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Abstract

Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to
39–44 �C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the
developments in computational techniques and computing power, personalised hyperthermia
treatment planning (HTP) has matured and has become a powerful tool for optimising
treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical
set-ups are now being performed to achieve patient-specific treatment optimisation.
In addition, extensive studies aimed to properly implement novel HT tools and techniques,
and to assess the quality of HT, are becoming more common. In this paper, we review the
simulation tools and techniques developed for clinical hyperthermia, and evaluate their current
status on the path from ‘model’ to ‘clinic’. In addition, we illustrate the major techniques
employed for validation and optimisation. HTP has become an essential tool for improvement,
control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest
to establish HT as an efficacious addition to multi-modality treatment of cancer.
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Introduction

Hyperthermia treatment planning (HTP) is defined as the

process that begins with obtaining patient data and establish-

ing, by electromagnetic (EM), ultrasound (US), and/or thermal

modelling, a set of treatment parameters that maximise

treatment quality. The taskforce report of the European

Society for Hyperthermic Oncology (ESHO) and the

Committee for Concerted Action in Bio-Medical

Engineering (COMAC BME) of 1992 [2] was the first

comprehensive document to summarise all available tech-

niques and measurement data required for HTP and validation.

The topical review by Lagendijk [3] extended that work to

include thermal techniques, and described the state of the art

in HTP in 2000. In the last decade, significant progress has

been made on the availability and accuracy of EM and US

simulation tools and techniques. In addition, thermal simula-

tions based on the Pennes bioheat equation (PBHE) [4] have

been implemented in commercial software packages for

clinical planning. The importance of HTP in the current

clinical setting is illustrated by the recent decision of ESHO to

include HTP in their quality assurance guidelines for deep

hyperthermia [5,6].

In this paper, we describe a selection of tools and

techniques that are being used for planning and guiding

hyperthermia (HT) treatments. Specifically, we analyse EM,

US, and thermal simulation tools and techniques, with a

strong focus on the potential to improve clinical results.

In addition, we address methods to perform validation of

numerical algorithms. Also, we describe methods to quantify

the influences of those uncertainties that cannot be controlled.

Finally, we describe how HTP can be used not only for pre-

planning but also in feedback control strategies and to assess

the overall quality of treatment.

Hyperthermia treatment planning

Simulations for HTP can be divided into three distinct tasks:

(1) Generation of the patient model.

(2) Calculation of the distribution of power deposited in the

tissue.

(3) Calculation of the resulting temperature distribution in

the tissue.

First, the geometry and tissue properties of the involved

body region must be carefully identified. Several companies

have preprocessed and made available human body models of

typical adult male, adult female, and small child anatomies

that have geometric, electromagnetic, and thermal properties

included. For improved accuracy, patient-specific modelling

is performed by segmenting tissues using computed

tomography (CT) or magnetic resonance (MR) images of

the actual subject. Next, the specific absorption rate (SAR), or

more generally the power density (PD), distribution, is

determined by EM or US modelling approaches. Once the

PD pattern is established, the temperature (T) distribution can
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be predicted based on thermal redistribution of energy within

the heated region with consideration of the impact of

physiological aspects such as perfusion and core temperature.

While SAR modelling has matured, and good accuracy is now

possible in some EM applications [7], there are limitations

due to imprecise modelling of patient anatomy, tissue

interfaces, and tissue properties. In addition, for EM-HTP,

there are still difficulties in modelling the behaviour of some

applicators, for example due to the impact of loading

conditions and cross-coupling. For US-HTP, full-wave

modelling of acoustic propagation and the computational

requirements remain an issue. Accurate prediction of T

distributions with thermal modelling is an even greater

challenge. Large deviations in thermal tissue properties and

their variation during the course of heating make in vivo

temperatures difficult to predict. Hence, although the tem-

perature level achieved throughout the tumour is believed to

determine treatment quality, optimisation of heating in

current clinical applications is often performed by optimising

the SAR distribution [8]. Figure 1 provides a scheme of the

steps required for HTP. In step one, CT or MR imaging data is

converted into a 3D representation of the patient by

delineating different normal and tumour or target tissue

regions. 3D models are obtained by assigning corresponding

electrical, ultrasonic, and thermal properties to each 3D tissue

structure. Next, a model of the applicator with the required

degree of complexity and the patient model are combined and

used to compute the PD and thermal distributions.

