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Abstract: Structural selectivity – in fact, the lack thereof – has been invoked as an explana-

tion for the failure of matrix metalloproteinase (MMP) inhibitors as oncology drugs. However, 

functional selectivity is needed to develop a good drug. In addition, many drugs (including 

in oncology) act by interfering with signaling functions. The present market of successful 

biologicals contains many monoclonal antibodies, such as signaling inhibitors, with antitumor 

necrosis factor (anti-TNF) being the flagship of an armada. However, aside from its many 

pathogenic functions, TNF also plays physiological (ie, beneficial) roles. As long as the inhibi-

tion of detrimental functions supersedes the negative side effects, anti-TNF will be used. For 

such reasons, it is critical to know all the functions of MMPs, ideally before inhibitors are used 

as drugs. Here, we briefly summarize the known catalytic MMP functions and focus on the 

noncatalytic roles of these proteins, with an emphasis on their signaling effects. Indeed, recent 

studies have addressed the biology of multimolecular signaling complexes containing MMPs 

and the tissue inhibitors of metalloproteinases. These complexes are observed in solution 

(eg, as heteromers or homomultimers) and at the cell surfaces (eg, as docking complexes and 

signaling receptors). Consequently, a good understanding of the broader contexts – from the 

molecular, to the cellular and tissue levels – in which such molecular complexes operate will 

provide essential insights into direct new drug developments. This is exemplified with clinical 

and recent preclinical successes.

Keywords: MMPs, signaling pathways, PEX domain, noncatalytic function

Introduction
The success of a molecule often depends on its name and, even with an attractive name, 

one can be wrong in terms of its applications. A few decades ago, two similar molecules 

with related receptor molecules, converging signal transduction cascades, and matching 

biological effects were identified and named tumor necrosis factor (TNF) and lympho-

toxin (LT). “TNF” alluded to the beneficial effect of destroying cancer cells,1 whereas 

“LT” emphasized toxicity.2 Meanwhile, TNF has been cited about 150,000 times in the 

PubMed data library, whereas LT is creeping toward 4,000 citations. In addition, these 

names yielded the wrong perceptions. Indeed, it was the inhibition of TNF, in the 

form of neutralizing monoclonal antibodies and resulting in immunosuppression or 

toxicity toward autoantigen-specific T-lymphocytes, that entered clinical practice.3 

Similar simple reasoning can be made for matrix metalloproteinases (MMPs). The 

medical literature contains an increasing number of manuscripts illustrating that the 

launched concepts and clinical uses of MMP inhibitors against cancer cell invasion 

and metastasis were too simple and, in fact, wrong.4–7
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Although some activities of MMPs were reflected by 

their functional names, such as collagenases, stromelysins, 

gelatinases, and membrane-type (MT)-MMPs (Figure 1), we 

should humbly accept that their most recent nomenclature is 

not appealing, sometimes confusing for novices (where are 

MMP-4, MMP-5, and MMP-6?), and certainly not reflecting 

their noncatalytic functions. The main biochemical (domain 

structure, mechanism of substrate proteolysis, and regulation 

of catalysis at the protein level) and biological characteris-

tics of human MMPs as enzymes have been the subject of 

excellent reviews on cancer8–10 and on inflammatory and 

vascular diseases.11–14 Catalytic functions are also illustrated 

by manuscripts on the processing of substrates by specific 

enzymes.15–17 In addition, useful reviews about membrane-

bound and intracellular MMP substrates exist.18,19

Recent developments of enzyme-based degradomics – ie, 

the definition of all substrates of one specific enzyme20,21 – and 

substrate-based reverse degradomics, in which all proteases act-

ing on a single substrate are defined,22 illustrate renewed interests 
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Figure 1 Schematic drawing depicting the domain structure of MMPs.
Notes: The signal peptide guides the MMP through the rough endoplasmic reticulum during synthesis and is cleaved off during secretion by the docking enzyme; the SH 
propeptide domain maintains the enzyme inactive by blocking the catalytic site, and it is removed or unfolded for MMP activation; the catalytic domain contains the active site 
of the enzyme and the Zn2+-binding segment. This basic structure is contained in MMP-7 and MMP-26 (matrilysins). MMP-2 and MMP-9 contain three fibronectin-like type 
II repeats between the active site and the Zn2+-binding segment, and these are responsible for the gelatin-binding property. MMP-9 contains an additional O-glycosylated 
region, which confers flexibility to the molecule. Except for MMP-7 and MMP-26, all other MMPs contain a carboxy-terminal hemopexin domain, which confers specificity and 
interacts with many ligands and receptors. The hemopexin and catalytic domains are connected by a small hinge region. MT-MMPs have an additional transmembrane domain 
and a short cytoplasmic tail or a GPI linkage, which anchor MT-MMPs to the cell membrane.
Abbreviations: MMP, matrix metalloproteinase; SH, sulfhydryl-containing; GPI, glycosylphosphatidylinositol; MT, membrane-type.

