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Abstract: Invasive mycoses are a major problem for immunocompromised individuals and 

patients in intensive care units. Morbidity and mortality rates of these infections are high 

because of late diagnosis and delayed treatment. Moreover, the number of available antifungal 

agents is low, and there are problems with toxicity and resistance. Alternatives for treating 

invasive fungal infections are necessary. Nanostructured systems could be excellent carriers 

for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured 

systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations 

of amphotericin B. This review encompasses different antifungal drug delivery systems, such 

as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, 

dendrimers, and others. All these delivery systems have advantages and disadvantages. Main 

advantages are the improvement in the antifungal properties, such as bioavailability, reduction 

in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a 

major disadvantage is the high cost of production. In the near future, the use of nanosystems for 

drug delivery strategies can be used for delivering peptides, including mucoadhesive systems 

for the treatment of oral and vaginal candidiasis.

Keywords: fungal diseases, antifungal agents, amphotericin B, azoles, nanoparticles, 

nanotech nology

Fungal diseases
Fungal infections are a growing public health problem, mainly related to the advances 

of modern medicine in prolonging the lifespan and the quality of life of patients under 

severe clinical conditions.1 A range of new broad-spectrum antibiotics made it pos-

sible to successfully treat infections of many microorganisms, which had previously 

been fatal. This resulted in prolonged survival of patients highly susceptible to infec-

tion. Thus, fungal infections emerge as leading causes of morbidity and mortality in 

immunocompromised and intensive care unit patients.2

In recent decades, bacteria and fungi have developed considerable resistance to 

many traditional and modern synthetic drugs.3 In this context, nanoparticles (NPs) 

can also overcome the drug resistance mechanisms, related to decreased absorption, 

increased drug efflux from microbial cells, biofilm formation, or intracellularity.4 

Finally, NPs deliver the highest dose of antimicrobial agents specifically to the site of 

infection, thus overcoming drug resistance with less adverse effects on the patient.5

Pathogenic fungi
Mycoses are among the most difficult global diseases to be controlled. Some conditions 

can be a predisposition to invasive mycoses, such as immunosuppression, neoplasia, 

and some chronic diseases. Oral candidiasis and vaginal candidiasis are the most 
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common fungal diseases.6 These superficial mycoses affect 