Optimisation of these distributions can be performed at the

PD or temperature ‘level’. It is also possible to combine the

optimisation and thermal simulation steps [9,10].

3D patient modelling

Patient modelling is an important but challenging part of

HTP. Time-efficient and easy-to-use segmentation algorithms

for delineation of tissues on CT or MR data are a precondition

for the 3D models that are required for clinical application

of patient-specific HTP [11]. The required detail of the

models depends on the desired accuracy, which should be

assessed carefully for each application. Typically require-

ments are far higher than, for example, in radiotherapy, as

more tissues need to be distinguished to correctly capture the

important impact of strong dielectric property and perfusion

variations between tissues, for example for hot-spot predic-

tion. Investigators have identified substantial dependences of

PD and temperature distributions on both the patient models

and the temperature algorithm used [3,12,13]. Wust et al.

showed that surface models, i.e. delineated tissue boundaries

for each distinct organ or tissue region, each with assigned

homogenous dielectric properties, match clinical results

better than models that attempt to derive heterogeneous

dielectric properties directly from CT data [14,15]. Similar

results were obtained from attempts to use MR-derived

heterogeneous tissue models [16,17]. Ever since, surface

models have become the standard, especially for EM-HTP.

Tissue properties, however, are non-homogeneous and vary

between patients. For dielectric properties, variations of 30%

or more have been measured in post-mortem humans [18,19],

and even greater variations were shown in breast [20,21] and

brain, by means of MR measurements [22]. Fortunately,

the influence of those uncertainties on the SAR of deep-

regional phased array applicators has been found to be

typically less than 10% [23,24].

Creating surface models of numerous organs from CT

and/or MRI data of each patient requires many man-hours,

which hinders clinical acceptance. Therefore, researchers

have begun investigating the increase in segmentation speed

and reduction in operator time demands offered by atlas-

based segmentation techniques [25,26]. This semi-automatic

method requires a library of accurately segmented patient

models that incorporate all the relevant tissue-shape

variations.

Power absorption simulation techniques

Electromagnetic

In the past three decades, many numerical techniques have

been applied in the simulation of EM thermal therapy for

cancer. An excellent review on numerical codes can be found

in Hand et al. [27], and Deuflhard et al. [28] summarised

the mathematics required for deep regional hyperthermia.

In addition to a good patient model, the applicator model

is very important for the treatment plan quality. Progress in

computation tools now allow generation of more precise 3D

representations of the applicator, for example in CAD format,

for realistic EM simulations. In addition to physical geometry,

the model must numerically reproduce the applicator

behaviour and its interaction with the tissue, which requires

careful discretisation and source implementation in the EM

model [29]. The resolution required for the model depends on

the numerical technique and applicator type. Modelling the

antenna excitation is also critically important, especially for

quantitative SAR prediction [29]. In general, an experienced

EM designer must make suitable simplifications, and the EM

model must be validated first in flat or cylindrical phantoms

Figure 1. Schematic workflow for EM-HTP, using head and neck hyperthermia as an example. In US-HTP, the EM simulation and optimisation step is
replaced by US simulation and optimisation.
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before proceeding to complex heterogeneous tissue geome-

tries. In addition, applicators should be designed such that

they facilitate accurate modelling, for example low

dependence on load impedance and good control of cross-

coupling between antennas.

Achieving maximum benefit from HTP requires a sound

translation of the model set-up and parameters into the clinic.

Translation errors in transferring the applicator settings from

the HTP system to the treatment room can seriously reduce

the benefit of HTP parameter optimisations. Numerous

studies have shown the importance of establishing uncertain-

ties and validating calculated output parameters. Parameters

studied for phased arrays are intensity, i.e. amplitude or

power, and phase differences between the antenna drive

signals [30–33]. Further, variation in the position of the

patient relative to the antenna array has been shown to be

critically important [34]. Also, the posture of the patient

during CT or MR image acquisition should match that used

for the HT treatment to avoid planning errors. Finally, the

shape of the water bolus must be accurately modelled.

Uncertainties in water bolus shape have been shown to be

important both in superficial [35,36] as well as deep-regional

hyperthermia [34].

HT treatments are normally limited by hot spots in

healthy tissue. For EM HT, these are typically caused by

electric (E) field maxima at locations with high dielectric

contrast (e.g. bone–muscle interfaces). To minimise these hot

spots, several objective functions are utilised to optimise

antenna phase and amplitude excitation parameters [37].

