapes can 
be synthesized by anisotropic growth on gold nuclei. As 
described above in the synthesis methods for AuNPs, the 
synthesis of anisotropic gold nanoparticles can be carried out 
by a two-step process, ie, seed-mediated growth. In the first 
step, spherical gold seeds are synthesized which have uni-
form size. In the second step, the reaction conditions are 
changed including the addition of more gold ions, along 
with a capping agent and reductant. The gold seeds produced 
in the first step act as a template on which newly reduced 
AuNPs deposit and form AuNPs of larger size with varied 
shapes. The reducing agent used in the second step is a weak 
reducing agent and Au3+ can be converted to Au0 only in the 
presence of seeds which act as a catalyst for the reaction. 
Because of the use of weak reducing agent, the second step is 
a slower process than the first step.169 Various studies have 
reported synthesis of AuNPs of different shapes including 
gold nanorods,170,171 nanocages,172 nanowires,173,174 

nanoplates,175,176 polyhedral,177,178 flower shaped,179,180 

and star shaped.181,182

A study which involved the use of cell free extract 
from a fungus Rhizopus oryzae showed that different fac-
tors such as protein concentration, pH of solution, and 
time of the reaction contribute to the synthesis of AuNPs 
of varied shapes. When proteins got deposited at 111 plane 
of nuclei it resulted in the formation of nanoplates which 
were either triangular, pentagonal, hexagonal, or star 
shaped. Similarly, isotropic deposition of proteins on all 
planes resulted in the formation of nanospheres, and orien-
tated attachment under the limited supply of cell free 
extract caused the spherical gold nanoparticles to give 
rise to urchin shaped nanoparticles. For the formation of 
2D nanowires, first the spherical agglomerates formed 
followed by the deposition of protein molecules on the 
concave surfaces of two particles which joined together 
finally resulting in the formation of long wires. When 
these wires underwent the process of Oswald ripening it 
resulted in the formation of nanorods.183 The schematic 
illustration of the study is shown in Figure 6.

Properties of Anisotropic AuNPs
The shape of nanoparticles has an effect on their 
optical184,185 and catalytic properties.186,187 Nanoparticles 
having different shapes have the atoms of different faces 
which have different electronic distribution and are thus 
used to catalyze different types of chemical reactions. 
Anisotropic nanoparticles can show various plasmon reso-
nances other than dipole resonance which can be attributed 
to their higher order modes. These additional resonances 
include quadruple and octopole resonances.188,189 AuNPs 
show their typical LSPR with the maximum absorption 
observed at around 520 nm, but as the symmetry of 
AuNPs changes to gold nanorods (AuNRs) two different 
LSPRs can be observed, with one being at the short axis, 
which is transverse LSPR, and the other one being along 
the long axis, which is longitudinal LSPR. There is a red 
shift in longitudinal LSPR of the peak with the increase in 
the aspect ratio.190 The studies have demonstrated that 
a peak shift and aspect ratio of anisotropic AuNRs have 
a linear relationship.136 AuNRs have diverse applications 
in the field of biology. When AuNRs are exposed to laser 
light, they absorb the portion of that resonant light with 
their surface plasmon oscillations. The light that they 
absorb is quickly converted to heat and if the rate of heat 
absorption is higher than the rate of heat loss it results in 
the accumulation of heat inside the lattice and sometimes 
this heat is enough to cause the conformational change in 
these AuNRs, changing them to spherical AuNPs.191,192 
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The aspect ratio of AuNRs is an important factor in deter-
mining the applications of AuNRs. For example, AuNRs 
that have higher a aspect ratio respond effectively to NIR 
light and therefore have application in the field of 
Photothermal therapy. However, larger sized AuNRs hav-
ing fixed and larger aspect ratios can scatter the light 
effectively and thus can be used for optical imaging. 
Higher absorption efficiency can be attributed to smaller 
AuNRs which make them an efficient tool for photother-
mal therapy.193 The surface plasmon resonance of gold 
nanostructures having other shapes has also been studied. 
Gold nano-stars exhibit various surface plasmon reso-
nances which result from hybridization of resonances 
related to their core and tips.194

Functionalization of AuNPs
AuNPs can be functionalized in a number of ways which 
generate the possibilities for a variety of approaches for 
their use in designing various drug delivery systems 

(DDS). When non-covalent interactions are used for the 
loading of drugs on nanoparticles, no specific bond clea-
vage is required to carry out the efficient drug release and 
only alterations in native physical forces are needed.17 For 
example, the release of hydrophobic drugs can be carried 
out by inducing changes in local hydrophobicity. Similarly, 
AuNPs can be covalently bonded to the drug through 
cleavable bonds forming a prodrug which can be delivered 
to the cell liberating the drug from AuNPs using either 
external or internal stimuli.195,196 Irrespective of the 
method used for the drug delivery, the modification of 
the monolayer of AuNPs is very important for the extra-
cellular or intracellular discharge mechanisms.

Various mechanisms for the synthesis of AuNPs con-
taining functional moieties are being developed in order to 
increase their bonding with biological molecules and to 
make them better drug-carriers with improved specificity. 
Current methods for the functionalization of AuNPs 
involve the use of either one or a combination of the 

Figure 6 Synthesis of AuNPs of various shapes under different conditions due to different type of growths on the gold nuclei.
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functional groups including oligo or polyethylene glycol 
(PEG), bovine serum albumin (BSA), amino acids and 
polypeptides, oligonucleotides, antibodies, receptors, and 
diverse similar particles. Table 2 shows various functional 
groups, their ligand moieties, and key features which make 
them suitable for their biological application.