25%–30% of human population.4 Candida albicans is also 

involved in denture stomatitis pathogenesis, a disease very 

common in older individuals. Other fungal diseases can be 

less frequent, but much more severe, such as asthma with 

fungal sensitization, allergic bronchopulmonary aspergillo-

sis, invasive aspergillosis, chronic pulmonary aspergillosis, 

pneumocystosis, meningeal cryptococcosis, mucormycoses, 

or invasive candidiasis.7 Invasive fungal infections (IFIs) are 

less predominant, but their morbidity and mortality rates are 

high, killing about 1.5 million people per year.8 A total of ten 

genera of fungi have a high prevalence in infections, including 

Aspergillus, Candida, Cryptococcus, Blastomyces, Coccid-

ioides, Histoplasma, Paracoccidioides, Penicillium, Pneumo-

cystis, and Rhizopus. However, 90% of deaths are caused by 

Candida, Cryptococcus, Aspergillus and Pneumocystis.8 Bitar 

et al9 observed a higher incidence of candidemia (43.4%), fol-

lowed by Pneumocystis jirovecii pneumonia (26.1%), invasive 

aspergillosis (23.9%), cryptococcosis (5.2%), and mucormy-

cosis (1.5%) in IFIs through a retrospective study conducted 

in France in 2001–2010. Among fungal infections, candidi-

asis is the most common fungal infection worldwide10 and an 

important cause of morbidity and mortality in bloodstream 

and other invasive infections among hospitalized patients in 

many countries of the world.11 C. albicans is the main etiology 

of candidiasis, but other species, such as Candida glabrata, 

Candida parapsilosis, or Candida krusei, are emerging as 

causes of nosocomial infections.12–14

Cryptococcus neoformans is the third most common cause 

of infectious complications in the central nervous system in 

AIDS patients:15 1 million new cases of cryptococcal menin-

gitis occur each year causing ~600,000 deaths.16 Aspergillus 

fumigatus is the most common cause of invasive mycoses by 

filamentous fungi, with mortality rates of 40%–90%.17,18

Antifungal drugs
Antifungal resistance is an increasing threat for the effec-

tive treatment of invasive mycoses, making their therapy 

difficult, expensive, or even impossible.10 The current treat-

ment approaches for IFIs are fairly limited and include three 

main classes of drugs: polyenes (amphotericin B [AmB]), 

azoles (fluconazole, isavuconazole, itraconazole, posacon-

azole, and voriconazole), and echinocandins (anidulafungin, 

caspofungin, and mycafungin).18 To obtain good clinical 

results in the treatment, early and appropriate treatment is 

required, but the activity of current antifungal agents is not 

predictably against emerging yeasts and filamentous fungi 

and can cause undesirable side effects.19 Older antifungal 

agents, such as AmB, despite their toxicity, are very impor-

tant in the treatment of IFIs as they have a broad-spectrum 

and low resistance rates.20

Recent advances in antifungal chemotherapy with broad-

spectrum triazoles and echinocandins provide more effective 

and less toxic alternatives to conventional polyenes. Despite 

this, IFI mortality rates remain high, and there is a growing 

need for new therapeutic options.21 However, the rate of 

discovery of antifungal drugs is unlikely to be sufficient 

for the future demands, since few drugs are currently being 

discovered. In the early 1990s, two new antifungal drugs 

were approved by the US Food and Drug Administration 

(FDA), namely, fluconazole and itraconazole.22 Still in the 

1990s, lipid formulations of AmB, amphotericin B lipid com-

plex (ABLC, in 1995), amphotericin B colloidal dispersion 

(ABCD, in 1996), and liposomal AmB (L-AmB, in 1997) 

were all approved. In the 2000s, caspofungin (in 2001) and 

voriconazole (in 2002)23 were also approved. Micafungin 

was the second echinocandin antifungal agent approved 

by the FDA in 2005 and anidulafungin was the third to be 

approved in 2006.24 Posaconazole was approved in 2006 as 

oral suspension, and in 2013 and 2014 for use in tablets and 

intravenously, respectively.22 More recently, in March 2015, 

the FDA approved isavuconazole25 (Figure 1).

Given the current panorama of microbial resistance and 

lack of new drugs, NPs appear to aid in the treatment of 

various diseases, including mycoses.26 NPs can be defined as 

ultradispersed supramolecular structures with submicrometer 

Figure 1 Time course of discovery of antifungal drugs.
Abbreviations: ABLC, amphotericin B lipid complex; ABCD, amphotericin B colloidal dispersion; L-AmB, liposomal amphotericin B.
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size ranging from 10 µm to 1,000 µm. The drug may be 

dissolved, entrapped, encapsulated, or bound to a matrix of 

NPs, which acts as a reservoir for particulate systems and 

therefore plays an important role as a drug delivery system 

for clinical applications, particularly in oncology.27 Many 

studies have currently demonstrated the efficacy of anti-

fungal agents incorporated into NPs for combating fungal 

infections.6–8 The production of NPs through nanotechnology 

has revolutionized the delivery of drugs. Today, there is a 

consensus that nanotechnology represents a miniaturization 

of objects, as well as the preparation of nanomaterials with 

physical and chemical properties that drastically differ from 

those of bulk materials because they are on a nanoscale. Until 

the early 1970s, the administration of pharmaceutical suspen-

sions intravenously was considered impossible due to the 

risk of embolism. The current development of suspensions 

of NPs containing drugs (eg, nanomedicines or nanophar-

maceuticals) is the use of NPs for treating, diagnosing, and 

preventing diseases. Through these, it is possible to increase 

the therapeutic index of various drugs by improving activ-

ity, reducing toxicity, and targeting them selectively toward 

diseased tissues and cells.

A noteworthy problem in the treatment of many dis-

eases, including invasive mycoses, is the delivery of the 

drug to the target site, since the conventional drugs have 

limitations such as restricted efficacy, poor biodistribution, 

and lack of selectivity. The solution to this problem is the 

use of a drug delivery control system that can overcome 

these limitations and drawbacks. The therapy based on a 

delivery system is important to solve problems, regarding 

the balance between high drug concentrations and toxic 

effects. A major technological breakthrough in medicine 

has been the reduction in the particle size from micrometers 

to nanometers.28 Through small dimensions, NPs can target 

specific sites within the body as cells and tissues are perme-

able to them. Therefore, NPs can deliver the active drug to 

sites where conventional drugs do not reach, thus minimiz-

ing unwanted side effects. The therapeutic potential of NPs 

as carriers of drugs depends on their hydrodynamic size, 

shape, quantity, surface chemistry, route of administration, 

length of stay in circulation, and reaction with the immune 

system. Nanostructures exhibit unique physicochemical and 

biological properties, which makes them a favorable mate-

rial for biomedical applications.26,29 Nanoscale structures, 

or nanosized structures, can be used to carry drugs such as 

liposomes, synthetic and natural polymers, inorganic and 

metal NPs, dendrimers, silica, and carbon materials, as well 

as magnetic NPs (MNPs)30,31 (Figure 2).

Lipid-associated formulations
Lipid formulations involve the association of an antifungal 

drug, such as AmB or nystatin, with a lipid delivery system 

to reduce toxicity.33,34 Three different lipid formulations of 

AmB have been introduced in the clinical setting. The lipid 

composition and molecular structure of these formulations 

vary considerably with unique pharmacokinetic profiles. 

