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Background: Human cognitive and emotional functions are asymmetrical between the left 
and right hemispheres. In neuroimaging studies of attention-deficit/hyperactivity disorder 
(ADHD) patients, the absence of aberrant asymmetry might serve as a neuroanatomical 
marker of ADHD. However, few studies have estimated abnormalities in cortical and 
subcortical asymmetry in children and adolescents of different ADHD subtypes.
Methods: Data were from the results collected by the Peking University site in the “ADHD-200 
sample” dataset, which comprised 31 eligible ADHD (20 inattentive ADHD (ADHD-I), 11 
combined ADHD (ADHD-C)) and 31 matched typically developing (TD) individuals. The 
Asymmetry Indexes (AIs) in cortical thickness, cortical gray-matter volume and subcortical nucleus 
(SN) volume were calculated based on an automated surface-based approach. The differences in 
cortical thickness, cortical gray-matter volume, and SN volume AIs were evaluated among groups. 
We also analyzed the correlation between AIs and the severity of ADHD symptoms.
Results: Compared with the TD group, SN asymmetry in ADHD group did not reveal 
significant differences. Altered cortical asymmetry of different subtypes in ADHD groups 
was located in the orbitofrontal and anterior cingulate circuits, including the medial orbito-
frontal, paracentral, pars triangularis, caudal anterior cingulate, isthmus cingulate, and super-
ior frontal regions. In the comparisons, cortical gray-matter volume AIs were significantly 
different in the caudal anterior cingulate, isthmus cingulate, and superior frontal regions 
between ADHD-I and ADHD-C groups. There were significant correlations between the 
severity of ADHD symptoms and asymmetric measurements in medial orbitofrontal, para-
central and isthmus cingulate regions.
Conclusion: These findings provide further evidence for the altered cortical morphological 
asymmetry in children and adolescents with ADHD, and these differences are associated (at 
least in part) with the severity of ADHD symptoms. Brain asymmetry could be an appro-
priate precursor of morphological alterations in neurodevelopmental disorders.
Keywords: attention-deficit/hyperactivity disorder, child and adolescent, cortical and 
subcortical, asymmetry

Introduction
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder. 
It can affect the health and social function of children and adolescents to a large 
extent. The core deficits of ADHD are associated with controlled processes and 
executive functions, and executive deficits might be due (at least in part) to 
impairment in automatic processing.1,2 According to the Diagnostic and 
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Statistical Manual of Mental Disorders, Fourth Edition, 
ADHD can be divided into three subtypes on the basis of 
the predominant symptomatology: the inattentive (ADHD- 
I), the hyperactive/impulsive (ADHD-HI) or the combined 
ADHD (ADHD-C) subtypes.3,4 The worldwide prevalence 
of ADHD is about 5.0–7.1%,4 and the prevalence of 
ADHD-I is the highest, followed by ADHD-C.5 The 
course of ADHD is usually chronic. The lifelong preva-
lence of ADHD can reach up to 15%,6 which is closely 
associated with a high prevalence of recurrence and low 
compliance of children and adolescents with ADHD. Such 
a high lifelong prevalence of ADHD imposes a heavy 
burden upon society. Therefore, exploring further the 
pathogenesis of this neurodevelopmental disorder is 
becoming increasingly important.

Brain hemispheres have asymmetric characteristics in 
terms of structure and function.7 The dominant hemisphere 
for verbal cognitive function is the left hemisphere. The 
dominant hemisphere for spatial cognitive function is the 
right hemisphere. The most widely identified structurally 
asymmetric regions are the right-lateralization of the fron-
tal lobe and left-lateralization of the occipital lobe.8,9 

Studies have shown that changes in the asymmetry of the 
brain are associated with the sex, age, handedness, and 
neuropsychiatric disorders of individuals (eg, 
schizophrenia,10 major depressive disorder,11 and 
Alzheimer’s disease).12 The absence of asymmetry in 
healthy people might serve as a neuroanatomical marker 
of neurodevelopmental disorders (especially ADHD).10,13