PEGlyation of AuNPs
During the PEGlyation, AuNPs are conjugated with PEG 
alone or in the presence of some other molecule in order to 
make the cellular uptake of AuNPs efficient. These mole-
cules include biotin, peptides, and oligonucleotides. These 
functionalized AuNPs can be used for targeted drug delivery 
owing to their binding ability with cell membranes. Studies 
have been reported for the synthesis of AuNPs functionalized 
with lectin, lactose, and biotin along-with PEG.197–199 Such 
functionalized AuNPs cannot only be used for cellular inter-
nalization but for intracellular internalization as well. 
PEGlyated gold nanoparticles can also be conjugated with 
thiol having florescent dye coumarin attached on one side. 
These fAuNPs work as hetero-bifunctional moieties and can 

make their way into the cells and be tracked simultaneously 
because of dye molecule attached at one end.200 The study 
which involved the internalization of such fAuNPs for appli-
cation in tumor ablation in mice has been reported. The result 
of this study showed that the internalization of AuNPs into 
cells was also affected by factors such as size of AuNP, Mr of 
PEG, the ligand conjugated with PEG, and physiochemical 
properties.201

Peptides and Amino Acid Conjugation
Nanoparticles have also been conjugated with peptide/ 
amino acid in order to produce effective and targeted 
delivery systems. Synthesis of AuNPs conjugated with 
aspartic acid,14 glutamic acid, phenylalanine and 
tryptophan,202 L-cysteine,203 lysine,204 and peptides15,205 

has been reported. Amino acids and peptides bind with 
negatively charged AuNPs through amine groups, whereas 
the negatively charged carboxylic groups extend outwards 
to stabilize AuNPs. Some amino acids including lysine, 
poly-lysine, and glycine exhibit higher efficacy to conju-
gate with DNA and can be used for DNA or gene delivery 

Table 2 List of Various Functional Groups, Their Ligands, and Key Features Which Make Them Suitable for Biological Applications

S. No. Functional 
Groups

Ligands Key Feature Application Ref.

1 Polyethylene 

Glycol (PEG)

Thiol (-SH) group Adhesion with plasma 

membrane

Cell targeting, intracellular 

targeting, biodistribution analysis

[197,199,325–327]

2 Peptides Cell surface receptors, amyloid 

inhibitory peptide + sweet 
arrow peptide, antibody, 

octreotide peptide

Cytoplasmic and nuclear 

translocation, adjuvant, 
targeting carcinoma cells 

analog of somatostatin

Cellular and intracellular 

targeting, macrophage and 
proinflammatory cytokine 

elicitation bioimaging imaging of 

cancer cells

[209,328–331]

3 Carboxyl 

group

Amino acids Delivery of various agents Various applications which 

depend on the amino acid used

[27]

4 Amine 

Group

PEG siRNA delivery RNA technology [207]

5 DNA Aptamer, PEGylated gold poly 

(β-amino ester), Thiolated 
ssDNA of RNA I gene, 

antisense DNA 

oligonucleotides

Targeting Prostate cancer 

cells, siRNA carrier, binds 
to antisense RNA of p53

Bioimaging, gene delivery RNAi- 

regulation of transgene 
expression, detection of specific 

genes, eg, for microbial detection

[220,332–335]

6 RNA Polyvalent RNA-gold 

nanoconjugates

RNA delivery RNA technology [336]

7 Folate Folate Targets cancer cells that 

are folate receptor 
positive

Cancer targeting [337]
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without inducing any cytotoxicity. Anionic DNA shows 
higher binding capacity with the positively charged ammo-
nium ions present on amino acids. One possible method 
could be the use of AuNPs having thiol end which can 
then be conjugated with amino acids to give out positive 
amino groups. These amino groups will bind with DNA 
through ion pairing. A study which reported the similar 
mechanism for the synthesis of lysine and poly-lysine 
conjugated AuNPs expression for gene delivery found 
that lysine dendrons were better at expressing reporter β- 
galactosidase gene as compared to polylysine.206 Similarly 
another study has reported that AuNPs functionalized with 
positively charged amine groups were able to effectively 
conjugate with negatively charged PEGlyated siRNA. 
When these fAuNPs were tested against prostate cancer 
cell lines they efficiently inhibited cancer genes. Also, 
specific cancer genes were efficiently inhibited using 
these amine functionalized AuNPs carrying siRNA-PEG 
conjugates when used against human prostate cancer 
cells.207 Later a study reported triethylenetetramine 
(TETA) functionalized gold cores of size 2 nm which 
featured biodegradable glutamic acid scaffolds and 
showed that positively charged amino groups of TETA 
moieties interact electrostatically with anionic siRNA. 
These dendronized AuNPs were very effective at suppres-
sing expression of β-gal (˜50%) with the least toxicity.208 

Proteins can also be conjugated with AuNPs via glutamic 
acid which conjugates with AuNPs through their amino 
groups and their carboxyl groups extending outwards bind 
with amino groups of proteins. On the other hand, the 
attachment of protein with glutamic acid can induce cer-
tain conformational changes in proteins.27 Lysine conju-
gated AuNPs were first synthesized and then conjugated 
with doxorubicin and the results showed that most of the 
drug was released within 12 hours.204

Gold nanoparticles functionalized with peptides have also 
been reported for the application in targeted drug delivery. 
Peptide-drug conjugates (PDC) are an efficient and effective 
tool for delivering drugs to cancer cells. Phage Peptide P4 
conjugated with 2-chlorotrityl resin was tested against A20 
leukemic-like cell line. The results showed that chlorambucil 
which previously was less effective as compared to bendamus-
tine was equally as effective as bendamustine when used in 
conjugation with peptides fAuNPs.15 Phospho-peptides have 
also been investigated for application in drug delivery. The 
results have shown that phospho-tyrosine modified AuNPs 
when used as a delivery vehicle for doxorubicin were more 
effective at killing SGC-7901 cells.205

Another study reports the conjugation of peptide 
CALNN and its derivative CALNNR8 with AuNPs for 
targeting components present inside the cell. AuNPs with 
the size of 30 nm could cross the cell membrane more 
easily through the processes of endocytosis and micro- 
pinocytosis. Both of these functionalized nanostructure 
types demonstrated higher binding capacity for DNA, 
RNA as well as for the organelles like endoplasmic reti-
culum. Upon testing CALNN and CALNNR8 together for 
internalization in cells it was found that both of them could 
enter in the nucleus but the most of the CALNNR8 was 
still bound with endoplasmic reticulum as ER has a high 
binding affinity for signal peptides rich in arginine.209

Oligonucleotide Functionalized 
Nanoparticles
Synthesis of DNA functionalized inorganic nanoparticles is 
an area of fascination for researchers because of their defi-
nite structures and functions,210–212 and possesses 
a programmable assembly process as far as the sequence, 
length, and structure of DNA is concerned.213,214 Similarly, 
the synthesis process can be controlled either to form oli-
gomers or large agglomerations. Moreover, it is even pos-
sible to control the separation distance between the 
assemblies of nanoparticle to produce crystals of 
nanoparticles.215–217 DNA functionalized nanoparticles 
can be synthesized under specific conditions. DNA can be 
used as in the form of a single strand capped with thiol as 
well as by saturation of the AuNPs’ surface with single 
stranded DNA molecules.218 Studies carried out on kinetics 
and thermodynamics of DNA conjugated with AuNPs have 
demonstrated that ssDNA first attach to AuNPs and then 
gradually spread on their surface.219 Another study has 
shown that conjugation of aptamers through hybridization 
reactions on oligonucleotide functionalized gold nanoparti-
cles is a better approach than carrying out the direct con-
jugation of aptamers with AuNPs. The first advantage is that 
the integrity of aptamers remains intact and a smaller 
amount of aptamers is required to carry out the conjugation 
process. This technique was employed for the detection of 
prostate cancer cells.220