Figure 2 Nanostructured drug delivery systems modified.
Notes: (A) Liposome. (B) Solid lipid nanporticles. (C) Polymeric nanoparticles. (D) Silica; magnetic nanoparticles. (E) Carbon nanoparticles. 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3718

voltan et al

Although there is evidence of the safety of these formulations, 

the impact of their unique structure and pharmacokinetic 

differences for specific clinical efficacy is unproven.35

AmB deoxycholate (D-AmB) is a polyene macrolide 

available for clinical use since its initial FDA approval in 

1959.36 AmB is produced through a fermentation process 

by soil actinomycete Streptomyces nodosus. The AmB has 

broad spectrum of action and has been considered the gold 

standard of antifungal therapy for many years, despite being 

associated with a high incidence of adverse effects related to 

infusion and nephrotoxicity.36,37 D-AmB still has a place in 

the antifungal therapy but newer drugs (eg, AmB associated 

with lipid formulations, fluconazole and voriconazole, or 

caspofungin and micafungin) are being used as first-line treat-

ment options.38 Fluconazol represented a major advance in the 

treatment of invasive candidiasis because of its broad activity, 

excellent tolerability, and favorable pharmacokinetics. Since 

its introduction, fluconazole has been widely used for the 

treatment and prophylaxis of candidiasis, except for those 

infections caused by C. krusei, C. glabrata, or other species 

with reduced susceptibility or resistance to this drug.39

Lipid complex and colloidal dispersion
In the late 1990s, almost 40 years after the first formulation of 

D-AmB, three AmB-based lipid formulations, namely ABLC 

(Abelcet®), ABCD (Amphotec®), and L-AmB (AmBisome®) 

were developed to reduce nephrotoxicity without compromis-

ing antifungal efficacy.20,38 ABLC (Abelcet®; The Liposome 

Company, Princeton, NJ, USA) received initial approval in 

the UK in April 1995 and was the first lipid-based formula-

tion approved by the FDA in December 1995. ABCD was 

previously marketed as both Amphocil® and Amphotec® 

and was initially approved in the UK in 1994 and by the 

FDA in December 1996.27 The first lipid-based formulation 

developed was ABLC by associating AmB with a lipid–

drug delivery vehicle. ABLC consists of AmB in complex 

with two phospholipids at 1:1 drug-to-lipid molar ratio. 

Both phospholipids, l-α-dimyristoylphosphatidylcholine 

and l-α-dimyristoylphosphatidylglycerol, are present at 7:3 

molar ratio. ABLC is characterized by lipid-stabilized AmB 

aggregates, which appear as ribbon-like structures, with 

length ranging from 1.6 nm to 11.1 nm, and because of its 

size, circulating AmB serum concentrations are lower when 

compared to D-AmB.35 ABCD consists of 1:1 molar ratio of 

AmB and cholesterol sulfate, a highly organized structure 

formed by a natural metabolite of cholesterol. A nonco-

valent complex of AmB and cholesteryl sulfate forms a 

tetramer consisting of a hydrophilic and a hydrophobic part. 

These add-in spiral arms form a disk-like structure with a 

diameter of ~122 nm and thickness of 4 nm.40 Although 

ABCD reduces the availability of AmB in the kidneys reduc-

ing the nephrotoxicity, this drug concentration increases in 

the endothelial reticulum system,41,42 as well as the ABLC 

formulation.35 Both ABCD and ABLC are quickly endocyted 

by the endothelial reticulum system and distributed into the 

tissue.43 ABLC formulations demonstrated efficacy against 

fungi such as Fusarium solani,44 Candida dubliniensis,45 

A. fumigatus,46 Aspergillus quadrilineatus,47 C. neoformans,48 

and Rhizopus oryzae.49 Table 1 lists the activity of ABCL 

and ABCD formulations against different fungi.

ABCD exhibits dose-limiting, infusion-related toxicities;35 

consequently, the dosages administered should not exceed 

3–4 mg/kg/d. ABCD formulation was not effective in the 

treatment of paracoccidioidomycosis with a dosage of 

3 mg/kg/d, the failure of which can possibly be due to dos-

age, duration, or poor effectiveness of this lipid preparation,50 

although Hanson and Stevens51 reported in vitro activity 

against Paracoccidiodes brasiliensis. This formulation is not 

suitable as a prophylactic antifungal agent for neutropenic 

patients due to adverse effects related to infusion.52 ABCD 

was found at high concentrations in the lungs after treatment, 

which does not happen with L-AmB, thus being a pos-

sible alternative for lung infections.53 The prophylactic use 

against pulmonary mycoses by AmB nebulization has been 

reported.54,55 Other drugs, such as itraconazole, in colloidal 

dispersion could also be suitable for nebulization.56

Liposomes
Liposomes are other type of lipid formulations, consisting of 

unilamellar or multilamellar layers on the membrane of lipids 

such as phospholipids, surrounded by aqueous compartment.60,61 

The liposomes can carry hydrophilic drugs in the aqueous core 

and increase penetration through the lipophilic membranes, 

as well as lipophilic drugs, which are inserted into the lipid 

bilayer, increasing their solubility in aqueous body fluids.68 

Liposomes provide a better protection than other lipid formu-

lations against external degradation by enzymes. In addition, 

they are biocompatible and biodegradable.62,63

Conventional liposomes have some limitations, such as 

little instability and difficult to be stored for long periods and 

rapid uptake by the RES, thereby decreasing their half-life 

in circulation.69 To solve these problems, extensive research 

has been developed to modify the surface of liposomes, to 

optimize their size, and to understanding their mechanisms 

of action. New generation liposomes are characterized by 

high mechanical stability, ability to induce or to inhibit the 
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immune system, longer bypass, high loading efficiency, ease 