Other parameters, such as patient positioning, are typically

not optimised due to the associated prohibitive effort.

Optimisation is highly application specific, and numerous

papers have been published on phase/amplitude optimisation

of array applicators [37–45]. For some optimisation functions,

specialised and rapid optimisation methods can be used,

such as the generalised eigenvalue (GenEV) technique [46] or

the virtual source method [40]. When more flexibility in

the formulation of the optimisation function is required,

genetic algorithms, or variants such as particle swarm

optimisation, may be used. While genetic algorithms are

usually slower and have the disadvantage of potentially not

finding a globally optimal configuration, they do tend to find

settings less sensitive to antenna steering uncertainties.

Exploiting graphical processing units (GPUs), near real-time

(10 s) optimisation using the particle swarm optimisation

method followed by line-search, was shown to be clinically

feasible for effective adaptation to patient complaints [47].

Current research is focused towards optimisation functions

that rely largely on pre-computed information to enable

real-time re-optimisation [48] or on the use of multi-goal

optimisation to determine a large number of Pareto-optimal

settings [49]. Both of these approaches can be used to adapt

the treatment plan by reweighting different objectives such as

tumour temperature, or avoidance of regional hot spots.

Errors in the PD predictions must be minimised to avoid

sub-optimal clinical outcome and safety issues. Hence,

quantitative validation of HTP systems is essential, followed

by regular quality assurance (QA) of treatment equipment, for

example by means of hardware calibrations and regular

verification of the heating patterns [5,6,32].

Unfortunately, such measurements are time-consuming

and costly, so it is common practice to test the validity of

the numerical code by comparison to analytical solutions

of simple problems. Hence, when choosing appropriate

HTP software or solvers, it is of great importance to again

validate numerical results against 2D or 3D measurements.

These validation measurements should be performed using

dedicated phantoms containing well-characterised tissue-

simulating materials and accurate, calibrated equipment,

such as fibre-optic temperature sensors, infrared thermog-

raphy, and electric field sensors [50–52]. In addition to

phantom measurements, extensive sensitivity studies and

(Monte Carlo) uncertainty analyses can be used to assess the

impact on HTP predictions of uncertainties in modelling

parameters such as tissue properties and their age depend-

ence, discretisation, and boundary conditions [53].

Recently, EM-HTP is beginning to be used in applications

like preplanning-assisted real-time treatment guidance. Since

preplanning-optimised treatment settings often cannot avoid

treatment-limiting hot spots completely, strategies are under

development to convert information such as temperature

readings from invasive, intraluminal [54], or non-invasive

temperature measurements [55–59] into adjusted settings

based on HTP optimisation. In addition, objective and repro-

ducible techniques were developed to also exploit subjective

information, such as complaints from the patient, into

feedback for real-time adjustment of pre-planned settings

[60]. Effective use of complaint-adaptive steering has

been documented in a randomised trial in which clinically

evaluated objective measures were applied [61,62]. Recently,

the visualiser for electromagnetic dosimetry and optimisation

(VEDO), a software tool specifically designed to reduce

the complexity of SAR-steering, was developed [47,63].

This tool shows how interference patterns between the fields

from different antennas, combined with the dielectric

inhomogeneity of the human body, result in hot spots,

causing patient pain complaints. By displaying the calculated

SAR superimposed on CT (or MRI) anatomy information

during treatment, VEDO makes it easier to correlate patient

complaints to the energy deposition characteristics predicted

by the treatment plan. Simulation-based steering with VEDO

is currently under clinical investigation for systems with a

higher number of antennas, and early results, quantified

using the mean predicted target SAR and temperature, are

promising.

The use of HTP has been very influential in the evaluation

and development of new EM applicators [29,51,53,64–67].

Furthermore, HTP has been used to study the efficacy of

clinical steering guidelines [68] and for the selection of

appropriate applicators for specific disease conditions [7].

Ultrasound

HTP based on full-wave 3D simulations is a challenge for HT

applications involving US. The small wavelength and the

consequent need for high resolution results in extremely large

computational domains, especially for applicators that focus

the energy deeply in the body, i.e. which require modelling

of a large anatomical region. This makes the application

of full-wave 3D simulations cumbersome for US-HTP,
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especially for array applicators that may have several

hundreds of transducers. Therefore careful application-

specific approximations are required for reasonable calcula-

tion time and accuracy. Alternatively, high performance

computing (HPC) techniques for the acceleration of compu-

tations, for example the use of computer clusters and GPUs,

may gradually make full-wave 3D US-HTP more applicable

[69]. However, to date, US-HTP has been used most

frequently to optimise or adapt the aperture of US phased

arrays to the tumour location and/or shape [70–72].