Other Common Functionalization 
Methods
Several molecules other than proteins, amino acids, and 
nucleic acids have also been used for the functionalization 
of AuNPs for diverse applications. One study has reported 
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the functionalization of AuNPs with anti-human IgG to 
develop a technique for the detection of human IgG in 
blood serum samples and the results were found to be 
consistent with enzyme-linked immunosorbent assay 
(ELISA).221 Apart from that studies have been carried 
out for functionalization of AuNPs with antibodies for 
application in the detection of E. coli. Antibody conju-
gated AuNPs interacted with E. coli O157:H7 through 
EDC coupling chemistry.222 In addition to that, in 
a study the enzyme glucose oxidase was attached on 
chitosan conjugated AuNPs for the detection of glucose. 
The results showed that the method was effective for the 
enzyme to retain its enzymatic activity, even at extreme 
conditions, including higher temperature.223 Another study 
has reported the application of AuNPs in the detection of 
5-fluorouracil; an anti-cancer drug, as AuNPs show 
a quenching effect against the fluorescence produced by 
5-fluorouracil. Along with the detection of 5-fluorouracil, 
this conjugate was also shown to have antifungal and 
antibacterial properties.224 Depending on the application 
of AuNPs, there are many studies which have used the 
combination of proteins, oligonucleotides, and antibodies 
for the functionalization of AuNPs. This type of functio-
nalization of AuNPs is increasing now and has diverse 
applications in the field of biomedical sciences.

Advantages and Limitations of 
Functionalization Methods
Functionalization allows us to impart AuNPs with multimo-
dal features.225 Physical aspects of AuNPs can be modified 
through functionalization, making them efficient for clear-
ance. AuNPs when layered with small molecule or polymers 
such as poly(ethylene glycol) (PEG), the resultant nanostruc-
ture displays improved blood circulation with better biodis-
tribution and active cellular uptake. PEG also reduces the 
degree of attractive forces between AuNPs by expanding the 
steric gap between the particles and developing hydrophili-
city through hydrogen bonds with solvent.226 PEGylation 
can also result in the alteration of the size of the particle. 
The rate of renal filtration of particles with the size >10 nm 
reduces t½; though a bigger size (>100 nm) enhances their 
uptake by liver and reduces EPR extravasation.227 PEG also 
alters the flexibility of NP which can become “softer” due to 
PEGylation, thus effecting extravasation. Though the toxi-
city caused by PEG is little but is inversely proportional to 
the molecular weight, mainly after oral consumption. NPs 
and not the PEG corona are the cause of toxicity caused after 

intravenous injection.228 Though the hindrance of PEG to the 
degradation by serum is advantageous from a stability per-
spective, functionalized AuNPs which are harmlessly biode-
graded in-vivo after a certain time period are desired. An 
ultimate challenge of PEG coating is its fragmentation by 
light, heat, or stress, resulting in the diminishing of its coating 
ability.229

Similarly, functionalization of gold nanoparticles with 
some amino acids can cause the aggregation of nanoparti-
cles. Thiol chemistry can be used to our advantage, but the 
thiol groups can be replaced by other thiol groups present 
in the high concentration in living organisms.230 The other 
challenge is formulation-function challenge which is to 
determine the exact sequence of peptides to be used to 
obtain the desired function. The results of another study 
which involved the synthesis of L-Arginine (Arg) functio-
nalized AuNPs showed that Arg and nanoparticles interact 
through covalent or coordination-like bond, and the resul-
tant steric limitation on binding of gold nanoparticles to 
Arg results in reducing the coverage of Arg.231 On the 
other hand, the potential of oligonucleotides functionalized 
AuNPs has been generally shown using in-vitro analysis; 
but, there are questions to be addressed before conjugates 
of AuNPs and oligonucleotides can be moved to clinical 
applications. First of all, diminishing short- and long-term 
cytotoxic effects of AuNPs is indispensable. Various 
investigations have reported the biocompatibility of such 
therapeutic AuNPs through uncomplicated cytotoxicity 
studies, though comprehensive toxicological assessment 
needs to be appropriately carried out. Secondly, delivery 
of these carriers to targeted organs and tissues is essential 
to lessen side-effects. Coating AuNPs surface with precise 
antibodies destined to the damaged cells and decorating 
them with functional groups like polyethylene glycol and 
zwitterionic moieties to avoid adsorption of plasma pro-
tein, bettering the pharmacokinetics and escaping immune 
system can be done to achieve the desired drug targeting. 
Lastly, immunological problems are required to be entirely 
researched prior to the clinical application of any novel 
material.232

Applications of AuNPs in Drug 
Delivery
Gold nanoparticles have lately been exploited as an excel-
lent applicant for delivering numerous drugs to their target 
sites.10,11 These payloads range from small drug molecules 
to bigger biomolecules such as RNA, DNA, and proteins. 
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Effective discharge of these payloads is an essential factor 
to be considered for efficient therapy. The release of ther-
apeutic agent from gold nanoparticles can be achieved by 
using internal stimuli such as glutathione,233 pH etc.,234 

and as well as external stimuli such as light.235 Drug 
targeting can be generally categorized into passive or 
active targeting. In the “passive targeting,” drug or nano-
particle is built-up at the targeted site by using their 
physiochemical properties like weight and size, extravasa-
tion, and pharmacological aspects.236 However, during the 
“active target”, the drug molecule or nanoparticle are 
modified by attaching them with a definite active molecule 
for targeting particular cells. For instance, studies have 
reported the targeting of nanoparticles to specific phago-
cytic cells237 and to tumor cells.238 But the major factor 
that plays a significant role in such targeting is surface 
modification and functionalization.