of interaction with the cell membrane, and increased target 

specificity. The milestone in the development of the new 

generation of liposomes is to control drug release.68

Indeed, the progress in pharmacology has introduced 

a number of potent therapeutic agents requiring drug car-

riers that are selective and bioresponsive. Advances in the 

technology of liposomes as drug delivery systems include 

long-circulating liposomes, for example, liposomes prepared 

with hydrophilic polymers on their surface (eg, polyethylene 

glycol), reduce both uptake by reticuloendothelial system 

and toxicity of the encapsulated drug.64,70 This camouflage 

allows liposomes to exhibit the abovementioned functions. 

However, there is the disadvantage of an inhibited cellular 

absorption, limiting their uptake by macrophages and tumor 

cells. Hatakeyama et al71 developed cleavable polyethylene 

glycol (PEG)-lipids to solve the problem of cellular uptake 

inhibition, since PEG systems are separated in response to 

the target tissue microenvironment. The target specificity 

is achieved by anchoring targeting ligands that bind to the 

desired receptors.72 The number of plates or cross-linking 

lipids controls the rate of drug release from liposomes.73 

Approximately 50 years after the discovery of liposomes, 

the FDA approved 13 liposome-based products for human 

Table 1 effect of AmB formulations ABLC and ABCD with different fungal species

Disease/microorganism Treatment 
systems

Delivery 
properties

Pharmacokinetic Category References

Different fungal species, including 
Paracoccidioides brasiliensis

AmB ABCD Not reported In vitro 51

Fungal sinusitis AmB ABCD Initial dose of 0.5 mg/kg/10 d Case study 47
Aspergillus quadrilineatus Increased gradually by 0.5 mg/kg 

every 3 days until a maximal 
dose of 2.5 mg/kg

Disseminated cryptococcosis AmB ABCD versus 
D-AmB

0.8 mg/kg Murine 57

Mucormycosis AmB ABCD Not reported Case study 58
Liver transplant recipient AmB ABCD + ITZ Not reported Case study 59
Phaeohyphomycosis ITZ ABCD + ITZ Not reported Case study 59
Bone marrow transplant patients with  
invasive fungal infections

AmB ABCD 7.5 mg/kg Human 60

Lung transplant recipient with Fusarium  
solani infection

AmB ABLC 5 mg/kg/d Case study 44

Immunocompromised patients with candidemia AmB ABCD 3.9 mg/kg Human 61
Meningitis by Cryptococcus neoformans AmB 

Flucytosine 
Fluconazole

ABCD 5.0–7.5 mg/kg combined with 
flucytosine at 20–60 mg/kg/d and 
fluconazole at 30–40 mg/kg/d

Murine 48

Rhinocerebral mucormycosis AmB ABCD 5 mg/kg/d
4 mg/kg/d
6 mg/kg/d

Case study 62

Mucormycosis AmB ABLC 5 mg/kg/d Case study 63
Candida dubliniensis AmB ABLC

ABCD
L-AmB

Not reported
Not reported
Not reported

In vitro
In vitro
In vitro

45
45
45

Mucormycosis AmB ABCD 4.8 mg/kg Human 60
Invasive aspergillosis AmB ABCD 6 mg/kg/d Human 64
Aspergillus fumigatus AmB ABLC 5 mg/kg once daily ×4 days Rats 46
Lung transplant recipients with invasive 
aspergillosis

AmB ABLC Not reported Prophylactic use 54

Coccidioidal meningitis by Coccidioides immitis AmB ABLC versus 
D-AmB

D-AmB 1 mg/kg
ABLC 7.5 mg/kg or 15 mg/kg

Rabbit 65

Cholestatic liver disease and fungal infection AmB ABCD 4 mg/kg Case study 66
Acute myeloblastic leukemia and Rhizopus 
oryzae infection