in proteolysis and its complexities. These approaches led to a 

conceptual change: from proteases acting in linear cascades (eg, 

clotting, fibrinolysis, and complement cascades)23 to the protease 

network, which was first elaborated in detail for all known 

interactions between serine proteases and MMPs in 200224 and 

further developed into the protease net17,21,25 or protease web.7 

The network concept makes us better understand why the entire 

system is complex. However, such concepts are currently also 

used to develop signaling inhibitors by the definition of the 

most critical nodes and connections in signaling networks. 

Consequently, real hope exists that, by (reverse) degradomics 

analysis and by deciphering the MMP network nodes, inhibitors 

of specific key proteases may become useful drugs.

Here, however, the emphasis will be on the noncatalytic 

functions of mammalian MMPs. These functions are based on 

and include covalent and noncovalent interactions with het-

eromers and homomultimers, which bind onto cell surfaces 

and soluble molecular complexes, as well as interactions with 

cognate receptors with ensuing signaling events. Finally, we 
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briefly address how “cascadic signaling” in life-threatening 

conditions involves MMPs and how such knowledge may 

give new turns towards the use of existing MMP inhibitors, 

developed against cancer, to become life-saving drugs for 

lethal inflammatory conditions, such as sepsis, endotoxine-

mia and superantigen-induced shock syndromes.

Structural features  
of MMPs – a brief overview
The primary structure of MMPs has been addressed in 

previous reviews.12,14,18,26 However, it is the tridimensional 

structure of glycoproteins that determines their functions. 

Although the crystal structures of some MMPs are known 

and were compiled long ago in a seminal review that also 

addressed molecular evolution,27 the determination of the 

secondary and tertiary structures of a number of MMPs 

remains a challenge in structural biology. For example, the 

full-size structures of MMP-9, as the most studied proteinase 

in the MMP family,28 and of all MT-MMPs, are not known. 

Therefore, theoretical models are presently used as a surrogate 

with the aim of understanding the interactions with substrates, 

inhibitors,27 receptors,29–31 proteoglycans,32 and other MMP 

ligands.33 As an example, full-size MMP-9 occurs in multiple 

forms: monomers; homomultimers; and  heteromers.28 These 

molecular forms are endowed with different functions, as we 

recently demonstrated for the monomeric and trimeric form 

of MMP-9.34 In addition, when produced by specific cells, 

MMP-9 forms a covalent heteromer with neutrophil gelatinase 

B-associated lipocalin. This soluble form of MMP-9 links the 

functionalities of MMP-9 with those of the lipocalin.28

All MMPs are composed of several structural domains 

with distinct functions and are synthesized as catalytically 

inactive proforms (Figure 1). The simplest structure is repre-

sented by matrilysins (MMP-7, MMP-26), which contain the 

signal peptide and propeptide, as well as the catalytic domain. 

The rest of the MMPs contain a carboxy-terminal hemopexin 

domain (also known as PEX), which is bound to the catalytic 

part of the molecule by the so-called hinge region. Because 

of the focus of this review, we will dedicate a separate sec-

tion to the hemopexin domain. MMP-2 and MMP-9 contain 

an additional region consisting of fibronectin-like repeats, 

responsible for the gelatin-binding activity of these MMPs. 

MMP-9 also contains a unique O-glycosylated domain,31 

which confers flexibility to the molecule and appears to 

be indispensable for MMP-9 functions.28 The MT-MMPs 

contain either a glycosylphosphatidylinositol membrane 

anchor or a transmembrane and cytoplasmic domain 

(Figure 1). Both types of anchors serve to localize MT-MMPs 

to cell surfaces. The catalytic and carboxy-terminal domains 

(hemopexin and cytoplasmic) are therefore separate entities 

in the MMP molecule and, as we will define, they perform 

different and crucial functions in MMPs.