Nonetheless, the need for US-HTP is becoming more and

more apparent in applications where the small focal volume

of the US field produced is inadequate for the larger target

volumes. In addition, US-HTP would be valuable in cases

where motion compensation is necessary to handle respiratory

motion, or to prevent bone or air interfaces from interfering

with the treatment.

Another issue faced by researchers is the lack of reliable

tissue acoustic properties which are necessary to perform

realistic and accurate simulations. Although multiple studies

have been reported over the years [73, 74], properties have

still not been determined for all relevant tissues, frequencies

and temperatures and the employed measurement techniques

suffer from technical limitations. Also, much of the available

measurement data was acquired with what is known as

‘phase-dependent’ experimental techniques, which were later

proven to be unreliable [74]. Recent studies [75] reported on

novel measurement approaches, and measurements on porcine

and human samples are currently underway.

US exposure is often characterised in terms of the acoustic

field determined under free field conditions in water, where

‘free field’ describes circumstances in which the US beam is

not affected by boundaries or other obstacles [76]. While most

human soft tissues have acoustic properties similar to those

of water, there are scattering effects at air, fat, and bone

interfaces as well as strong absorption in the periosteum of

bone. Thus, precise modelling of those tissues is essential

for accurate planning. Furthermore, it should be noted that

most equations used for numerical modelling of ultrasonic

wave propagation (most notably the Westerveld equation)

are derived based on the assumption that thermo-viscous

fluids can approximate the modelled media. Consequently,

a common simplification in US simulations is to consider

only the propagation of longitudinal acoustic waves, while

neglecting shear waves, which are non-negligible in hard

tissues like bone. A number of studies, however, did show the

possibility of accounting for shear waves using the mode

conversion technique [77,78]. Finally, elastic waves in bones

are generally not modelled in routine studies of US power

deposition in soft tissue, but can be approximated for

improved accuracy when the tissue target is near bone [79].

The methods below describe the basic approaches used to

compute acoustic waves in soft tissues in order of increasing

complexity.

Incident field method: US-HTP tools are most often based

on methods that calculate the radiation patterns and transient

pressure fields of single transducers and phased arrays

in homogeneous media. These methods use point-source

superposition (the Rayleigh-Sommerfeld integral), impulse

responses for simple geometries, or the fast near-field method

[80,81] to calculate and project the fields produced by simple

transducer geometries on planes along the propagation

direction.

Angular spectrum method (ASM): This method is a very

fast spatial frequency domain technique derived from

Fourier optics [82]. A modified version of this method,

i.e. ‘hybrid-SM’ [83], can account for effects like attenuation,

non-linearity, and even inhomogeneity. These features make

ASM ideal for US-HTP, although the method is limited

in terms of the transducer geometries it can model and

complex wave phenomena like back-scattering and non-

linearity are merely approximated.

Full-wave method: Full-wave propagation generally uses

integral equations to predict full-wave propagation, absorp-

tion, and temperature distributions in tissue. Generally it fully

accounts for all effects of acoustic and thermal heterogeneities

[84]. However, full-wave treatment planning is still limited

to specific applications and frequency ranges, since enormous

computational resources are required for sufficiently fine

discretisation with respect to the wavelength. Although

computationally expensive, full-wave methods provide the

most accurate predictions for HTP (Figure 2).

Freely available software include Field II (impulse

response) [85], the faster Focus (fast near-field method and

advanced simulation module (ASM) [86,87] and k-wave

(ASM) [88,89].

Despite the innate need for optimisation of pressure fields,

little progress has been made in the area of optimisation of US

PD in tissue. Although theoretically possible [90], the large

number of elements typically in therapeutic US transducer

arrays, i.e. up to 1024, combined with the need for enormous

computational resources for full-wave simulations, render

most patient-specific optimisation techniques impractical.