AmB ABCD 1×400 mg/d Case study 49

Liver transplant recipients with invasive fungal 
infections

AmB ABCD Not reported Prophylactic use 67

Abbreviations: AmB, amphotericin B; ABLC, amphotericin B lipid complex; ABCD, amphotericin B colloidal dispersion; D-AmB, AmB deoxycholate; ITZ, itraconazole; 
L-AmB, liposomal AmB.
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use, which includes one formulation containing AmB for the 

treatment of fungal infections.68

L-AmB presents significantly lower toxicity compared 

to other AmB formulations, and it is effective in the treat-

ment of severe invasive mycoses, including mucormycosis,74 

fusariosis,75 cryptococcal meningitis,76,77 coccidioidal 

meningitis,78,79 blastomycosis,80 and pulmonary aspergillosis.81,82 

However, in 2013, Ariano et al83 reported that L-AmB may not 

be adequate to control lung infections by Blastomyces derma-

titidis. Al Nakeeb et al82 found that lipid formulations of AmB 

can induce dose-dependent reduction in lung injury markers and 

circulating fungal biomarkers. The recommended therapeutic 

dosages are 3–6 mg/kg/d.35 A clinical dose of L-AmB 3 mg/

kg/d may cause complete suppression of both galactomannan 

and levels of 1,3-β-d-glucan in most patients with invasive 

aspergillosis.82

The literature reports some problems associated with 

administration of L-AmB, such as hepatotoxicity,84 pro-

gressive leukoencephalopathy,85,86 and also development 

of lysosomal storage disease.87 Treatment failures have 

also been reported.88,89 The prophylactic use of L-AmB in 

immunocompromised patients is still a challenge. Mihara 

et al90 report that prophylaxis with aerosolized L-AmB was 

not effective in animal model. Therefore, prospective studies 

are needed to compare this formulation with triazoles. In 

addition to AmB, other antifungal agents are carried by lipo-

somal delivery systems, such as nystatin.33,34 L-AmB could 

be useful for the treatment of cryptococcosis,91 including 

species of Aspergillus,92 C. dubliniensis.45

L-AmB also has activity against fungal biofilms. 

Schinabeck et al94 were the first to describe Candida biofilm 

infection of catheters in animal models treated with L-AmB to 

block the infection. In addition, L-AmB was effective to eradi-

cate Candida biofilm in a continuous catheter flow model,95 and 

Ramage et al96 showed that L-AmB kills C. albicans biofilms 

rapidly and effectively in a dose-dependent manner.

The need to improve treatment outcomes for IFI increased 

interest in exploring an alternative antifungal strategy. The 

administration of AmB in aerosol, which has been widely used, 

to provide the drug directly to the site of infection or fungal 

colonization, has the potential to maximize their spectrum of 

activity while minimizing systemic toxicity that is associated 

with parenteral administration. Aerosol AmB is used (usually 

as a prophylactic strategy) in high-risk patients.97 The literature 

reports few studies regarding delivery systems based on aero-

sol for fungal infections, including AmB to prevent pulmonary 

aspergillosis,98 C. neoformans,89 and C. albicans.99

Table 2 shows the studies with L-AmB and L-AmB 

formulations associated with other conventional antifungal 

drugs for the treatment of IFIs in immunocompromised 

patients, including studies on in vitro activity of L-AmB 

against different fungi.

In addition to the liposomal preparation of AmB, there are 

AmB-polyaggregates with similar efficacy to that of D-AmB 

and L-AmB in the treatment of a murine-disseminated infection 

by C. glabrata.120 Souza et al129 tested an alternative delivery 

system to D-AmB, the NANO-D-AmB that has antifungal 

efficacy against P. brasiliensis with lower levels of cytotoxic-

ity compared to that of D-AmB formulation both in vivo and 

in vitro, thus confirming a better delivery of AmB.

NPs based on solid lipid nanoparticles 
and nanostructured lipid carriers
Solid lipid nanoparticles (SLNs) emerged as a new class of 

colloidal drug carriers at the beginning of the 1990s, and their 

application has been widely exploited as drug delivery in the 

area of pharmaceutics, clinical medicine, and therapy. Poly-

meric NPs (PNPs) have the advantage of promoting chemical 

modifications, but there are some limitations such as polymer 

degradation, high cost, and difficult approval by regulatory 

authorities.130 Thus, the attention of several research groups 

has been focused on an alternative to PNPs, that is, the 

SLNs.131 SLNs provide physical stability as incorporated 

drugs do not suffer degradation, have controlled release, and 

excellent tolerability. Therefore, they can be used by differ-

ent routes of administration, such as parenteral,132 peroral,133 

dermal,134 ocular,135 pulmonary,136 and rectal.137

SLNs are a generation of drugs where the liquid lipid 

(oil) has been replaced by a solid lipid, mainly composed of 

a dispersed lipid in physiological water or aqueous surfactant 

solution (Figure 3). Replacement of liquid lipid by solid lipid 

represents a milestone for drug controlled release because the 

mobility of the drug within the solid lipid is usually lower 

than within the liquid oil, which makes this system perfor-

mance attractive for pharmaceutical products.131

The most advanced forms of SLNs are nanostructured 

lipid carriers (NLCs), lipid–drug conjugates, and polymer 

lipid hybrid nanoparticles (PLNs). Therefore, NLCs, intro-

duced at the millennium’s turn, are made of a solid lipid 

matrix that traps the liquid lipid in their nanocompartments,138 

which decreases some of the problems associated with SLNs, 

such as limited drug-loading capacity, expulsion of the drug 

during storage, suitability of drug release, and physical stabil-

ity of long-term suspension.131 Lipid–drug conjugates were 

developed to increase the drug-loading capacity, whereas 

PLNs are hybrids of liposome and PNPs developed to 

carry poorly water-soluble drugs with high encapsulation 

efficiency and loading capacity and to control the release 
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as a low encapsulation efficiency and a poor expulsion of 

the stored drug.141–143 Table 3 shows some studies on SLN 

transport systems in antifungal therapy for the therapy of 

fungal infections. However, scientific evidence on infection 

treated with the SLN system is scarce.