Targeting the catalytic domain  
of MMPs: from twice thinking small 
to integration and considering big
Originally, the catalytic function of proteases, such as plasmi-

nogen activators and MMPs, in cancer cell invasion and metas-

tasis was viewed as the sole property of these  glycoproteins. 

Hence, their inhibition was regarded as  possible, preferably 

with orally active small drugs. This simple reasoning boosted 

enormous research on these proteases and generated excel-

lent inhibitors. The integration of basic, preclinical, and 

clinical studies, however, showed that this view was narrow-

sighted and that the developed drugs, by their small sizes, 

interacted with many proteases and hence possessed poor 

selectivity and yielded side effects during their use as cancer 

therapeutics.4–8,10–14 We and others tried to counter these nega-

tive results with a more optimistic and positive view because 

these small drugs may become excellent candidates for the 

treatment of life-threatening acute inflammation, in which side 

effects may be of secondary importance.12–14

The problem of low selectivity was considered, and large 

molecules – namely, inhibitory monoclonal antibodies – were 

also developed into inhibitors of MMP catalysis.35,36 It was 

demonstrated long ago that with such large-sized inhibi-

tors, it is possible to reach high selectivity. For instance, the 

monoclonal antibody REGA-3G12 was the first reagent 

with selective inhibition of activated MMP-9 (and not 

of MMP-2).36 In a subsequent study, the interaction site 

between REGA-3G12 and its antigen MMP-9 was studied 

and found to consist of part of the catalytic site and an area 

aside this.37 These findings are in line with the concept of 

exosite interactions to obtain higher selectivity, as nicely 

promoted by several studies.38–40 These studies are examples 

of the integration of structural data and thinking beyond the 

small catalytic pocket of a proteolytic enzyme. In addition, 

the generation of activity-neutralizing monoclonal antibod-

ies against MMPs has recently been further developed and 

the obtained reagents have been preclinically used to treat 

experimentally-induced colitis in mice.40 In this case, and if 

we think big about novel treatments of (invasive) cancer, the 

successful monoclonal antibody treatment of an inflamma-

tory disease in a mouse model will hopefully pave the way 
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to new successes when such, or other, catalytic inhibitors are 

tested in cancer models.41

Noncatalytic functions of MMPs
An increasing number of studies are demonstrating that MMPs 

can also perform functions independently of their proteolytic 

activity, thus providing additional ways by which MMPs may 

contribute to pathology. Nonproteolytic functions mostly rely 

on the localization of MMPs at the cell surface which, in the 

case of MT-MMPs, is mediated by their transmembrane and 

cytoplasmic domains or by their glycosylphosphatidylinositol 

membrane anchor (Figure 1). MMPs devoid of these struc-

tures can still bind to the cell surface via specific receptors; 

among these are the integrins and CD44 (Table 1).29–31,42,43 

This receptor-binding function, which generally requires the 

MMP hemopexin domain, was thought to exclusively serve to 

activate/inhibit MMPs and to localize their catalytic activity 

to the pericellular  environment. However, numerous recent 

evidences are changing this concept and supporting the fact 

that MMPs can also induce cell signaling upon interaction 

with their cell surface receptors.

Nonproteolytic functions  
of MMP-1, MMP-2, and MMP-3
Initial studies by Conant et al44 showed that MMP-1 bind-

ing to α2β1 integrin in neural cells and monocytes elicits 

a signaling pathway sensitive to pertussis toxin and results 

in the release of MMP-9. The same effect is observed 

when proMMP-1 is used or by inhibiting MMP-1 with 

GM-6001, indicating that the enzymatic activity of MMP-1 

is not required. Additionally, the proMMP-1/α2β1 integrin 

interaction also induces Akt dephosphorylation and neuron 

cell death.45 This effect is blocked by an antibody against 

α2 integrin and it is independent of the MMP-1 proteolytic 

activity since 1) total Akt levels remain unchanged, and 2) 

batimastat, an inhibitor of the catalytic activity of MMP-1, 

does not prevent proMMP-1-induced Akt  dephosphorylation. 

Similarly, proMMP-2 interaction with αVβ3 integrin on 

lung adenocarcinoma cells induces vascular endothelial 

growth factor (VEGF) expression via activation of PI3K/

Akt/HIF-1α, leading to increased angiogenesis.46 In MMP-3, 

the hemopexin domain binds to the chaperone heat-shock 

protein 90β (HSP90β) extracellularly, and this is critical for 

mouse mammary epithelial cell invasion.47 Using several 

structural mutants of MMP-3, the authors demonstrate that 

the hemopexin domain is required for the invasive function 

of MMP-3 during branching morphogenesis. This is also 

demonstrated in primary organoids of the mammary gland. 