Numerous studies on the anatomic and functional dif-
ferences in the brains of people suffering from ADHD 
have been carried out. A meta-analysis of the studies 
based on voxel-based morphometry reported a reduction 
in the gray-matter volume in the caudate and putamen of 
ADHD patients.14 A recent cross-sectional study explored 
if ADHD patients had smaller gray-matter volume in the 
amygdala, caudate, hippocampus, and putamen.15 Some 
functional magnetic resonance imaging (fMRI) studies 
have demonstrated that patients with ADHD have struc-
tural and functional abnormalities in cortico-striatal 
circuits.16,17 Abnormalities in these brain regions damage 
the cognitive functions of individuals, such as the abilities 
of attention, automatic processing, and executive 
monitoring.2,18 Silk and colleagues, using diffusion tensor 
imaging, showed that an ADHD group had anomalous 
hemispheric asymmetry in the fiber tracts of the fronto- 
striatal system. ADHD patients did not have the right- 
lateralization of tract connections between the caudate 

and prefrontal cortex observed in typically developing 
(TD) controls.19 Therefore, the subcortical nucleus (SN) 
might play a unique part as a precursor of more distinct 
asymmetry in the human brain. Studies have mostly ana-
lyzed alterations in the gray-matter volume from a voxel- 
based perspective,4,14,20–22 which may underestimate 
subtle differences in cortical structure. The cortical gray- 
matter volume is affected by several factors, such as sur-
face area, thickness, and folding of the cortex. In contrast, 
cortical thickness (another commonly used measure of the 
cortex) could be more sensitive to disorder-related struc-
tural differences in the human brain.23 However, only one 
surface-based analysis has investigated the hemispheric 
asymmetry in young patients with ADHD.24 Moreover, 
no one has estimated whether and how different ADHD 
subtypes could affect the hemispheric asymmetry of cor-
tical and subcortical structures of the brain.

Our study had two main aims. The first aim was to 
investigate the subcortical structural asymmetry as a 
potential subcortical precursor in children and adolescents 
with ADHD. Second, we assessed whether ADHD sub-
types might influence the asymmetry of cortical and sub-
cortical structures, and the association between these 
cortical and subcortical asymmetric alterations and symp-
toms in patients with ADHD.

Materials and Methods
Participants
The data of our study were from the “The ADHD-200 
sample” dataset25 in the “1000 Functional Connections 
Project” project group. All data in the present study were 
from the results collected by the Peking University 
(Beijing, China) site, which included the brain imaging 
of children. We did not choose multi-site data so as to 
avoid the adverse effects of the collection equipment and 
environment of different sites on the results. In the data-
base of the Peking University site, patients were recruited 
from the Outpatients Department of the Institute of Mental 
Health of Peking University. TD individuals were children 
and adolescents recruited from nearby schools who did not 
have a current or previous psychiatric diagnosis or known 
neurological disorder. All participants in our study were 
right-handed with an intelligence quotient (IQ) score >80. 
Patients with neurological disorders, neurodevelopmental 
disorders, schizophrenia, affective disorders, oppositional 
defiant disorders, and learning disorders were excluded. 
The database recorded only whether participants had 
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medications but lacked detailed information on how long 
ago or whether ADHD participants had taken them 
recently. Hence, we did not exclude ADHD participants 
who were taking medications (seven cases with ADHD-I 
and five ADHD-C cases were not medication-naïve). All 
data from the Peking University site were approved by the 
Research Ethics Review Board of the Institute of Mental 
Health within Peking University. One parent of each par-
ticipant and all children provided written informed consent 
before participating. The guidelines outlined in the 
Declaration of Helsinki 1964 and its later amendments 
were followed in the present study. All structural magnetic 
resonance imaging (sMRI) data and demographic data 
were complete and usable. Finally, 31 eligible samples of 
ADHD data (20 ADHD-I and 11 ADHD-C) were 
obtained, and data samples from 31 matched (age, sex, 
and IQ score) TD individuals were collected.

All participants were interviewed with the Schedule of 
Affective Disorders and Schizophrenia for School-Age 
Children-Present and Lifetime Version (K-SADS-PL)26 and 
full-scale Wechsler Intelligence Scale for Chinese Children- 
Revised (WISCC-R).27 The ADHD Rating Scale (ADHD- 
RS) IV28 was employed to measure ADHD symptoms.

MRI Analysis
Before further analyses of brain images, we first confirmed 
that all sMRI scans downloaded from the database were 
unaffected by head movement or other artifacts to ensure 
the image quality. sMRI scans were processed automatically 
with the FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu) 
recon-all processing pipeline for whole-brain cortical mor-
phological characteristics. After that, the processing results 
of each participant were checked and corrected manually. 
The SN includes the thalamus, caudate, putamen, globus 
pallidus, hippocampus, amygdala, and nucleus accumbens.