Direct Conjugation of AuNPs with Drug
AuNPs can be conjugated directly with drug molecules or 
antibiotics with the help of physical absorption, covalent, 
or ionic bonding. One example is methotrexate (MTX); 
a folic acid analog that was conjugated to 13 nm colloidal 
gold nanoparticles to disrupt the folate metabolism in the 
cancer cells and has mainly been used as a cytotoxic anti- 
cancer drug. After the overnight incubation, carboxylic 
groups on the molecule of methotrexate had the ability to 
bind with the surface of gold nanoparticles and as reported 
the tumor cells had higher concentration of AuNP conju-
gated methotrexate as compared to that of free methotrex-
ate. Also, the conjugated form exhibited a 7-times higher 
cytotoxic effect in Lewis lung carcinoma mouse models as 
compared to free methotrexate.12 The schematic illustra-
tion of mechanism used for the synthesis of MTX con-
jugated AuNPs is shown in Figure 7A. Saha et al,239 in 
another example, directly conjugated non-functionalized 
spherical gold nanoparticles of about 14 nm diameter to 
several different antibiotics such as streptomycin, ampicil-
lin, and kanamycin by physical means. As a result, con-
jugated antibiotics showed more stability and higher 
inhibition of bacterial growth than their free forms.

Alterations in AuNPs’ Surface for Drug 
Conjugation
During the conjugation process of nanoparticles and bio-
molecules, the surface chemistry of a nanomaterial plays 
the vital role. For the drug delivery system there are four 

main reasons to define why the modifications in the surface 
of AuNP could be worthy. The primary reason is slowing or 
preventing the removal of conjugate by reticulo-endothelial 
system (RES) and to increase the conjugate’s lifetime of 
circulation. The second reason is the proper attachment of 
therapeutic molecules and desired targeting. Another reason 
is preventing the aggregation of nanoparticles and improv-
ing their stability. Lastly, surface modification can solve the 
problem of cytotoxicity in gold nanoparticles due to origi-
nal capping ligands. There are many studies on the metho-
dology to improve the bio-stability, biocompatibility, and 
water-solubility of gold-bioconjugates. A number of studies 
have highlighted the properties of polymer-modified gold 
nanoparticles. Farooq et al240 showed the synthesis of dox-
orubicin (DOX) conjugated PEGlyated AuNPs, bleomycin 
(BLM) conjugated PEGlyated AuNPs, as well as both DOX 
and BLM conjugated PEGlyated AuNPs. The results pro-
vided evidence that nanohybrid drug carriers significantly 
resulted in the decrease of half-maximal drug concentration 
to be effective. The mechanism for the synthesis of nanohy-
brid drug carrier is shown in Figure 7B. Studies have shown 
that PEG inhibits the agglomeration of gold nanoparticles in 
an environment with high concentration of ions and favors 
a longer particle circulation in the vivo systems.200,241 In 
a different study carried out in mice, the biological distribu-
tion of PEG modified AuNRs was compared with non- 
modified AuNRs and results showed that when PEG- 
modified gold nanorods were injected in mice 54% of the 
gold nanorods were found in blood at 0.5 hours after injec-
tion while, at 72 hours, 35% of AuNRs were found accu-
mulated in the liver. On the other hand, at 0.5 hours the gold 
nanorods without modification were already 30% accumu-
lated in the liver.242 In a different study, coumarin dye was 
conjugated with one end of PEG spacer and then AuNPs 
were conjugated with coumarin-PEG-thiol and the results 
showed that these particles were not toxic and can enter into 
the cells after 1 hour of incubation and were found localized 
in the peri-nuclear region. These particles internalized into 
cells by non-specific endocytosis.200 The PEG-modified 
gold nanorods can be used as a contrast agent for in vivo 
screening of organs using the light in the near-infrared 
region.242,243 Bhattacharya et al244 reported that gold nano-
particles functionalized with PEG-amines and folic acid via 
non-covalent interactions target the cancerous cells which 
have folate receptors. Takahashi et al245 used the technique 
“layer-by-layer” surface modification to modify phosphati-
dylcholine-gold nanorods (PC-NR) with polyethylenimine 
(PEI) and bovine serum albumin (BSA) which showed 
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greater stability in electrolyte buffer solution and as a result 
prevented their aggregation under physiological conditions 
and caused increased uptake of the nanoparticles and cel-
lular binding. Recently, Gu et al246 exhibited another type of 
surface-functionalized gold nanoparticle that had the ability 
to focus a payload to the core of the cell. The surface of the 
circular gold nanoparticles with a diameter of 3.7 nm was 
altered with 3-mercaptopropionic acid (MPA) to frame 
a self-assembled monolayer. The carboxylic end groups 
on the particles were then conjugated with amine end- 
groups on the NH2-PEG-NH2. This conjugation brought 
great stability and high proficiency of intracellular vehicles 
for the targeted delivery to the nucleus. The schematic 
representation of this study is shown in Figure 8. Gold 

nanoparticles functionalized with paclitaxel are another 
example of a nano-sized drug delivery framework. The 
C-7 position of paclitaxel was bonded with hexa-ethylene 
glycol (carboxyl-terminated linker) which was then directly 
conjugated to 4-mercaptophenol-coated gold nanoparticles 
of diameter 2 nm. The results showed that approximately 70 
molecules of paclitaxel were conjugated per 
nanoparticle.247 As illustrated above, there are diverse 
ways of surface modification of gold nanoparticles. 
Among covalent and non-covalent reaction based modifica-
tions, the covalent interactions are stronger but the interest-
ing assemblies are provided by non-covalent interactions of 
NPs with the biomolecules.248 Due to the stable covalent 
interaction the problem of effective release of the drug 

Figure 7 (A) Direct conjugation of AuNPs with methotrexate drug (MTX). Methotrexate molecule possesses two amine and carboxylic groups and exchanges citrate ions 
present on the surface of citrate capped AuNPs to form MXT-AuNPs. (B) Surface modification of AuNPs with PEG for conjugation of Doxorubicin (DOX) and Bleomycin 
(BLM). During the conjugation reaction, carboxylic groups on PEG forms amide bonds with amino groups present on BLM and DOX.
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payload on the target site needs to be addressed. To solve 
this problem, surface modification with functional ligands 
having acid sensitive or amine groups can act as a site for 
non-covalent binding of drug molecules.249 Surface coating 
with polyelectrolytes such as poly(diallydimethyl ammo-
nium chloride; PDADMAC), poly(sodium-4-stryrenesulfo-
nate; PSS), and poly(allylamine hydrochloride; PAH) has 
already been used.250,251 So, to avoid any agglomeration, 
a careful surface modification strategy is needed to deliver 
the payload.