The mechanism by which MMP-3 overexpression induces 

mammary tumors in transgenic mice was elegantly demon-

strated by Kessenbrock et al.48 Using lentiviral constructs 

containing MMP-3, a proteolytically inactive mutant, or the 

MMP-3 PEX domain, these authors demonstrate that these 

three proteins induce a hyperbranching phenotype equally 

Table 1 Molecular interactions and biological effects involving noncatalytic MMP domains

MMP Receptor/ligand Cell type Biological effect References

MMP-1 α2β1 integrin Neural cells, monocytes Release of MMP-9, Akt dephosphorylation 44,45
MMP-2 αvβ3 integrin Lung adenocarcinoma Increased veGF expression and angiogenesis 46
MMP-3 HSP90β 

wnt5b
Mammary gland epithelial cells Cell invasion, branching morphogenesis 

wnt5 inactivation, hyperbranching phenotype
47,48

MMP-9 LRP-1 
LRP-2/megalin

Schwann cells, COS-1 
Yolk sac sarcoma cells (BN16)

eRK1/2 and Akt activation, cell migration, catabolism 
MMP-9 endocytosis and catabolism

31

IGF-1, eGFR, PDGFR Schwann cells Ras/Raf/MeK–eRK regulation, phenotypic remodeling 50
α4β1 integrin, CD44v Chronic lymphocytic leukemia MMP-9 cell surface localization, activation of the  

Lyn/STAT3/Mcl-1 pathway, cell migration/arrest, cell survival
54,55,57

CD44 Breast carcinoma eGFR activation, cell migration 51
Melanoma Actomyosin contractility, rounded amoeboid, cell invasion 58

CSPG Monocytic cells proMMP-9/CSPG complex formation, prevention of TIMP-1  
binding to proMMP-9, weaker binding to gelatin

32

Ku protein Monocytes MMP-9 internalization, cell invasion 33
MMP-14 TIMP-2 Breast carcinoma, fibrosarcoma eRK1/2 activation, cell proliferation, and migration 61,62

HIF-1α Macrophages Stimulation of glycolysis and ATP production 64
Myeloid cells Rac1 activation, lamellipodia activity 

Cell motility, cell fusion
65

β1 integrin Mammary epithelial cells eRK activation, branching morphogenesis 66

Abbreviations: MMP, matrix metalloproteinase; veGF, vascular endothelial growth factor; LRP, lipoprotein receptor-related protein; eRK, extracellular signal-regulated 
kinase; IGF, insulin-like growth factor; PDGFR, platelet-derived growth factor receptors; eGFR, epidermal growth factor receptor; CSPG, chondroitin sulfate proteoglycans; 
TIMP, tissue inhibitor of metalloproteinase; ATP, adenosine triphosphate; HIF, hypoxia-inducible factor; MeK, mitogen-activated protein kinase kinase; STAT3, signal 
transducer and activator of transcription 3; Mcl-1, myeloid cell leukemia-1.
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well upon implanting into mammary fat pads. This was due 

to the specific interaction of the MMP-3 PEX domain with 

the extracellular noncanonical Wnt ligand Wnt5b, resulting 

in its inactivation. MMP-3 thus regulates Wnt signaling and 

adult epithelial stem cell function via the PEX domain in a 

noncatalytic manner.

Nonproteolytic functions of MMP-9
Several reports have addressed the notion of intracellular sig-

naling induced upon MMP-9’s interaction with its cell surface 

receptors. Binding of MMP-9 or a fusion protein containing 

the hemopexin domain of MMP-9 (PEX9), coupled to GFP, to 

the low-density lipoprotein receptor-related protein (LRP-1) 

in Schwann cells activates extracellular signal-regulated 

kinase (ERK)1/2 and Akt, and it promotes cell migration.49 

This effect is blocked by inhibiting MMP-9 binding either 

by LRP-1 gene silencing or by an antibody targeting PEX9. 

The related protein LRP-2/megalin is also a receptor for 

MMP-9 in epithelial cells and mediates its endocytosis and 

catabolism (Table 1).31 MMP-9 can also bind to insulin-like 

growth factor-1, ERbB, and platelet-derived growth factor 

receptors, resulting in the regulation of Ras/Raf/MEK–ERK 

pathways and the controlling of critical trophic signals and 

phenotypic remodeling of Schwann cells.50 Whether regula-

tion of these pathways occurs via regulatory proteolysis or by 

direct receptor binding  (nonproteolytic) was not determined. 