Statistical Analysis
Data were analyzed using SPSS 20.0 (IBM, Armonk, NY, 
USA). The two-sample t-test was employed for the parameters 
of two independent groups with a normal distribution (eg, age, 
IQ score, ADHD-RS IV score). The Mann–Whitney U-test 
was used for data with a non-normal distribution. The one-way 
ANOVA test was undertaken for the parameters of multiple 
groups that had a normal distribution. The Kruskal–Wallis H- 
test was employed for the parameters of multiple independent 
groups with a non-normal distribution. The chi-square test was 
used to compare sex distribution. The difference between the 

left and right hemispheres of each cortical and subcortical 
region was represented by the Asymmetry Index (AI):

AI ¼ L � R=Lþ Rð Þ � 100 

where L is the value for the left hemisphere, R is the value 
for the right hemisphere, and the AI ranges from −100 
(complete rightward asymmetry) to +100 (complete left-
ward asymmetry). The Kruskal–Wallis H-test was 
employed to compare the differences in the AIs for the 
volume of the SN between children and adolescents with 
different ADHD subtypes and that in TD controls. 
Simultaneously, according to the Desikan–Killiany tem-
plate, each hemisphere of the cortical regions was divided 
into 34 regions. The Mann–Whitney and Kruskal–Wallis 
tests were used to evaluate the differences in the average 
cortical thickness AI and gray volume AI of each region. 
Finally, the correlation between the AIs and clinical char-
acteristics of ADHD patients was analyzed.

Results
Demographic and Clinical Characteristics
Data for demographic characteristics and clinical charac-
teristics for ADHD and TD groups are shown in Table 1a. 
The results of the two-sample t-test and chi-square test 
showed that there were no significant differences in age, 
sex, or IQ score between the two groups (P > 0.05). The 
severity of ADHD symptoms (subscale scores of ADHD- 
RS IV) was significantly different between the two groups 
(P < 0.05). The subscale scores were higher in ADHD 
patients compared with those in TD participants.

The three groups (ADHD-I, ADHD-C, and TD) were 
matched in terms of age, sex, and IQ score (P > 0.05). 
One-way ANOVA was used to analyze the ADHD-RS IV 
scores of ADHD-I, ADHD-C, and TD groups. In the 
subscales of ADHD-RS IV, there were significant differ-
ences among the three groups (P < 0.05), and the subscale 
scores of the two ADHD-subtype groups were signifi-
cantly higher than those of the TD group (Table 1b).

Comparison of the Asymmetry of the SN 
Between ADHD and TD Groups
The subcortical volume in the caudate, hippocampus, and 
accumbens was more leftward in the ADHD group com-
pared with that in the TD group, and more rightward in the 
putamen. However, significant differences were not 
detected in the AIs for the SN volume between ADHD 
and TD groups (P > 0.05) (Table 2).
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Comparison of the Cortical Regions and 
SN Asymmetry Between the Two 
Subtypes in ADHD and TD Groups
The average cortical thickness AIs of 34 pairs of cortical 
regions extracted from the Desikan–Kiliany Atlas were 
compared between the two subtypes in ADHD and TD 
groups. There were significant differences in the cortical 
thickness AIs of the medial orbitofrontal, paracentral, and 
pars triangularis among the three groups (P < 0.05) (Table 
3). In the pairwise comparisons, there was a significant 

difference between ADHD-I and TD groups in the cortical 
thickness AI of the medial orbitofrontal (adjusted P = 
0.003). Moreover, the cortical thickness AI of the para-
central was significantly different between ADHD-C and 
TD groups (adjusted P = 0.029) (Table 4). However, the 
cortical-thickness asymmetry of the pars triangularis 
showed no significant difference in the pairwise compar-
isons. There were no significant differences in the cortical- 
thickness asymmetry of these three regions between the 
two subtypes in ADHD (adjusted P > 0.05).

Results for comparisons of the cortical gray-matter 
volume and SN volume AIs between the two subtypes in 
ADHD and TD groups are summarized in Table 5. The 
cortical gray-matter volume AIs of the caudal anterior cingu-
late, isthmus cingulate, and superior frontal were significantly 
different among the three groups (P < 0.05). The SN volume 
AIs did not reveal significant changes between the two sub-
types in ADHD and TD groups (P > 0.05). In the pairwise 
comparisons, there were significant differences in the cortical 
gray-matter volume AIs of the caudal anterior cingulate, 
isthmus cingulate, and superior frontal regions between 
ADHD-C and ADHD-I groups (adjusted P = 0.050, 0.036, 
and 0.045, respectively). For the comparison between 
ADHD-C and TD groups, the cortical gray-matter volume 