Limitations of AuNPs in Drug Delivery
Although gold nanoparticles show a promising future in 
the field of drug delivery, the other side of the coin is 
imperative to be considered, ie, their potential side-effects. 
Although most of the concerns related to biological 
applications of gold nanoparticles have been addressed in 
various studies, their results seem to contradict each other, 
and final answers to all the questions related to 

biocompatibility, biodistribution, cytotoxicity, retention, 
and clearance time are still required. One major limitation 
of gold nanoparticles in drug delivery is their non-specific 
targeting and the capability of stimulating the host’s 
immune system. These problems have been addressed by 
modifying the surface of AuNPs with PEG, thereby mask-
ing their surface and leaving them inactive regarding pro-
tein adhesion on the surface, thus minimizing the 
likelihood of immune system stimulation. Unexpectedly, 
such perfect coating not only causes nanoparticles to 
become “invisible” to the immune system but it also 
makes them lose their capability to adhere to definite 
receptors. To overcome such in vivo obstacles, gold nano-
conjugates are additionally altered using targeting ligands. 
But this detailed alteration of the surface may give rise to 
undesirable toxic effects. Considering the mechanism by 
which conjugated ligands may result in the alteration of 
the pharmacokinetics, biodistribution, and ultimate poten-
tial side-effects is also very crucial. Some toxicity can be 

Figure 8 Surface modification of AuNPs with mercaptopropionic acid. These fAuNPs were conjugated with PEG- FITC (fluorescein isothiocyanate). These AuNPs entered 
the cell through endocytosis and were found localized in the endosomes and nucleus.
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attributed to specific type of ligands. For instance, in-vitro 
toxicity has been reported only for cationic ligands.252 

Moreover, as a result of chemoresistance and the diversity 
of genetic makeup of cancer cells, not all the therapeutics 
may be effective for every patient. The efficacy of nano 
cancer drug carriers can be increased by decorating nano-
particles with stromal antagonists. However, to facilitate 
the specific targeting of nanotherapeutics, additional stu-
dies are imperative to discover new molecular targets 
expressed only in the cancer microenvironment. One pos-
sible way to solve the problem of cancer heterogeneity is 
to possibly target stromal cells. Other important candidates 
for active drug targeting are cancer stem cells (CSC). 
Potential solution for eradicating chemoresistance of can-
cer cells is by eliminating chemoresistance of CSCs.253 

Consequently, there several serious concerns that require 
serious attention, for instance, dependable formulation 
assays, deep rooted side effects, and cellular and immune 
reactions. This calls for continued research in the devel-
opment of the techniques described above, particularly 
with respect to active targeting.254

Delivery of Large Biomolecules 
Using AuNPs
The capability of gold nanoparticles in delivering large 
biomolecules, such as peptides, nucleic acids, and pro-
teins, has also gained success. Various biomolecules 
including genes, oligonucleotides, proteins, and peptides 
are various types of biomolecules which have been deliv-
ered to target cells using AuNPs as delivery vehicles.

Nanoparticle-Based Genetic Therapy
The ideal approach to treat genetically acquired disease is 
via Gene therapy.255 Viruses also provide a vehicle for 
highly efficient gene therapy,256 but they have raised 
safety concerns which arise due to immune response and 
random cytotoxicity.257 Conversely, at present less effi-
ciency has been reported via non-viral gene delivery 
systems.258 An effective delivery vehicle should provide 
efficient entry into the cell, protection of nucleic acid 
against degradation by nucleases, and release of the 
nucleic acid in functional form in the nucleus.259 

Nanoparticles, on the other hand, have outstanding thera-
peutic effects and are capable to deliver all kinds of 
oligonucleotides such as single stranded DNA (ssDNA), 
double stranded DNA (dsDNA), plasmids, and single 
stranded RNA (ssRNA). Gold nanoparticles such as 

nanorods and nanospheres give protection to nucleic acid 
and prevent their degradation by nuclease. Oligonucleotide 
and siRNA-modified AuNPs conjugates are used in gene 
delivery and gene therapy as intracellular gene regulatory 
agents which are able to activate immune-related genes.260

AuNPs can be conjugated with oligonucleotides using 
both covalent and non-covalent interactions. Nucleic acid 
strands can be modified with thiols (–SH) for covalently 
grafting them onto nanoparticles. In one study, citrate- 
capped AuNPs were functionalized with antisense oligo-
nucleotides using cyclic disulphides (DTPA) anchoring 
group and alkyl-thiol anchoring groups to produce tetra-
thionate particles and mono-thiolated particles. The parti-
cles complexes were found to possess high affinity 
constant for the complementary nucleotide sequence and 
showed 99% higher cellular internalization without caus-
ing any cytotoxicity. When treated with DNAse, AuNPs 
bound antisense oligonucleotides degraded at a much 
slower rate than the free antisense oligonucleotide 
duplexes.261 The basic mechanism of the study is shown 
in Figure 9A. A group has reported the synthesis of poly-
valent nucleic acid and AuNPs conjugates by covalently 
bonding AuNPs with thiol modified nucleic acids. The 
resultant conjugate was resistant to any degradation by 
enzymes and showed high cellular internalization.262 In 
another study, the same group has applied their “antisense 
particles” for tumor suppressing. They used mimics of 
tumor suppressive miRNA-miR-205 for functionalization 
of AuNPs and sense strand was linked to AuNPs through 
absorption of alkyl thiol linkage. These conjugates of miR- 
205 down-regulated the expression of miRNA target pro-
tein and successfully inhibited cancer cell proliferation as 
compared to non-targeted AuNPs.263

Nucleic acids can be conjugated with AuNPs via non- 
covalent interactions as well. Strongly anionic nucleic 
acids can interact with cationic AuNPs through electro-
static interactions. Gold clusters protected with mixed 
monolayer functionalized with quaternary ammonium 
salts were tested for their ability to transfect plasmid 
DNA. The results showed that various factors contribute 
to the successful transfection assemblies which include 
DNA:AuNPs and hydrophobicity.264 Zhao et al265 devel-
oped gold nanoparticle-based nano-carriers with poly- 
allylamine hydrochloride (PAH) and poly-sodium 4-styre-
nesulfonate (PSS), and they were able to deliver a small 
interfering RNA (siRNA) targeting LSD1 gene to induce 
the differentiation of human mesenchymal stem cells 
(MSCs). The results of this research may contribute to 
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tissue regeneration therapy by delivering siRNA. An effec-
tive scaffold for binding of gold colloids with DNA can be 
produced by functionalizing AuNPs with amino acids. 
AuNPs functionalized with lysine dendron have been 
reported to be 28-fold more efficient in gene expression 
as compared to polylysine.206