Dufour et al51 demonstrated that transfection of COS-1 cells 

with MMP-2, MMP-9, or a catalytically inactive mutant of 

MMP-9 enhances cell migration. This effect requires the 

PEX9 domain, as well as MAPK and PI3K activities, but the 

specific mechanism involved was not elucidated. proMMP-9 

has also been shown to interact with the I domain of αLβ2 

and αMβ2 integrins on leukocytes, and these proMMP-9/β2 

integrin complexes are important for cell migration.52,53 This 

interaction involves the catalytic region of proMMP-9 rather 

than the hemopexin domain, and it is not known whether 

it results in intracellular signaling. Our group has shown 

that binding of proMMP-9 to α4β1 integrin and 190 kDa 

CD44v, its docking receptors in chronic lymphocytic leu-

kemia (CLL) cells,54 induces a signaling pathway that leads 

to malignant cell survival.55 This pathway consists of Lyn 

kinase activation, STAT3 phosphorylation, and upregula-

tion of the antiapoptotic protein Mcl-1, a member of the 

Bcl-2 protein family. The same effect can be elicited by a 

noncatalytic mutant of proMMP-9 and by the isolated PEX9 

domain. Thus, proMMP-9 contributes to CLL survival by a 

nonproteolytic mechanism. Dufour et al56 showed that the 

 interaction of the proMMP-9 PEX domain with CD44 acti-

vates the tyrosine kinase epidermal growth factor receptor 

(EGFR) and subsequent phosphorylation of its substrates, 

ERK, Akt, and focal adhesion kinase (FAK), resulting in 

breast carcinoma cell migration. Using xenograft models in 

NOD/SCID mice, we recently showed that the overexpression 

of proMMP-9 impairs CLL cell homing to bone marrow and 

spleen.57 A proteolytically inactive proMMP-9 mutant had a 

partial effect, indicating that both catalytic and noncatalytic 

functions were involved. Indeed, biochemical analyses dem-

onstrated that proMMP-9, likely complexed to α4β1 integrin, 

downregulates the activation of RhoAGTPase, Akt, ERK, and 

FAK, while it increases p190RhoGAP (a RhoA inhibitor) and 

PTEN (an Akt, ERK, and FAK inhibitor).57 Modulation of 

these pathways by proMMP-9 may contribute to malignant 

cell retention in lymphoid organs and CLL progression. 

MMP-9 has also recently been shown to promote rounded 

amoeboid melanoma cell migration by a noncatalytic mecha-

nism, consisting of the regulation of actomyosin contractil-

ity via CD44.58 Because actin is a substrate of MMP-9,16 a 

simple reasoning would be that this rounded amoeboid effect 

would be influenced by catalysis. However, this suggestion 

is not correct because the amoeboid cell migration was also 

observed when using a catalytically inactive MMP-9 mutant 

and also when inhibiting MMP-9 activity. This mechanism 

operates in vivo since MMP-9 expression increases during 

melanoma progression and is enriched at the invasive front 

of lesions, correlating with cell roundness. The authors pro-

pose that MMP-9 could be an amoeboid-selective marker 

for melanoma and that blocking this noncatalytic MMP-9 

function could help to reduce melanoma cell invasion and 

metastasis.58 In another study, it was found that the PEX9 

domain inhibits tumor angiogenesis and indirectly blocks the 

growth of orthotopic glioblastoma xenografts.59

Nonproteolytic functions of MMP-14
Novel functions of MMP-14 not requiring its proteolytic 

activity, but instead involving the hemopexin or cyto-

plasmic domain, have also been reported. Proteolytic and 

nonproteolytic roles of MMP-14 in different cell contexts 

have been reviewed.9,60 MMP-14 forms a complex at the 

cell surface with its physiological protein inhibitor, tissue 

inhibitor of metalloproteinase (TIMP)-2, and binding of 

TIMP-2 to MMP-14 induces cell proliferation and migration 

of MCF-7 breast carcinoma cells.61 This effect requires the 

MMP-14 cytoplasmic tail, but not its catalytic activity, and 

it involves activation of ERK1/2. Moreover, in xenograft 

models in mice, a proteolytically inactive MMP-14 mutant 

also promoted tumor growth in vivo, while a mutant lack-

ing the cytoplasmic tail was ineffective.61 A similar MEK/

ERK signaling cascade upon TIMP-2 binding to MMP-14 
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was observed in HT1080 fibrosarcoma cells, resulting in 