NLCs are produced by a lipid mixture of liquid and solid 

phases with increased content of NPs.27 Mathpal et al144 

have recently conducted a study using a spraying technique 

for pulmonary delivery of AmB-NCL and concluded that 

through this technique the drugs are better distributed 

throughout the lung tissue. Several antifungal agents were 

also tested in different SLN and NLC delivery systems, 

such as itraconazole-loaded SLNs,130,145 itraconazole-loaded 

NLC,146,147 miconazole nitrate-loaded NLC,148 econazole 

nitrate-loaded NLC,149 and voriconazole150 (Table 3). PNPs 

and nanosuspensions would present clear advantages over 

Table 2 Liposomes in fungal diseases

Disease/microorganisms Treatment Category References

Systemic candidiasis L-AmB Mouse 100
Hematologic malignancies L-AmB Human 93,101
Hematologic malignancies and invasive sino-nasal aspergillosis L-AmB Human 102
Candida albicans L-AmB In vitro 88
Inhibition of HIv replication L-AmB Human 103
Heart transplant and transplant pulmonary L-AmB Human 104
Aspergillosis liver transplant L-AmB Human 105,106
Lymphoblastic leukemia and fusariosis L-AmB Human 107
Rhinocerebral and rhino-orbital mucormycosis L-AmB Human 108–110

L-AmB + micafungin
Cryptococcus neoformans Aerosolized L-AmB Mouse 89
Transplant recipients L-AmB (AmBisome) Human 105
Liver transplant and Rhizopus sinusitis L-AmB Human 111
Blastomycosis L-AmB Murine 80
AIDS and cryptococcosis L-AmB Human 112
C. albicans Aerosolized L-AmB Mouse 98
Cardiac mycetomas L-AmB + fluconazole Human 113
Invasive candidiasis L-AmB + caspofungin Murine 114
Catheter antifungal lock L-AmB Human 115
exophiala dermatitidis L-AmB Murine 116
Fusarium verticillioides L-AmB + terbinafine Murine 117
C. albicans biofilm L-AmB Rabbit 93
C. albicans biofilm In vitro 94
C. albicans and bloodstream isolates biofilms Human 95
Intraventricular cryptococcoma L-AmB + voriconazole Case study 118
Kidney transplant L-AmB Case study 119
esophageal histoplasmosis Itraconazole
Cerebral aspergillosis by Aspergillus fumigatus L-AmB Case study 120
Invasive pulmonary aspergillosis Nebulized L-AmB Prophylaxis 92
Kidney transplant and mucormycosis (Rhizopus microsporus) L-AmB + posaconazole Case study 121
Leukemia and pulmonary mucormycoses L-AmB 122
Hematologic malignancies and IFIs L-AmB Prophylaxis 123
Liver transplant and IFIs L-AmB Prophylaxis 106
vertebral infection by C. albicans L-AmB + flucytosine Case study 124
Disseminated aspergillosis L-AmB + erythropoietin Mouse model 125
Invasive aspergillosis by A. fumigatus L-AmB Rabbit 82
Pulmonary aspergillosis Nebulized L-AmB Human 126–128

Abbreviations: C. albicans, Candida albicans; L-AmB, liposomal amphotericin B; A. fumigatus, Aspergillus fumigates; IFI, invasive fungal infection.

Figure 3 Nanoparticles based on solid lipid nanoparticles (SLNs) and nanostructured 
lipid carriers (NLCs).

of drugs. Moreover, PLNs show excellent serum stability and 

a wide spectrum of different target cells.139,140 The presence 

of a solid lipid matrix can cause problems in the production 

of SLNs, since this matrix system is subject to crystalliza-

tion during its formation, resulting in some drawbacks such 
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lipid formulations, since they have a longer shelf life at room 