Nanocarriers for the Delivery of Protein
Gold nanoparticles can act as nanocarriers of proteins 
and peptides of interest. Verma et al266 reported that 
cationic tetraalkyl ammonium functionalized gold nano-
particles identify the surface of an anionic protein β- 
galactosidase via complementary electrostatic interaction 
and restrain its activity which can be reversed by cel-
lular concentrations of glutathione. The study showed 
that glutathione-mediated discharge of enzyme β- 
galactosidase from AuNPs, which depends on the 
chain length of monolayer, makes it a potential trans-
porter of the protein. In an earlier study, gold nanopar-
ticles functionalized by chitosan have been used to 

deliver insulin. Chitosan is a non-toxic biopolymer 
used to synthesize and stabilize the nanoparticles. 
Chitosan functionalized insulin loaded AuNPs were 
found to lower the blood glucose level to 30.41% after 
2 hours of oral administration.267 The schematic illus-
tration of this study is shown in Figure 9B. AuNPs 
conjugated with cell penetrating peptides and lysosomes 
sorting peptides were tested for their targeted localiza-
tion into lysosomes. The results showed that these func-
tionalized AuNPs can be efficiently delivered into 
lysosomes while causing minimum cytotoxicity. 
Schäffler et al268 used gold nanoparticles for conjugation 
with human serum albumin (alb-AuNP) or apolipopro-
tein E prior to their intravenous injection. The outcome 
of the study demonstrated that protein conjugation extre-
mely reduced the liver retention of AuNPs. This study 
suggests that the stable conjugation enhances the effi-
ciency and specificity of nanoparticles in the target 
organ, therefore signifying a potential application in 
nanopharmacology and nanomedicine.

Figure 9 (A) Citrate capped AuNPs conjugated with mono/tetrathiol modified antisense oligonucleotides treated with DNAse. (B) Schematic illustration of preparation of 
insulin loaded AuNPs. Chitosan acts as a reducing and stabilizing agent during the formation of AuNPs. Insulin reacts with chitosan capped AuNPs through hydrogen bonding.
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Limitations of Delivery of Large 
Biomolecules Using AuNPs
The delivery of large biomolecules to the cells not only 
requires targeting to a site but also cellular internalization 
and sometimes intracellular release of the cargo. 
Therefore, various factors are to be considered before 
using gold nanoparticles in biomolecule delivery. As the 
size and shape of nanoparticles influence their cellular 
uptake, fabrication of gold nanoparticles of desired shape 
and size is critical. For the targeted drug delivery, the 
decoration of surface of AuNPs with specific ligands is 
very important. Moreover, lack of investigation on biodis-
tribution and retention of these gene carriers is a major 
problem. In vivo investigations are needed to determine 
the response of living systems to these nanocarriers.

Drug Release from AuNPs
pH-Mediated Drug Release
One of the most appropriate conditions for the release of 
drug at site of the target over the surrounding tissues is 
pH.269 The acidic environment with the pH range from 
5.7–7.8 is present in human cancer cells or inside the cell 
organelles including endosomes and vesicles.270,271 These 
specific pH conditions lead to the cleavage of acid sensi-
tive bond and charge switching due to protonation and 
morphological alterations of carriers. For example, the 
acidic conditions (pH 5.0) in lysosomes or endosomes or 
both can cause the cleavage of the hydrazone bond which 
is an acid-sensitive bond.272 This property of hydrazone 
bond has widely been used in the preparation of pH- 
responsive supramolecular fabrications for intracellular 
drug release. A study has reported the AuNPs modified 
with methyl thioglycolate (MTG) and thiolated methoxy 
polyethylene glycol (HS-mPEG) having a molar ratio of 
1:1. When doxorubicin (DOX) was conjugated with MTG 
through hydrazine bond the resultant DOX-AuNPs conju-
gates showed higher pH-sensitive drug release under the 
pH 5.3 as compared to the normal pH 7. The results 
showed that after 28 hours of incubation the released 
DOX drug can be located in the perinuclear region and 
the nuclei of 4T1 cancer cells.273 The schematic illustra-
tion of this study is presented in Figure 10A. A study has 
also shown the synthesis of AuNPs functionalized with 
PEG ligands terminated with DOX having hydrazone bond 
between PEG and DOX for the release of therapeutics 
under low pH. These particles were found to enter the 
cells through endocytosis. Apart from that, DOX-AuNPs 

having hydrazone bond as compared to the free doxorubi-
cin showed higher drug built-up and retention in MCF-7/ 
ADR cancer cells which are multidrug resistant cells.274

Glutathione (GSH)-Mediated Drug 
Release
Glutathione-mediated drug release characterizes an alter-
nate non-enzymatic approach for the activation of prodrugs 
in the intracellular environment. The basic principle of this 
approach is based on the difference in the concentration of 
GSH in the intracellular environment (1–10 mM)275,276 as 
compared to that in the extracellular conditions277 and the 
major thiols present in the blood plasma are cysteine (8 μM) 
and glutathione (2 μM).278 Previous approaches are based 
on the disulfide bond between the drugs and drug 
carriers.279,280 Although this approach can be efficacious, 
modification of the reactivity of the disulfide bond is rela-
tively difficult. Another limitation is that the thiol–disulfide 
exchange can take place in the presence of cysteines located 
on the surface of the blood proteins, thus giving rise to 
a protein–carrier conjugate with different bioaccumulation 
and pharmacokinetic profiles. In a recent study, hydropho-
bic dye was used as a model for demonstrating glutathione- 
mediated hydrophobic drug release using functionalized 
gold nanoparticles. A monolayer composed of PEGlyated 
cationic ligands (TTMA) and thiolated bodipy fluorogenic 
ligands (HSBDP) was presented on the particles. The pre-
sence of cationic ligand enables the passage through the 
plasma membrane barrier. The release of BODIPY which 
was not observed when tripeptide was used instead of 
glutathione indicated that thiol linkage (present in GSH 
and absent in tripeptide) was required for the release of 
payload. When AuNPs are conjugated with the dye, 
BODIPY fluorescence does not occur because the gold 
core quenches fluorescence through energy and/or electron 
transfer mechanisms. The fluorescence is produced when 
AuNPs are triggered with glutathione in cuvette, or cellular 
thiols present in HepG2 human liver cells. The dye libera-
tion from AuNPs could be controlled by treating embryonic 
fibroblast cells from mouse with various concentrations of 
glutathione monoester.196 Figure 10B shows the schematic 
illustration of glutathione-mediated drug release from 
AuNPs.