However, the use of incident-field methods dramatically

Figure 2. US pressure field prediction for a model of the InSightec
ExAblate4000 system, illustrating the feasibility of 3D full-wave
simulation for this system with 1024 independently driven transducers.
The obtained pressure distribution is displayed with a logarithmic
colour scale on three orthogonal planes through the target. The
distorting impact of tissue parameter inhomogeneity on the focus
shape is clearly visible. Modelling allows to plan the dynamic focus
scanning, for contiguous heating of large tissue volumes.
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reduces the computational cost, and applications of US-HTP

with numerically computed phase corrections have been

reported [91–93]. Such a case is liver ablation where

optimisation is necessary in order to minimise the ribcage

scattering (intercostal space targeting). Modelling was used

to generate a focus in a target partly obscured by ribs [94].

Validation in US-HTP is typically limited to that of the

different numerical software approaches used to calculate the

predicted acoustic and thermal energy depositions. In terms

of validating US solvers, a number of approaches, ranging

from analytical validation against pre-computed fields to

comparison against measured US fields in water tank set-ups,

have been used. Usually the pressure and temperature

generated by actual transducers in the presence of acoustically

characterised tissue (skull [95,96] and bovine femur [97–99]),

man-made samples [100,101], or phantoms [102], was

measured using movable hydrophone and/or thermocouples

and compared to numerical results. However, to date, no

comprehensive validation of the entire US-HTP procedure has

been presented, and the efficacy of the treatment is usually

evaluated by online monitoring of the induced temperature

increase and/or radiation force [103–105].

In clinical hyperthermia applications, US-HTP is typically

used with incident-field US solvers to optimise the steering

parameters of the transducer elements to maximise thermal

dose in the target volume. US and MR imaging are often

combined to image and control the position of the US beam

focus during heating. In this setting, US-HTP is applied to

adjust settings such that underexposed regions also get

heated, for example by scanning the focus and dynamically

covering the entire target volume. Input parameters for

planning specify the US transducer (array) geometries,

dimensions and positions, the focal length and diameter of

each transducer, and tissue geometry (anatomy), boundary

conditions, interfaces and properties. With this input, the

radiation pattern of the transducer array is then optimised,

usually with incident field-based simulations to obtain the

desired depth, shape, and/or trajectory of heating [76].

Moros et al. used US-HTP to develop the SURLAS

applicator [106] and to assess the impact of having bone (ribs)

in the ultrasound beam path [79,107]. Regarding US-HTP,

they concluded that improvements in accuracy and especially

calculation speed are required to facilitate more routine

clinical application [108].

For interstitial and catheter-based heating approaches, with

even higher US frequencies used, the resolution required for

accurate thermal and SAR modelling close to the device is

even more stringent than for physically larger external

transducers, due to smaller wavelengths, more localised

heating and high thermal gradients. Nevertheless, the feasi-

bility and accuracy of HTP for these applications have been

demonstrated in both interstitial [109] and intraluminal [110]

applications. The UCSF research team also used HTP to

establish guidelines that restrict pelvic bone heating during

prostate thermal therapy [111].

Temperature distribution simulation techniques

While SAR modelling is maturing rapidly, the accuracy of

temperature predictions is lagging behind. This is due to large

uncertainties in the thermal properties of tissue, which vary

between patients, within the patient, within each tissue, over

time, and as a non-linear function of tissue temperature. The

variation with time is even more pronounced with varying

temperature (spatially and temporally) due to the non-linear

and patient-specific physiological response of thermoregula-

tion. The spacing of thermally significant blood vessels

is heterogeneous, affected by tumour growth and changes in

both temperature and thermal dose. Thus, an accurate 3D

prediction of thermal tissue properties is an extreme chal-

lenge. The discrete vasculature (DIVA) model [112] considers

the impact of individual vessels. Currently, however, devising

even a moderately detailed vascular tree can take up to a

month of man hours. Thus, the method most commonly

used to model heat transfer in living tissue is the PBHE [113],

a continuum model that models the impact of perfusion as

an isotropic heat sink. Mathematically, it is expressed as:

�c
@T

@t
¼ r � ðkrTÞ þ �Qþ �S� �bcb�!ðT � TbÞ

where T is the temperature, t is the time, � is the volume

density of mass, c is the specific heat capacity, k is the thermal

conductivity, ! is the volumetric blood perfusion rate, Q is the

metabolic heat generation rate, S is the specific absorption

rate (SAR), and the subscript b denotes a blood property.