temperature and low production costs.151

Polymeric NPs
PNPs are polymeric colloidal systems, which have a dia-

meter ,1 µm, in which the drug can be dissolved, coated, 

encapsulated, or dispersed.29,159 Polymer degradation, high 

cost, and difficult approval by regulatory authorities are some 

of the disadvantages.131 PNPs are stable in the gastrointes-

tinal environment and protect encapsulated drugs against 

gastrointestinal pH, degradation enzymes, and efflux pumps, 

maintaining the stability of the drugs in this unfavorable 

environment.160 The use of polymers to form PNPs provides 

flexibility due to their physicochemical properties (eg, size, 

surface charge, and hydrophobicity), allowing a controlled 

drug release. In addition, it is possible to modulate the surface 

properties or use different polymer conjugates on the sur-

face of PNPs.161 The possibility to add antibodies, peptides, 

or small molecules to the polymer surface allows tissue-

specific interactions with cell receptors or components.162 

Moreover, PNPs enable the encapsulation of a broad range 

of therapeutic drugs and molecules, such as DNA and small 

interfering RNA.160

PNPs are classified into two categories: nanospheres and 

nanocapsules. Nanocapsules are vesicular systems in which 

the drug is inside an aqueous or oily cavity surrounded by 

a polymeric membrane, whereas nanospheres are matrix 

systems in which the drug is physically and uniformly dis-

persed in the matrix.163 These delivery systems have been 

developed primarily for parenteral, oral, or ocular adminis-

tration. There are several polymers for preparing PNPs, such 

as poly-ε-caprolactone,164 polyacrylamide,165 polyacrylate,166 

DNA,167 chitosan,167–169 and gelatin.170 After a polymerization 

reaction, drugs may be immobilized on the surface of the 

PNPs171 or encapsulated in their structure during the poly-

merization processing.172 The release of the drug may occur by 

desorption, diffusion, or erosion of PNPs in the target tissue.29 

However, during the storage time, aggregation of NPs can 

occur and form precipitates. Other chemical stability prob-

lems regarding the polymer or other raw materials have been 

described, which obstruct their industrial applicability.173

Inorganic NPs, including gold, iron oxide, silver, or silica, 

among others, are investigated in preclinical and clinical 

studies for the treatment, diagnosis, and detection of many 

diseases. Moreover, many inorganic compounds serving as 

the material for making NPs have been widely used in clinical 

practice for several therapeutic applications.174 One example 

of therapeutic compounds that act as antibacterial agents is 

silver ions.175–177 Inorganic NPs offer diagnostic and therapeu-

tic opportunity that other PNPs or not, cannot offer.174

PNPs have some problems arising from residues of 

organic solvents used in the production process, such as 

Table 3 Antifungal drugs-loaded nanoparticles based on solid lipids (SLNs) and nanostructured lipid carriers (NLCs)

Disease/microorganism Treatment Delivery systems Size Category References

Candidiasis Miconazole nitrate (MN) MN/SLN 206.39±9.37 nma Rats 152
Cutaneous candidiasis Fluconazole (FLZ) SLN/FLZ

NLC/FLZ
178 nm
134 nm

Rats
Rats

153
153

Fungal vaginal Clotrimazole (CTZ) CTZ-NLC-gel NA In vitro 154
C. albicans Miconazole encapsulation of miconazole in 

the NLC
200 nm In vitro 155

Cutaneous candidiasis FLZ-loaded SLN FLZ/SLN 178.9±3.8 nma In vitro/in vivo 156
C. albicans SLNs of terbinafine 

hydrochloride (TH)
SLNs were incorporated into 
Carbopol gel

300 nm In vivo 157

vaginal infection – 
C. albicans

Ketoconazole (KTZ) and CTZ SLNs based on polyoxyethylene-
40 stearate (PeG-40 stearate) for 
the administration of such as KTZ 
and CTZ antifungal agents

NA In vitro 158

Aspergillus flavus Itraconazole into solid lipid 
nanoparticles (SLNs) for 
topical ocular delivery

ITZ/SLNs stearic acid and palmitic 
acid

139–199 nm 
(stearic acid)
126–160 nm 
(palmitic acid)

In vitro 145

Pulmonary aspergillosis Lipidic nanoparticles of 
amphotericin B were prepared 
by spray drying technique 
using hydroxypropylmethyl-
cellulose (HPMC)

AmB/NLC spray drying 600–700 nm In vivo 144

Note: aData shown as mean ± standard deviation.
Abbreviations: AmB, amphotericin B; C. albicans, Candida albicans; NA, not available.
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cytotoxicity of the polymer and complex production for 

industrial application. In many production processes, the 

concentration of NPs is low not exceeding 2%,178 which com-

promises their use. Thus, the development of solid dosage 

forms of NPs is a point of interest in research. Examples of 

antifungal agents and metal particles associated with PNPs 

used as drug delivery systems are shown in Table 4.