Light-Mediated Drug Release
Studies have shown that gold nanoparticles having diverse 
shapes can exhibit very strong surface plasmon resonance 
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in the presence of light.281 Due to this reason gold nano-
particles have been used for photothermal ablation and 
have been tested on various target cells including cancer-
ous and bacterial cells.282–285 Gold nanoparticles have also 
been used for photodynamic therapy during which light 
triggers the production of oxygen at the site of target. The 
heating of gold nanoparticles using light may also be used 
for releasing therapeutic drug attached to gold nanoparti-
cles. This plasmon induced heating of gold nanoparticles 
has application in the delivery of therapeutics into the cells 
as well as into the nucleus of target cells. Drug release 
from gold nanoparticles using this property was first 
reported in 2000.286 Similarly, later in time, Sreejivungsa 
et al287 showed that AuNPs exhibiting a novel monolayer 
can be used for controlled discharge of a model drug by 
using the light. Hydrophobic parts of the drug are trapped 
in the portions of monolayers of AuNPs through non- 

covalent linkages. When the light was irradiated it resulted 
in the cleavage of dinitrobenzyl linker causing the release 
of model drug entrapped in the compartments of mono-
layer of AuNPs. The results showed that more drug was 
released upon irradiation with UV light as compared to 
when no light was irradiated. Agasti et al288 demonstrated 
light-mediated release of anticancer drug; 5-fluorouracil 
(5-FU) from gold nanoparticles. Zwitterionic ligand was 
used for enhanced solubility and controlled cellular inter-
nalization. The irradiation with light (365 nm) causes the 
cleavage of orthonitrobenzyl group releasing 5-FU from 
the conjugate. Figure 11A shows the schematic illustration 
of this study. In another study, Wang et al289 used an 
amalgamation of chemotherapy and photothermal ablation 
to treat metastatic breast cancer using DNA-wrapped 
AuNRs loaded with DOX (GNR@DOX). Spherical gold 
nanoparticles display plasmon resonance in the central 

Figure 10 (A) Schematic Illustration of pH-mediated release of Doxorubicin from Doxorubicin conjugated AuNPs. First thiol stabilized AuNPs were prepared using 
Thiolated Methoxy PEG and Methyl Thioglycate (MTG). Doxorubicin was conjugated to AuNPs through hydrazone bond. The acidic conditions (pH 5.4) in the tumor cells 
cause the breaking of hydrazone bond releasing doxorubicin. (B) Glutathione-mediated release of a drug analog (HSBDP) from AuNPs. TTMA and HSBDP functionalized 
AuNPs when treated with glutathione at 37°C cause the release of HSBDP which can be detected by the fluorescence it produces in the free form which was quenched 
when conjugated with AuNPs.
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region of visible light, yet this resonance peak can be 
shifted to wavelength range of ∼800–1,200 nm in the 
infrared region when nanoparticles having complex shapes 
like rods and shells are used. As the body tissues are more 
transparent to NIR wavelength of light, nanoparticles with 
complex shapes can be used for in vivo therapy.290,291 

Another study has also reported the synthesis of hydrogel 
poly (Nisopropylacryamide) (PNIPAM) coated gold 
nanorods. When the NIR laser was irradiated onto these 
gold nanorods it resulted in the shrinkage of the hydrogels, 
thus causing the drug release.292,293 As an extension of this 
basic principle, the surface of AuNPs was attached with 
light sensitive chemical species, spiropyran. Spiropyran 
can make complex structures in conjugation with amino 
acids which are sensitive to light. It can also reverse its 
conformational changes upon further irradiation with light. 
The complexes that spiropyran makes with amino acids in 
open form are destroyed upon irradiation with light and its 
conformation can be reversed to closed form thus causing 
the release of the amino acids.294 These conjugates have 
a potential application as a basis for efficient light- 

dependent controlled drug discharge systems for treatment 
of various conditions.

Release of Atomic Oxygen or Nitric Oxide
Atomic oxygen (1/2O2) exhibit cytotoxic properties and 
can be used for photodynamic therapy of cancer.295 

AuNPs can act as delivery vehicles for the transport of 
such therapeutics as atomic oxygen, or nitric oxide. In an 
investigation, phthalocyanines (PCs) were attached on the 
surface of thiol-protected AuNPs, also called as monolayer 
protected clusters (MPCs), for the generation of atomic 
oxygen with good quantum yield.296 The results indicated 
that as compared to the free PCs quantum yield was 
augmented by almost 50% when conjugated with MPCs. 
In addition to that, upon conjugation hydrophobic PCs 
became soluble in polar solvents such as ethanol and 
toluene. Figure 11B shows schematic illustration of this 
study for the release of singlet oxygen. On the other hand, 
nitric oxide (NO), controls numerous cellular processes 
including angiogenesis, vasodilation, as well as the 
immune response.297 Controlled release of NO can prove 

Figure 11 (A) Light-mediated drug release from AuNPs. Zwitterionic ligand integrates 5-fluorouracil (5-FU) to AuNPs through the Orthonitrobenzyl group which when 
irradiated with UV light with 365 nm wavelength undergoes photolytic cleavage of bond liberating 5-FU. (B) Release of singlet oxygen from phthalocyanines (Pc) conjugated 
AuNPs. When these conjugates were irradiated at 355 nm using a Q-switched Nd:YAG laser they generated singlet oxygen.
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to be an efficient treatment strategy for hypoxic respiratory 
failure. Polizzi et al298 reported that NO can be proficiently 
stored via covalent bonding with polyamine stabilized 
MPCs through the development of pH-sensitive 
N-diazeniumdiolate. The results showed that at a low pH 
of 3 there was an efficient liberation of NO from the nano- 
containers. As the tumor and inflammatory tissues, endo-
somes etc. have mild acidic conditions these pH-sensitive 
materials can be efficiently used for drug delivery to these 
entities.299–301