For clarity, we omitted the parameter dependencies on T, t

and spatial position r. This model includes heat conduction

in tissue and accounts for energy inputs from metabolism (Q)

and external power sources (S). Note that computations of

the SAR and temperature modelling are usually decoupled,

to reduce the complexity and computational requirements.

The last part of the equation accounts for convective cooling

by blood perfusion, which is assumed to be non-directional,

thus, heat disappears from the tissue via a non-directional

heat-sink term. For modelling a regional temperature distri-

bution in tissue with healthy microvasculature and blood

flowing through vessels with isotropically distributed orien-

tations, the validity of this equation has been demonstrated.

However, for accurate modelling of the impact of blood

vessels with dimensions exceeding 0.2 mm diameter on the

local tissue temperature, the directional effects of blood flow

cannot be ignored [114]. Many numerical implementations

of the PBHE exist, but the most common method is based

on the finite difference time domain (FDTD) method [115].

Boundary conditions are used to account for convective or

sweating heat loss at the patient surface. In some implemen-

tations, the temperature dependence of tissue parameters

(especially perfusion) is considered, and models that permit

body core heating via an increasing blood temperature

exist [116].

To capture directional heat flow through tissue, various

models have been developed, including the addition of

convective terms [117,118], tensorial effective conductivity

[117,118] and discrete vasculature (DIVA) models [112].

The latter have been developed to take into account the

non-continuum nature of perfusion and non-equilibrium

effects. Thermally significant vasculature is modelled,

taking into account vessel size as well as velocity and

direction of blood flow [3,119–122]. In DIVA models, a

realistic vessel tree is obtained from imaging, for example

350 M. M. Paulides et al. Int J Hyperthermia, 2013; 29(4): 346–357



using MRI, and included in the thermal model. One problem

is this produces at best a snapshot of the vasculature at the

time of imaging, whereas vessel size varies in time and

temperature. Another problem of DIVA models is that

generation of a vessel tree is a tedious procedure that involves

many manual interactions and approximations [3]. In add-

ition, only vessels 0.6 mm diameter and larger can currently

be identified with MRI [123], whereas heat exchange is

thermally significant in vessels down to 0.2 mm diameter.

Therefore, attempts have been made to generate artificial

vessels [112,124–126], and Craciunescu et al. [127] investi-

gated ways to combine vessel tree data with perfusion maps to

include heterogeneous perfusion on a micro scale.

Regardless of how accurately the blood vessel tree is

modelled prior to heating, static PBHE and DIVA models are

only approximate, since blood vessel size and perfusion rates

change dramatically as a function of temperature and duration

of heating. Several groups have demonstrated changes in

tissue blood perfusion of over 10 times during heating in

the 40–45�C range [128–131]. Therefore, amendments to

the PBHE that incorporate the significantly temperature-

dependent non-linear effects on thermal tissue characteristics

have been proposed. The simplest example is to incorporate

temperature dependent parameters [13]. Another example

of an amended PBHE model is the use of mixed models

that incorporate effective conductivity [2,132]. In these

models, the tissue-dependent conductivity k from the PBHE

is replaced by keff¼ k(1þC!), where ! denotes perfusion and

C is an empirical factor that must be experimentally assessed

for each application and per tissue. Other thermal models

treat arterial and venous blood temperature as spatially and

temporally variable. An overview of these models is provided

by Arkin et al. [117].

At this time, variations of the PBHE method are generally

used for thermal modelling of clinical applications because

they: 1) lead to reasonable estimates within the known

uncertainty of tissue properties; and 2) can be applied without

inclusion of accurate vascular trees, which are computation-

ally unmanageable for large tissue regions. However, thermal

predictions are very sensitive to thermal parameters, and

little data is available on these properties or their variation

between patients and under heat stress. Therefore, an

extensive uncertainty evaluation per application and treatment

site is essential to quantify the accuracy of patient-specific

predictions. A Monte-Carlo uncertainty analysis is a valuable

tool for addressing this uncertainty due to the strong

correlation between thermal parameters. The IT’IS database

[133] provides the thermal parameters for the PBHE of many

tissues, as well as the variation of the values reported in

literature. This information can be used as input for rigorous

uncertainty assessments aimed at understanding the resulting

variation in PD and temperature distributions, as is the current

standard in EM dosimetry [134].

Several investigators have studied the use of thermal

modelling to optimise phase and amplitude, i.e. the electronic

steering parameters of phased array applicators [40,41,44].