increased cell migration.62 These reports thus establish that 

the MMP-14–TIMP-2 interaction controls cell proliferation 

and migration by nonproteolytic mechanisms. Macrophages 

from MMP-14–/– mice have a reduced ability to invade base-

ment membranes and to infiltrate into inflammatory sites, 

and these effects are restored by MMP-14 re-expression 

on these cells.63 Importantly, this activity requires the cyto-

plasmic tail of MMP-14, but not its catalytic or hemopexin 

domains, establishing that MMP-14 regulates macrophage 

invasion and migration by dual catalytic and noncatalytic 

functions. These authors also demonstrated that MMP-14–/– 

macrophages are characterized by a reduction in adenosine 

triphosphate (ATP) concentration and in glycolytic activity.64 

The reason for this is that the cytoplasmic tail of MMP-14 

binds to HIF-1α and releases it from its specific inhibitors, 

stimulating glycolysis and ATP production by macrophages. 

Other functions for the MMP-14 cytoplasmic domain have 

also been identified. Gonzalo et al65 reported yet another new 

function for MMP-14 consisting of the control of myeloid cell 

fusion. In this case, MMP-14 induces a signaling pathway 

in which its cytoplasmic tail binds to p130Cas and increases 

Rac1 activation and lamellipodia activity, directly impacting 

cell morphology, motility, and fusion by a nonproteolytic 

mechanism. In a more recent report, Mori et al66 demonstrated 

an association between MMP-14 and β1 integrin in mam-

mary epithelial cells. This association modulates β1 integrin 

levels, activates ERK, and induces branching morphogenesis 

in collagen 1 gels and primary mammary organoids. Using 

several MMP-14 deletion mutants, these authors show that 

the transmembrane/cytoplasmic domain of MMP-14, but 

not its catalytic domain, is required for these functions. 

Collectively, these studies clearly expand the functions of 

MMPs beyond those involving substrate degradation. While 

the MMP enzymatic activity is certainly crucial to promote 

cell migration, invasion, and survival, we may conclude on 

the basis of various examples that MMPs also induce and/

or modulate the signaling pathways necessary for these 

 processes. This knowledge opens new avenues to explore and 

identify targets in MMPs outside the catalytic domain.

The hemopexin domain of MMPs  
as an emerging therapeutic target
The carboxy-terminal region of MMPs (hemopexin domain, 

PEX) has, for a long time, been recognized as an interesting 

module able to interact with several molecules and display 

multiple properties.67 Besides containing binding sites for 

TIMPs, gelatin, and other MMPs, PEX is required for MMP 

binding to cell surface receptors67 and plays an important role 

in the activation of signaling pathways, many of which have 

been described earlier. Because several of these signals are 

associated with pathological processes, the PEX domain – in 

particular, its interaction sites with cell surface receptors – 

has emerged as a novel therapeutic target in MMPs. This is 

further substantiated by the reported properties of the isolated 

PEX domain mentioned earlier for MMP-348 and MMP-9.55,59 

The PEX domain from MMP-2 also inhibits tumor growth in 

an in vivo model of mouse glioma, together with a decrease 

in angiogenesis and cell proliferation.68 Additionally, the iso-

lated murine PEX9 domain inhibits MMP-9 gelatin-binding 

activity and the invasion of melanoma cells,69 the adhesion 

and migration of colorectal cancer cells,70 as well as VEGF 

secretion, angiogenesis, and tumor growth in a glioblastoma 

animal model.59 These studies provide evidence that MMPs, 

through their PEX domain, can perform many nonproteolytic 

functions.