Enzyme-Mediated Drug Release
Enzymes which are biological catalysts are responsible to 
sustain life as they catalyze millions of chemical reactions 
taking place in the living organism. They are substrate spe-
cific and not only increase the speed of chemical reactions 
but also control specificity of metabolic processes.302 The 
characteristic degradation by enzyme can be employed for 
the selective and controlled release of therapeutics from gold 
nano-conjugates through enhanced permeability and reten-
tion effect (EPR).303 In a study, Hwu et al304 reported AuNPs 
and Fe3O4 nanoparticles conjugated with Paclitaxel (PTX) 
through a phosphodiester bond between thiol-terminated tet-
raethylene glycol and the C-2ʹ position of PTX. The phos-
phodiesterase enzyme present in cancer cells resulted in the 
cleavage of the phosphodiester linkage. The schematic illus-
tration of this study is presented in Figure 12. Similarly, 
another method employed for the designing of prodrugs is 
esterification and acylation. Enzymes esterases and amidases 

present in living cells can break the bonds between drugs and 
nanostructures resulting in liberation of drugs from their 
prodrugs.19 Gibson et al,247 in order to accurately measure 
the quantity of drug loading through thermogravimetric ana-
lysis efficaciously linked gold nanocrystals terminated with 
phenol to a linear derivative of paclitaxel. The mild esterifi-
cation conditions were used for this reaction and resulted in 
the high yield of PTX payload.

Advantages and Limitations in Drug 
Release Methods
The low pH value of cancer microenvironments can be used 
for effective drug release from nanocarrier by cleaving an 
acid sensitive bond between drug and nanoparticle. But with 
the evidence from new investigation which reported that 
cancer cells not only have acidic environment but also alka-
line has limited the applications of pH sensitive nano drug 
carriers.305,306 Moreover, the cleavage of pH responsive 
bond is not a rapid process making drug release time- 
consuming.307 Light-mediated drug release is relatively 
new and an auspicious strategy to regulate the liberation of 
drugs and fluorescent dyes during in vitro and in vivo analy-
sis. Even though initially this strategy has been very success-
ful, the conventional mechanism which involves the use of 
light with short wavelength, ie, UV light and visible light has 
its inherited drawbacks. These drawbacks include inadequate 
tissue penetration, undesirable absorption, or scattering of 
light and possible phototoxicity to normal cells, etc. One 
possible solution is irradiation with NIR light which has 

Figure 12 Enzyme-mediated drug release from AuNPs. Pro-paclitaxel was produced by first protecting the thiol group of tetraethylene glycol using (mono-4-methoxy) trityl 
chloride (MMTrCl) and then reacting it with paclitaxel. The thiol terminal of pro-paclitaxel incorporated it onto AuNPs. When treated with enzyme Phosphodiesterase, the 
Phosphodiester moieties were hydrolyzed causing the liberation of free paclitaxel.
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longer wavelength (700–1,000 nm) and demonstrates appro-
priate penetration of tissues and exhibits reduced phototoxi-
city in living systems. Although various NIR-sensitive 
compounds are being tested for clinical applications, several 
associated shortcomings include complex synthetic meth-
odologies, low water solubility, and the capability of imper-
fectly aggregating in targeted areas which greatly hinders 
their applications in drug delivery to deep tissues.308 

Glutathione is considered as efficient stimuli for carrying 
out successful release of drug in vivo systems, yet there are 
certain limitations associated with this approach, as 
described in section 10.2. First, the modification of reactivity 
of disulphide bond is difficult and undesirable thiol-disulfide 
exchange reactions can take place with cysteines present on 
other proteins. Moreover, their instability in-vivo systems, 
challenges in the modifications of surface of AuNPs for 
multifunctioning and less blood circulation time period of 
gold nanoparticles protected with monolayer makes them 
unsuitable for applications in drug delivery.309 In contrast, 
enzyme-responsive drug delivery structures are considered 
as a promising strategy to attain effective intracellular drug 
release,303,310 since there are a plethora of enzymes compris-
ing proteases, matrix metalloproteinases, and hyaluronidases 
located inside the lysosomes.307 Complex formulation stra-
tegies of enzymes-responsive AuNP-drug carriers and severe 
conditions inside lysosomal environment causing the drug to 
degrade and reduce its practicability are major challenges of 
enzymes mediated drug release. It is anticipated that with the 
unceasing progress in formulation of materials science and 
cancer treatment, the difficulties cited above can be success-
fully resolved by the designing “smart” drug release systems.

Conclusion
In this review article, we have discussed the approaches for 
the synthesis of gold nanoparticles, functionalization, and 
application in drug and biomolecule delivery. Due to their 
exclusive properties like tunable size and shape, ease of 
functionalization and fabrication, monodispersity, and low 
toxicity, AuNPs are considered as exceptionally suitable 
agents for drug delivery. Green synthesis of gold nanoparticle 
is rather an effortless and ecofriendly method which ousts the 
concerns associated with biomedical applications of chemi-
cally formulated gold nanoparticles. There are wide varieties 
of biological systems which have been tested for their poten-
tial to operate as reducing agents during synthesis reaction. 
Plants are contemplated to be the most dependable resource 
for this purpose. Not only do parts of plants (leaves, stems 
and roots) have reducing abilities, but also the waste 

produced by plants, such as fruit peels etc. exhibit the same 
properties. Moreover, the process is quite simple and rapid. 
There are numerous possibilities for tuning the surface of 
AuNPs using different moieties, including PEG, amino acids 
and peptides, oligonucleotides, and antibodies to facilities the 
loading of the drug and biomolecules. PEGlyation of AuNPs 
is considered as the most suitable choice of functionalization 
for in vivo delivery of therapeutic agents as it is biocompa-
tible and facilitates nano drug carriers to evade the body’s 
immune system. Limitations associated with PEGlyation 
such as loss of ability of AuNPs to bind with the target 
receptor can be addressed by decorating the surface of 
AuNPs with target specific ligands. Delivery of large biomo-
lecules using AuNPs as a delivery vehicle is an innovative 
and interesting field and has received a lot of consideration 
over the past few years, but more investigations are still 
required to design structures capable of intracellular and 
intranuclear delivery of conjugates with minimal side 
effects. Another challenge related to the application of 
AuNPs in drug delivery is effective and efficient release of 
payloads at the target site. Various stimuli (both external and 
internal) have been reported to perform this function. 
Although each of these drug release strategies has its own 
limitations, designing a novel gold nano drug delivery sys-
tem capable of flawlessly carrying and discharging payload 
at the target site is the subject of future research. 
Conclusively, gold nanoparticles offer a promising strategy, 
but in vivo delivery efficacy and clinical studies are critically 
needed.
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