Most often, the approach is based on optimisation of EM

power deposition performed prior to calculation of the

resulting temperature distribution. When non-linear thermal

models are used, for example to consider thermoregulation,

often the optimisation includes numerically expensive

repeated simulations. Alternatively, more advanced app-

roaches permit the optimisation and thermal modelling

problem to be solved in a combined approach, for example

using the partial differential equation (PDE) constraint

interior point optimisation [9,10].

Although validation in phantoms has been performed

successfully, continued progress in clinical validation of

temperature treatment planning is required. In patients,

validation of thermal models has traditionally been performed

by means of invasive and intraluminal temperature measure-

ments. Unfortunately, these methods are cumbersome, can

lead to complications, and provide information only for a

small number of locations. The development of MR hybrid

hyperthermia systems with thermal imaging capability has

opened the door to acquisition of thermal tissue properties

during heating [135] and validation of preplanned SAR [67]

and temperature profiles [58]. However, since only a limited

number of such hybrid systems are currently available, it will

take time before real-time treatment planning re-optimisation

based on thermal simulations has matured sufficiently to be

accepted for clinical hyperthermia treatments.

Although thermal models have limitations for accurate

prediction of temperature distributions in heterogeneous

perfused tissue, there are numerous applications that can

benefit from thermal modelling. Certainly, thermal models

are an excellent tool for best- and worst-case scenario

analyses [136]. In addition, they can be used to intelligently

interpolate temperatures between sparsely measured points.

Thermal modelling has also been used successfully to study

the influence of water bolus cooling on expected temperature

distributions of superficial heat applicators [137–140] and to

investigate the influence of uncertainties in thermal param-

eters on applicator choice for deep-regional hyperthermia

[24,53,141]. With continued development, temperature mod-

elling is expected to become useful for prediction of thermal

dose and treatment outcome.

Dose concepts and HT optimisation

Defining an optimisation function with clinical relevance for

the combined treatment of HT with other treatment modalities

such as radiotherapy and chemotherapy, is not straightfor-

ward, due to the multiple interaction mechanisms involved.

Thermal optimisation can aim at one or more of the following

goals: to achieve a target temperature distribution, to optimise

heating of tumour compared to healthy tissue, avoidance

of hot spots, and maximised tumour coverage. In some

cases, rather than temperature, thermal dose quantities are

optimised, for example CEM43 �C (thermal iso-effect dose)

[142], which is similar to an ‘Arrhenius relationship’. This

formulation has been shown to correlate with outcome in

clinical trials, although it was derived from rodent studies and

for thermal damage only [143–145].

To reduce the influence of outliers, clinical temperatures

are often expressed in terms of percentile ranking. T50, for

example, indicates that 50% of measured points exceed a

given temperature value, i.e. the median temperature. When

the time of heating is taken into account, parameters such

as the CEM43 �CT90, which converts the temperature–time
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profile of any given heating session into the equivalent

number of minutes for which 90% of the tumour exceeds

43 �C, may be calculated.

An alternative concept is the TRISE parameter introduced

by Franckena et al. [146]. This parameter specifies the

increment of T50 that was measured, averaged over all

treatments and intended minutes of total treatment time

actually delivered. In a clinical trial with 420 patients

treated for locally advanced cervical cancer (LACC), TRISE

correlated with both tumour control and survival, whereas

CEM43T90 correlated only with survival [146].

Although research that considers the transient nature of

heating has been performed, typically only the steady-state

temperature distribution, for example the mean target tem-

perature, is optimised in current HTP. It should be noted that

uncertainties in thermal tissue properties can severely restrict

the improvement possible from thermal optimisations, as

compared to possible benefits from PD optimisation, using,

for example, the hot-spot target coefficient (HTQ) [8,53].

Furthermore, PD-related indicators such as, for example, the

25% or 50% of the maximum iso-SAR coverage over the

target region, also have been shown to correlate with clinical

outcome [147]. Hence, although temperature-based dose

concepts provide the most promising approaches for opti-

misation goals, using temperature-based optimisation is still

the topic of debate [148].

Commercial treatment planning packages

The last two decades have witnessed a shift in emphasis from

development of modelling algorithms and simulation software

approaches to the use of high-level integrated multi-physics

HTP programs and systems for applicator design and clinical

treatment planning. Non-commercial programs have been

developed by groups such as the University Medical Centre,

Utrecht [3], the University of California, San Francisco

[109,149], and Duke University [150] in planning for specific

applicators and treatment sites.