Table 1 Demographic and Clinical Characteristics

(a) ADHD TD t/χ2 P
Characteristic n=31 n=31

Age 11.67 (1.82) 11.76 (1.82) 0.201 0.841

Sex (boy/girl) 29/2 24/7 2.080 0.149

IQ 106.00 (14.29) 109.35 (15.32) 0.892 0.376

ADHD-RS IV  

Inattention   

Hyperactivity/Impulsivity

28.29 (3.24) 

21.61 (6.01)

15.35 (4.41) 

13.307 (3.96)

-13.168 

-6.610

0.000* 

0.000*

(b) ADHD-I ADHD-C TD F/χ2 P
Characteristic n=20 n=11 n=31

Age 12.00 (1.71) 11.07 (1.93) 11.76 (1.82) 0.976 0.383

Sex (boy/girl) 18/2 11/0 24/7 3.205 0.187

IQ 103.20 (13.78) 111.09 (14.40) 109.35 (15.32) 1.430 0.248

ADHD-RS IV  
Inattention  

Hyperactivity/Impulsivity

27.85 (2.32) 

18.45 (4.73)

29.09 (4.48) 

27.36 (3.11)

15.35 (4.41) 

13.307 (3.96)

86.664 

50.483

0.000* 

0.000*

Notes: Continuous variables were expressed as the mean (standard deviation). *Significant at P ≤ 0.05. 
Abbreviations: ADHD, attention-deficit/hyperactivity disorder; TD, typically developing; ADHD-I, inattentive attention-deficit/hyperactivity disorder; ADHD-C, combined 
attention-deficit/hyperactivity disorder; IQ, intelligence quotient; ADHD-RS IV, ADHD Rating Scale IV.

Table 2 The SN Volume AIs Between ADHD and TD Groups

Region AI Z P

SN (mm3) ADHD TD

Thalamus −1.40 (1.74) −1.86 (0.34) 0.824 0.410
Caudate −2.00 (2.30) −1.52 (0.47) −0.993 0.321

Putamen 1.78 (2.19) 1.68 (0.29) 0.303 0.762

Pallidum 4.66 (2.99) 5.12 (0.62) −0.246 0.805
Hippocampus −1.94 (2.78) −0.96 (0.45) −1.232 0.218

Amygdala 0.28 (4.45) 1.09 (0.81) −0.697 0.486

Accumbens −3.76 (5.32) −2.70 (1.08) −0.641 0.522

Note: Continuous variables were expressed as mean (SEM). 
Abbreviations: SN, subcortical nucleus; AI, asymmetry index; ADHD, attention- 
deficit/hyperactivity disorder; TD, typically developing.
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Table 3 The Cortical Thickness AIs Between the Two Subtypes in ADHD and TD Groups

Region AI χ2 P

ADHD TD

Cortical regions (mm) ADHD-I ADHD-C
Bankssts −2.77 (0.68) −0.79 (0.98) −2.12 (0.52) 2.862 0.239
Caudal anterior cingulate 3.74 (1.05) 3.89 (1.58) 1.80 (0.79) 2.125 0.346

Caudal middle frontal 1.41 (0.47) −0.42 (0.58) 0.89 (0.39) 5.623 0.060

Cuneus −0.18 (0.65) −1.20 (0.90) −1.02 (0.54) 1.634 0.442
Entorhinal −3.37 (1.43) −1.25 (0.95) −2.02 (0.88) 2.272 0.321

Fusiform −0.62 (0.35) −0.61 (0.36) 0.04 (0.37) 1.186 0.553

Inferior parietal −0.60 (0.23) −0.48 (0.41) −0.45 (0.27) 0.476 0.788
Inferior temporal −1.07 (0.46) −0.32 (0.47) −1.78 (0.40) 3.303 0.192

Isthmus cingulate 1.52 (0.66) 1.81 (1.10) 1.17 (0.76) 0.084 0.959

Lateral occipital −1.77 (0.51) −2.08 (0.70) −1.88 (0.38) 0.176 0.916
Lateral orbitofrontal 1.95 (0.47) 2.32 (0.69) 1.51 (0.39) 2.132 0.344

Lingual −0.53 (0.37) −0.75 (0.55) −0.71 (0.38) 0.036 0.982

Medial orbitofrontal 3.16 (0.53) 2.54 (0.60) 0.61 (0.48) 12.245 0.002*
Middle temporal −0.49 (0.38) −0.98 (0.63) −0.05 (0.49) 0.276 0.871