Crystal structure analyses71–75 were used to demonstrate 

that hemopexin domains consist of a four-bladed β-propeller 

structure (blades 1–4) (shown in Figure 2A for PEX9). The 

primary structure homology among the hemopexin domains 

of different MMPs is rather low (25%–30%),67 and this fact 

represents a major advantage when considering targeting 

this region in a particular MMP. This low homology con-

trasts with the existing higher resemblance among MMP 

catalytic domains.27 Strategies aimed to block the MMP 

hemopexin domain are already in progress. Using phage 

display analyses, Björklund et al76 identified a synthetic 

peptide  (CRVYGPYLLC) that binds to the PEX9 domain 

and inhibits the association of MMP-9 with αVβ5 integrin 

in fibrosarcoma cells. This peptide also inhibits cell migra-

tion in vitro and tumor xenograft growth in vivo. Dufour 

et al56 designed the synthetic peptides SRPQGPFL and 

NQVDQVGY, mimicking motifs in the outermost strands 

of blades 1 and 4 of PEX9, respectively. According to the 

authors, these peptides inhibited MMP-9 dimerization and the 

migration of fibrosarcoma and carcinoma cells. Additionally, 

peptide SRPQGPFL blocked the interaction of MMP-9 with 

CD44, suggesting that this sequence was involved in MMP-9 

docking at the cell surface. The same group reported similar 

findings for the hemopexin domain of MMP-14 (PEX14).77 

In this case, the synthetic peptides, MVPDPMYG and 

GYPKSALR, containing sequences in the outermost strands 

of blade 1 and blade 4, respectively, inhibited carcinoma cell 

migration, tumor metastasis, and angiogenesis. By preparing 

truncated proteins containing GST fused to structural blades 

1–2 or 3–4 of PEX9, and overlapping synthetic peptides cor-

responding to the entire PEX9 sequence, we have defined the 

PEX9 regions responsible for binding of proMMP-9 to CLL 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Metalloproteinases In Medicine 2015:2 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

25

Noncatalytic MMP functions

A

Blade 1 Blade 2

Blade 4 Blade 3

Blade 1

CD44

P6

Blade 2

Blade 4

α4β1
integrin

P3

Blade 3

Docking of small MW
compounds

Blade 1 Blade 2

Blade 4 Blade 3

B C

Figure 2 Ribbon diagram of the monomeric hemopexin domain of MMP-9 (PeX9) showing the location of drug target sites.
Notes: (A) PeX9, similar to other PeX domains of MMPs, is composed of four structural blades surrounding a central cavity. (B) Spatial location of the P3 and P6 amino acid 
sequences within PeX9 (research originally published in The Journal of Biological Chemistry. Ugarte-Berzal e, Bailón e, Amigo-Jiménez I, Albar JP, García-Marco JA, García-Pardo 
A. A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migra tion of chronic lymphocytic leukemia (CLL) cells. 
The Journal of Biological Chemistry. 2014; 289(22):15340–15349. © the American Society for Biochemistry and Molecular Biology.79). P3 is located in blade 4 and interacts with 
α4β1 integrin; P6 is located in blade 1 and binds to CD44.79 P3 and P6 act synergistically to inhibit MMP-9-induced CLL cell adhesion and migration, thus serving as therapeutic 
peptides and simultaneously pointing to “druggable” targets in PeX9. An additional CD44-binding sequence located in the outermost strand of blade 1 has also been reported. 
(C) Diagram showing the binding sites within PeX9 of small Mw compounds mapped by in silico docking (adapted from Cancer Research, Copyright 2011;71(14):4977–4988. 
Dufour A, Sampson NS, Li J, et al. Small-molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9, with permission from 
AACR82). As observed, both the small compounds and the P3 and P6 sequences are located in close proximity within the central cavity of PeX9. Targeting this region may 
therefore be a useful approach to control the pathogenic functions of MMP-9, particularly in cancer and inflammation.
Abbreviations: Mw, molecular weight; MMP, matrix metalloproteinase; PeX, hemopexin domain; CLL, chronic lymphocytic leukemia.

cells. Blades 1–2 are important for the interaction with CD44 

and blades 3–4 for binding to α4β1 integrin.78,79 The specific 

binding sites involved in these interactions are the sequences 

FDAIAEIGNQLYLFKDGKYW, present in blade 1 and con-

tained in peptide P6, and FPGVPLDTHDVFQYREKAYFC, 

present in blade 4 and contained in peptide P3.78,79 P6 and P3 

bind, respectively, to CD44 and α4β1 integrin (Figure 2B) 