Dendrimers
Dendrimers present synthetic polymeric architectures with 

low polydispersion and controlled surface features. Dendrim-

ers have three main architectural components, namely, core, 

dendrons, and surface-active groups.196,197 There are some 

ways to connect biologically active compounds to dendrim-

ers: the drug can be encapsulated in the internal structure of 

the dendrimers198 or chemically linked or physically adsorbed 

Table 4 Polymeric and other nanoparticles with antifungal activity

Disease/
microorganism

Treatment Delivery systems/methods/size Category References

C. albicans AmB, 5-fluorocytosine 
or rapamycin

encapsulated in 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
methoxy poly(ethylene glycol) (PeG-DSPe) micelles

In vitro 179

C. albicans AmB Poly(2-ethyl-2-oxazoline)-block-poly(aspartic acid) (PeOz-b-PAsp)/
micelles

In vitro 180

Paracoccidioides Peptide Poly(lactic acid-glycolic acid) (PLGA) In vitro 181
Cryptococcal meningitis P10 (PLGA) 

nanoparticles
Amphotericin B (AmB)-polybutylcyanoacrylate nanoparticles 
(AmB-PBCA-NPs) modified with polysorbate 80: 69.0±28.6 nm

Mice 182

A. flavus ITZ and coumarin ITZ and coumarin-6 loaded polylactic-co-glycolic acid-nanoparticles 
(PLGA-ITZ) and PLGA-C6-NPs): 232 nm, 630 nm and 1,060 nm

In vitro 183

P. brasiliensis ITZ PLGA-dimercaptosuccinic acid (DMSA) nanoparticles: 174±86 nm In vitro 184

A. niger and Fusarium 
oxysporum

Not applicable Surface-modified sulfur nanoparticles (SNPs)/polyethylene glycol-400 
(PeG-400)

In vitro 185

C. albicans AmB Poly(epsilon-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl 
methacrylate) (PDMAeMA), or methoxy polyethylene glycol (PeG)

In vitro 186

C. albicans biofilm Not applicable Silicone catheter, polyvinyl chloride (PvC), and glass coated with 
titanium dioxide (TiO2) nanoparticles: 70–100 nm

In vitro 187

C. neoformans – 
meningoencephalitis

AmB Angiopep-PeG-Pe/AmB polymeric micelles Murine 188

C. albicans, A. fumigatus, 
and Trichophyton rubrum

AmB Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) 
and nanosuspensions

Mouse 189

Corneal fungal infections 
(Flu-CNGs)

FLZ FLZ-loaded chitin nanogels In vitro 190

A. flavus and Aspergillus 
terreus

Silver nanoparticles Silver nanoparticle-encapsulated functionalized chitosan was prepared 
by the phase transfer method

In vitro 191

C. albicans and C. glabrata CTZ CTZ-loaded cationic nanocapsules using eudragit® RS100: 144 nm In vitro 192
C. albicans CTZ CLZ-loaded nanovesicular carriers (ocular nanovesicular carrier) In vitro 193
C. albicans and C. glabrata 
biofilm

Silver nanoparticles Not applicable In vitro 176

C. albicans and C. glabrata CTZ Coconut oil-core nanocapsules prepared from eudragit® RS100: 
200 nm

In vitro 194

C. albicans Not applicable Polyethyleneimine (PeI) and PeI-based nanoparticles (nano-PeI) In vitro 195
C. albicans biofilm Silver nanoparticles Not applicable In vitro 177

Abbreviations: C. albicans, Candida albicans; AmB, amphotericin B; ITZ, Itraconazole; A. flavus, Aspergillus flavus; P. brasiliensis, Paracoccidiodes brasiliensis; A. niger, Aspergillus 
niger; C. neoformans, Cryptococcus neoformans; CTZ, Clotrimazole; C. glabrata, Candida glabrata.

onto the surface of them.199 The choice of the immobilization 

method will depend on the characteristics of the drug.

Several families of dendrimers have been widely studied 

regarding their use in biomedical sciences. Most well-known 

dendrimers include polyamidoamines, polypropyleneimines, 

poly-l-lysines, carbosilanes, and phosphorous dendrimers. 

Their properties are often not satisfactory because of the high 

cytotoxicity of the nanomolecules and their low solubility and 

biocompatibility. Thus, dendrimers are often subjected to vari-

ous modifications in order to improve their features: dendrimer 

conjugate with PEG,200 carbohydrates,201 or acetyl groups202 to 

reduce the cytotoxicity. The compounds bound to dendrimers 

can improve the surface activity as well as their biological and 

physical properties. Several specific ligands can be adsorbed, 

including folic acid,203 antibodies,204 target cyclic peptides 

containing arginine-glycine-aspartic acid,205 and PEG.206
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Studies involving nanotechnology and medically impor-

tant fungi have demonstrated improvements in the antifun-

gal properties, such as bioavailability, toxicity, and target 

tissue, for some drugs, such as AmB, which can facilitate 

innovative therapeutic approaches. Nanotechnology offers 

the possibility of multifunctional systems to meet the many 

different biological and therapeutic requirements.85 The 

ultimate therapeutic goal will be to select a drug that can 

effectively cure the disease without causing side effects.217 

In the near future, the use of nanosystems for drug delivery 

can be attractive strategies for delivering peptides, nuclear 

acids, or drugs.218 In addition, mucoadhesive systems can pro-

mote a more specific targeting and retention of the delivery 

system in humans, such as mucosal surfaces, gastrointestinal 

tract, lung, genitourinary tract, nasal, and ocular systems. 

In combination with excellent technological platforms, 

nanotechnological strategies can increase the bioavailability 

of antifungal drugs.188
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