Parahippocampal 0.73 (0.59) 0.05 (1.14) −0.14 (0.84) 0.263 0.877

Paracentral 0.34 (0.54) −0.66 (0.58) 1.53 (0.43) 7.269 0.026*
Pars opercularis −0.70 (0.51) −0.36 (0.97) −0.35 (0.39) 0.278 0.870

Pars orbitalis 0.82 (0.70) −1.07 (1.27) 1.75 (0.75) 5.174 0.075

Pars triangularis −0.06 (0.50) −1.22 (0.94) 1.19 (0.47) 6.510 0.039*
Pericalcarine −0.58 (0.73) 0.93 (0.85) −1.35 (0.73) 2.768 0.251

Postcentral 0.32 (0.62) 0.81 (0.87) −0.01 (0.38) 1.890 0.389

Posterior cingulate 3.10 (0.61) 1.82 (0.72) 3.78 (0.54) 4.365 0.113
Precentral 0.86 (0.46) 0.84 (0.43) 0.63 (0.39) 1.349 0.509

Precuneus 1.08 (0.36) 0.12 (0.43) 0.71 (0.39) 3.128 0.209
Rostral anterior cingulate 2.96 (1.11) 2.70 (0.90) 2.80 (0.73) 0.075 0.963

Rostral middle frontal 1.52 (0.41) 0.84 (0.43) 1.11 (0.27) 1.250 0.535

Superior frontal 2.09 (0.33) 1.51 (0.44) 1.78 (0.26) 3.467 0.177
Superior parietal −0.77 (0.47) 0.51 (0.68) 0.18 (0.26) 5.011 0.082

Superior temporal −0.63 (0.40) −0.77 (0.57) 0.08 (0.39) 5.541 0.063

Supramarginal −0.20 (0.53) −0.59 (0.50) 0.11 (0.42) 0.478 0.788
Frontal pole 2.57 (0.95) 1.87 (1.83) 0.87 (0.87) 1.175 0.556

Temporal pole −2.30 (1.08) −0.25 (1.37) −0.88 (0.63) 1.402 0.496

Transverse temporal 0.13 (1.10) −0.09 (0.86) −0.34 (0.78) 0.262 0.877
Insula 0.12 (0.40) −1.10 (0.63) 0.36 (0.37) 4.443 0.108

Notes: Continuous variables were expressed as mean (SEM). *Significant at P≤ 0.05. 
Abbreviations: AI, asymmetry index; ADHD, attention-deficit/hyperactivity disorder; TD, typically developing; ADHD-I, inattentive attention-deficit/hyperactivity disorder; 
ADHD-C, combined attention-deficit/hyperactivity disorder.

Table 4 Pairwise Comparisons of the Cortical Thickness AIs Between the Two Subtypes in ADHD and TD Groups

Cortical regions (mm) ADHD-I vs TD ADHD-C vs TD ADHD-C vs ADHD-I

adjusted P adjusted P adjusted P
Medial orbitofrontal 0.003* 0.119 1.000

Paracentral 0.359 0.029* 0.659

Pars triangularis 0.238 0.062 1.000

Notes: Bonferroni correction was used in pairwise comparisons. *Significant at P≤ 0.05. 
Abbreviations: AI, asymmetry index; ADHD, attention-deficit/hyperactivity disorder; TD, typically developing; ADHD-I, inattentive attention-deficit/hyperactivity disorder; 
ADHD-C, combined attention-deficit/hyperactivity disorder.
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AI of the isthmus cingulate was significantly different 
(adjusted P = 0.032). There were no significant differences 
in the asymmetry of cortical gray-matter volume in the caudal 

anterior cingulate, isthmus cingulate, or superior frontal 
regions between ADHD-I and TD groups (adjusted P > 
0.05 for all) (Table 6).