and partially inhibit CLL cell adhesion and transendothelial 

migration. P3 also blocks the Lyn/Mcl-1 survival pathway 

elicited by proMMP-9 or GST–PEX9 upon binding to CLL 

cells.55 Importantly, the combination of P3 and P6 is syner-

gistic and results in the complete inhibition of cell adhesion 

and migration. This is in agreement with the spatial local-

ization of both peptides within the central cavity of PEX9 

(Figure 2B).78,79 The P3 and P6 sequences thus represent 

two potential targets to prevent proMMP-9 binding to CLL 

cells and subsequent pathological consequences. Peptide-

based inhibitors targeting exosites and/or both exosites and 

active sites may therefore constitute an efficient way to block 

catalytic and noncatalytic MMP activities, such as the regula-

tion of cell adhesion, migration, and signaling. The already 

identified peptides with inhibitory action mainly on MMP-9 

and MMP-14 have been recently reviewed.80

Besides the synthetic peptide strategies, in silico 

approaches are also being employed to target the MMP 

hemopexin domain. Using chemoinformatics-based analy-

ses, Kothapalli et al81 found several molecules that spe-

cifically bind to the hemopexin domain of MMP-13. This 

information helped to design drugs to inhibit this MMP, 

particularly in inflammatory disorders. In silico docking 

approaches have also served to identify two small molecules 

that selectively bind to PEX9 and inhibit tumor growth and 

metastasis without affecting the MMP-9 catalytic activity.82 

One of the compounds found in this study (compound 2) 

also blocks MMP-9 homodimerization and ERK1/2 phos-

phorylation, and the authors proposed that this is likely due 

to the inhibition of the binding of MMP-9 to CD44 and the 

subsequent activation of the EGFR–MAPK signaling path-

way.82 A similar approach was employed by Remacle et al83 

to identify a small compound that binds to the PEX domain 

of MMP-14 and represses the protumorigenic function of 

MMP-14 in a carcinoma xenograft model. Importantly, the 

docking analyses mapped the binding sites of these small 

molecule inhibitors to the central cavity of PEX9 and 

PEX14, respectively; in fact, they were in close proximity 

to the P3 and P6 sequences identified by us in PEX9 (Figure 

2C). These findings highlight the central cavity of PEX as 

a prime target in future strategies aimed to overcome MMP 

pathologic signaling functions in cancer, inflammation, and 

other disorders.

Targeting the MMP hemopexin domain is therefore 

a promising alternative to previous attempts aimed at 

blocking the catalytic activity of MMPs and, in view of 

the lower homologies of various MMP hemopexin domains 

versus catalytic domains, this has the added advantage of 

higher selectivity. Another interesting advantage comes 

from studies in which targeting the hemopexin domain 

impairs the catalytic activity of MMPs. Using phage display 
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techniques, Basu et al84 generated recombinant antibody 

fragments against PEX14 that significantly reduced the 

degradation of collagen type I by MMP-14 and inhibited 

CD44 shedding by MMP-14-expressing fibrosarcoma cells. 

These antibodies also inhibit invasion and angiogenesis 

in in vitro systems. Although it is not clear whether the 

antibody effect is directly affecting interactions with 

MMP-14 substrates or imposing structural restrictions that 

affect MMP-14 function, the results certainly highlight the 

hemopexin domain as a useful target to modulate MMP 

functions.

Conclusion
Previous attempts to block the pathological functions of 

MMPs by targeting the catalytic domain were disappoint-

ing in oncology studies and, therefore, the idea of targeting 

MMPs in invasive cancer was abandoned. The efforts to 

generate more selective inhibitors have been revitalized with 

the exosite concept in which larger areas of the catalytic 

domain are targeted with new drugs.85 Moreover, recent stud-

ies pointed to other regions of MMPs as promising targets 

to block the pathological activities of MMPs. In particular, 

the carboxy-terminal domains, both the hemopexin domain 

and the intracellular segments of MT-MMPs, have been 

studied as targets for inhibition. In these cases, the binding 

and signaling functions of MMPs, rather than their catalytic 

effects, are targeted. Two major directions are becoming 

clear in this area of research. First, membrane-bound MMPs 

(eg, MMP-14) signal through their intracellular domains by 

interaction with cytoplasmic adaptor molecules. Secondly, 

the hemopexin domain of secreted MMPs, such as MMP-347,48 

and MMP-9,55,57 activates signaling cascades by interacting 

with signaling receptors (eg, integrins) or by being part of 

oligosaccharide lectin interactions (eg, CD44 [hyaluronan 

receptor] and chondroitin sulfate proteoglycans).32 For 

both types of signaling interactions, peptides and/or small 

molecule inhibitors have been developed. These studies 

generate the necessary insights for the development of novel 

therapeutics and form a complementary research route, 

alongside catalysis inhibitors, in the fight against cancer and 

other diseases.
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