Table 5 The Cortical Gray-Matter Volume and SN Volume AIs Between the Two Subtypes in ADHD and TD Groups

Region AI χ2 P

ADHD TD

Cortical regions (mm3) ADHD-I ADHD-C
Bankssts 4.36 (2.23) 0.43 (3.05) 0.38 (1.77) 1.322 0.516
Caudal anterior cingulate −9.35 (2.69) 4.42 (4.70) −7.61 (2.60) 6.390 0.041*

Caudal middle frontal 6.02 (2.15) 6.72 (2.59) 7.68 (1.70) 0.137 0.934

Cuneus −4.74 (1.41) −6.68 (2.30) −2.35 (1.86) 1.783 0.410
Entorhinal 2.26 (2.49) 10.13 (2.48) 3.22 (2.12) 4.760 0.093

Fusiform 1.75 (1.51) 0.38 (1.34) 1.52 (1.04) 0.615 0.735

Inferior parietal −8.90 (1.19) −9.15 (1.27) −9.75 (0.95) 0.213 0.899
Inferior temporal −0.91 (1.51) 2.41 (2.34) 0.96 (1.23) 2.777 0.249

Isthmus cingulate 3.71 (1.31) 9.97 (1.56) 3.86 (1.29) 7.616 0.022*

Lateral occipital −1.53 (1.12) −2.24 (2.11) −0.05 (0.99) 1.771 0.412
Lateral orbitofrontal 2.87 (0.84) 1.51 (1.18) 1.93 (0.69) 0.501 0.779

Lingual −0.73 (1.11) −1.76 (0.83) −2.44 (0.86) 1.419 0.492

Medial orbitofrontal −0.12 (1.55) −2.06 (1.52) −1.59 (1.02) 0.352 0.839
Middle temporal −5.40 (1.29) −4.30 (1.88) −2.98 (0.92) 2.267 0.322

Parahippocampal 1.46 (1.28) 3.37 (2.10) 2.50 (1.54) 1.044 0.593

Paracentral −5.22 (2.03) −9.00 (2.04) −3.79 (1.43) 3.874 0.144
Pars opercularis 7.97 (1.88) 10.57 (2.14) 8.88 (1.90) 1.076 0.584

Pars orbitalis −11.49 (1.70) −13.20 (1.61) −8.66 (1.25) 4.126 0.127

Pars triangularis −7.15 (1.75) −10.88 (2.11) −7.99 (1.59) 1.616 0.446
Pericalcarine −4.73 (1.17) −8.45 (1.25) −7.48 (1.51) 5.137 0.077

Postcentral 1.66 (1.47) 2.86 (1.41) 3.65 (1.27) 1.438 0.487

Posterior cingulate 2.00 (2.17) 5.51 (2.30) 0.64 (1.42) 4.066 0.131
Precentral 0.41 (1.11) 1.61 (1.38) −0.26 (0.69) 2.099 0.350

Precuneus −0.28 (1.25) −1.88 (1.31) −0.43 (0.98) 1.187 0.552
Rostral anterior cingulate 9.91 (2.39) 15.38 (4.77) 12.31 (2.27) 1.197 0.550

Rostral middle frontal 2.22 (1.30) −1.77 (0.87) −1.22 (0.64) 3.079 0.215

Superior frontal 3.61 (0.89) 0.39 (0.91) 2.32 (0.59) 6.000 0.050*
Superior parietal −0.08 (1.31) 1.86 (1.67) 0.63 (0.83) 2.465 0.292

Superior temporal 1.90 (1.03) 2.36 (1.20) 3.09 (0.79) 0.231 0.891

Supramarginal 5.37 (1.39) 3.31 (1.84) 4.16 (1.21) 1.113 0.573
Frontal pole −11.72 (2.18) −15.39 (3.50) −14.05 (1.46) 2.413 0.299

Temporal pole 3.86 (1.84) 7.86 (2.56) 4.32 (1.33) 1.326 0.515

Transverse temporal 14.76 (1.45) 18.00 (2.29) 14.93 (1.30) 1.913 0.384
Insula −1.32 (0.98) −0.61 (0.54) −0.28 (0.81) 0.753 0.686

SN (mm3)
Thalamus −1.03 (0.37) −2.08 (0.53) −1.86 (0.34) 3.537 0.171

Caudate −1.89 (0.53) −2.20 (0.67) −1.52 (0.47) 1.076 0.584

Putamen 1.50 (0.48) 2.29 (0.70) 1.68 (0.29) 1.212 0.546
Pallidum 3.92 (0.72) 6.00 (0.61) 5.12 (0.62) 3.623 0.163

Hippocampus −1.66 (0.59) −2.45 (0.92) −0.96 (0.45) 2.062 0.357

Amygdala 0.20 (1.07) 0.42 (1.19) 1.09 (0.81) 0.487 0.784
Accumbens −3.28 (1.27) −4.64 (1.43) −2.70 (1.08) 1.224 0.542

Notes: Continuous variables were expressed as mean (SEM). *Significant at P≤ 0.05. 
Abbreviations: SN, subcortical nucleus; AI, asymmetry index; ADHD, attention-deficit/hyperactivity disorder; TD, typically developing; ADHD-I, inattentive attention- 
deficit/hyperactivity disorder; ADHD-C, combined attention-deficit/hyperactivity disorder.
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Correlation Between the AIs of Cortical 
Regions and the Severity of ADHD 
Symptoms
The cortical thickness AI of the medial orbitofrontal 
region was significantly positively correlated with ADHD 
symptoms (inattention) (r = 0.394, P = 0.002) (Figure 1). 
Even so, a significantly negative correlation was revealed 
between the cortical thickness AI of the paracentral and 
ADHD symptoms (inattention) (r = −0.296, P = 0.019) 
(Figure 2). Besides, the increased severity of ADHD 
symptoms on the hyperactivity/impulsivity subscale was 
associated with a significantly increased cortical gray-mat-
ter volume AI in the isthmus cingulate (r = 0.283, P = 
0.026) (Figure 3).

Discussion
We investigated the changes in the asymmetry of cortical and 
subcortical structures between children and adolescents with 
ADHD and TD individuals. Moreover, this study was the first 
to explore differences in cortical and subcortical asymmetry 
between different subtypes of ADHD and TD participants. 
Although asymmetry in the SN in ADHD group did not reveal 

significant differences (as we hypothesized), specific cortical 
regions showed differences in different subtypes of ADHD. In 
the present study, compared with TD individuals, different 
subtypes of ADHD demonstrated altered cortical asymmetry 
in the medial orbitofrontal, paracentral, pars triangularis, cau-
dal anterior cingulate, isthmus cingulate, and superior frontal 

Table 6 Pairwise Comparisons of the Cortical Gray-Matter Volume AIs Between the Two Subtypes in ADHD and TD Groups

Cortical regions (mm3) ADHD-I vs TD ADHD-C vs TD ADHD-C vs ADHD-I

adjusted P adjusted P adjusted P
Caudal anterior cingulate 1.000 0.076 0.050*

Isthmus cingulate 1.000 0.032* 0.036*

Superior frontal 0.520 0.407 0.045*

Notes: Bonferroni correction was used in pairwise comparisons. *Significant at P≤ 0.05. 
Abbreviations: AI, asymmetry index; ADHD, attention-deficit/hyperactivity disorder; TD, typically developing; ADHD-I, inattentive attention-deficit/hyperactivity disorder; 
ADHD-C, combined attention-deficit/hyperactivity disorder.

Figure 1 Correlation between the cortical thickness AI in the medial orbitofrontal 
and the severity of ADHD symptoms on the inattention subscale score.

Figure 2 Correlation between the cortical thickness AI in the paracentral and the 
severity of ADHD symptoms on the inattention subscale score.

Figure 3 Correlation between the cortical gray-matter volume AI in the isthmus 
cingulate and the severity of ADHD symptoms on the hyperactivity/impulsivity 
subscale score.
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regions. These regions are parts of the orbitofrontal and cin-
gulate circuits. Patients with impaired orbitofrontal and cingu-
late circuits can reveal automatic deficits and personality 
abnormalities, including behavioral disinhibition, emotional 
instability, and reduced motivation.29,30 These localized struc-
tural changes provide strong evidence that ADHD might have 
multiple deficits in the neural networks in the brain. The 
specific mechanism of cortical structural alterations is incom-
pletely understood. A cadaver study by Chaudhry and cow-
orkers supported the possibility that a reduced thickness in the 
pyramidal layer in the frontal lobe could elicit decreased 
cortex thickness.20 Pyramidal neurons are important compo-
nents of the cortex, and their functions are closely related to 
advanced cognitive functions. Any alteration in these neurons 
might cause abnormal connections between and within the 
gyrus, leading to the clinical symptoms of ADHD.

The fronto-cortical and fronto-subcortical circuits are 
associated with controlled and automatic deficits.30,31 These 
functions could be impaired in children and adolescents with 
ADHD. The orbitofrontal cortex is connected to the frontal 
control system (eg, dorsolateral prefrontal cortex) and the 
limbic system (eg, cingulate and nucleus accumbens).32,33 

The right medial orbitofrontal cortical gray-matter volume 
was increased in treatment-naive ADHD, whereas the corti-
cal gray-matter volume comprises the cortical surface area 
and cortical thickness.24 An increased cortical gray-matter 
volume is accompanied by thinning of cortical thickness. 
These phenomena were consistent with the asymmetry in 
the cortical thickness of the orbitofrontal cortex measured 
between ADHD-I and TD groups in our study. Furthermore, 
a recent study showed that the ADHD-I group is slower than 
the TD group in terms of automatic processing speed.2 

Combined with our results, the cortical abnormalities of the 
orbitofrontal cortex in the ADHD-I group might be related to 
automatic deficits. The structural abnormality in the orbito-
frontal cortex might be a pathophysiological basis for the 
connectivity of the cortical-limbic system in ADHD. The 
paracentral lobule is located on the medial side of the fron-
tal-parietal lobe and manages movement and sensation. In 
our study, the cortical asymmetry in the paracentral region 
was significantly different between ADHD-C and TD 
groups. Moreover, an increased inattention symptom score 
was correlated with decreased cortical thickness AI. A study 
by Zou and colleagues based on the variability of the resting- 
state fMRI signal showed increased right-lateralization in the 
paracentral lobule of ADHD patients, whereas there was no 
difference between the ADHD-C and ADHD-I groups in this 
region.34

Impulsive aggression is observed widely in children 
with ADHD, and is linked to the unsatisfied expectation of 
a reward.33 Studies have shown that impulsive aggression is 
characterized by severe structural changes in the amygdala, 
anterior cingulate cortex, and orbitofrontal cortex.33,35–37 

As we have shown, the asymmetry in the cortical gray- 
matter volume in the isthmus cingulate was correlated 
with the hyperactivity/impulsivity score. However, a multi-
variate-analysis study demonstrated that the white-matter 
fibers of connectivity in the fronto-accumbal circuit and 
cortical thickness within the orbitofrontal cortex mainly 
explained aggression, but not impulsivity, in treatment- 
naive children with ADHD.33 Those results were partially 
in accordance with our findings, and revealed that the cor-
tical-thickness asymmetry in the medial orbitofrontal was 
associated with the inattention symptom score, but not the 
hyperactivity/impulsivity symptom score. The isthmus cin-
gulate connects the cingulate gyrus to the parahippocampal 
gyrus (the function of which is controversial and might be 
related to verbal ability and adaptability) and pars triangu-
laris which, as a part of Broca’s area, plays a vital part in the 
processing of language and interpersonal information.38 In 
our study, participants with ADHD had asymmetry abnorm-
alities in these two cortical regions compared with those in 
TD individuals. These abnormalities in the asymmetry of 
cortical structures might be a specific cue for verbal and 
interpersonal processing in children and adolescents with 
ADHD. The superior frontal region is primarily responsible 
for self-awareness, rational decision-making, and motor 
function. Our study demonstrated that ADHD had cortical- 
volume asymmetry in this region. A graph-theory approach 
has revealed that the dorsal superior frontal gyrus, central 
sulcus, and putamen in adults with ADHD have reduced 
nodal efficiency asymmetry.39 Also, we found alterations in 
cortical-volume asymmetry in the caudal anterior cingulate, 
isthmus cingulate, and superior frontal regions between 
ADHD-I and ADHD-C groups. The difference between 
the two subtypes of ADHD patients is that ADHD-C 
patients have mixed hyperactivity/impulsivity symptoms. 
Our results suggest that the asymmetry of cortical gray- 
matter volume in the frontal and cingulate cortex might be 
the specific alterations between individuals with ADHD-I 
and ADHD-C subtypes.

Limitations
Our study had three main limitations. First, the study 
cohort was very small, so this study could be considered 
to be a pilot study. We must interpret with caution any 
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asymmetry abnormalities that we distinguished. More par-
ticipants are needed to obtain more robust results. Second, 
we did not have a patient cohort with the ADHD-HI 
subtype, and the results would have been more compre-
hensive if we had included all subtypes of ADHD. Third, 
we did not exclude ADHD patients taking medications, 
and some ADHD patients might have had a history of 
taking medications, which may have effects on brain struc-
ture (and our results).

Conclusion
Altered cortical and subcortical morphological asymmetry 
in children and adolescents with ADHD were predomi-
nantly located in cortical orbitofrontal and cingulate cir-
cuits. There were differences between patients with 
ADHD-I and ADHD-C subtypes in terms of the asymme-
try of cortical regions in the cingulate and frontal cortex. 
These abnormalities were associated (at least in part) with 
the severity of ADHD symptoms. Hence, brain asymmetry 
could be an appropriate precursor of morphological altera-
tions in neurodevelopmental disorders. These findings may 
provide potential monitoring for the valid diagnosis and 
treatment of ADHD.
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