The most widely used commercial HTP system is Sigma-

HyperPlan, which was specifically designed for deep hyper-

thermia with the BSD2000 system [151] (Dr Sennewald

Medizintechnik, Munich, Germany). Sigma-HyperPlan was

developed at the Konrad Zuse Institute [28] and has been

evaluated for clinical use at the Charite Klinikum

[15,55,148,152], Erasmus MC [34,60,62,68,153], and Duke

University [154]. Figure 3 shows the PD (top row) and

temperature (bottom row) distributions predicted by Sigma-

HyperPlan for patients of different dimensions using the same

applied power and phase parameters, and with the same

maximum temperature in normal tissue (bottom row). Clearly,

patient anatomy largely influences the distributions obtained

during deep HT, and hence patient-specific modelling is

required. In addition, large differences between PD and

temperature distributions are found in this theoretical study,

which advocates the use of temperature-based optimisation.

In the last decade, a second commercial HTP package was

developed, based on SEMCAD X (SPEAG, Zurich,

Switzerland) and introduced by the Erasmus MC group

for clinical planning of superficial HT [7] and deep HT

[51]. SEMCAD X, originally developed as a software tool

for high-resolution EM simulations involving complex ana-

tomical models, allows creation and analysis of various

Figure 3. Cross-sections of the PD for 400 W (upper row) and temperature distributions (lower row) predicted by Sigma-HyperPlan for a large (left),
average (middle) and slim (right) patient with a cervical tumour (red contour). Visible are also the slings on which the patient is positioned during deep
HT (black or white circles on each side of the patient). The temperature distributions are obtained by increasing power until 44 �C in healthy tissue is
reached.
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applicator models. Addition of the segmentation tool iSEG

(www.zurichmedtech.com), multiple thermal solvers (PBHE,

keff, DIVA), and several SAR and temperature optimisation

approaches as well as post-processing routines for dose and

effect quantification has elevated SEMCAD X to a flexible

HTP framework. Recently, a third integrated HTP package,

i.e. ALBA HTPS (www.albahyperthermia.com), has become

available. This package is based on the EM and thermal

kernels of the CST multi-physics simulator (www.cst.com)

and was developed in cooperation with the University

of Rome Tor Vergata. Finally, although not integrated

HTP platforms, COMSOL (www.comsol.com) and HFSS

(www.ansys.com) provide most of the simulation functional-

ity required for HTP when combined with separate programs

for tissue segmentation. For HFSS, Duke University showed

that integration of commercial segmentation and EM and a

thermal solver with MR-based thermometry enables opti-

misation of HT quality (Figure 4) [155]. In this study, they

demonstrated that a pre-treatment plan could be significantly

optimised, within minutes, on the basis of real-time tempera-

ture monitoring feedback.

Outlook and discussion

In recent years, HTP has begun to emerge into practical

clinical use. The main strength of simulations is that the

effectiveness of different scenarios can be judged before the

HT session to aid in selection of patient, applicator or

treatment approach, specific power excitation planning, and

clinical outcome prediction. In addition, simulations are

helpful for assessing treatment risks to the patient, for

example the effect of metallic implants, or operator. HTP

simulation tools can be used to develop enhanced treatment

approaches or, retrospectively, to analyse treatment quality.

Other areas where HTP tools play an important role are

the education and training of hyperthermia technicians and

physicians, treatment visualisation, development of QA

guidelines and protocols, and basic research to increase

understanding of hyperthermia treatments or assess related

uncertainties and the impact of individual parameters. In our

experience, treatment plans provide an objective basis for

stimulating interdisciplinary discussions as well as an excel-

lent venue for continuous training and improvement in

therapy.

For the future, we expect that thermal modelling will

continue to mature and will be used to prospectively compare

treatment options, optimise treatments as well as to enrich

temperature measurement data. In treatments where non-

invasive measurement of 2D and 3D thermal distributions is

possible, HTP models will be complemented with fast

optimisation feedback control algorithms that can correct

for model errors and uncertainties [39–41,156]. For treat-

ments where MR thermal imaging is not a realistic option,

thermal models are even more critical for improving

treatment quality. Due to the overlapping and complementary

information obtained, further innovation of prospective

PD and thermal modelling should go hand in hand with

development of non-invasive thermometry approaches.

In vivo validation of the developed HTP tools and assessment

of the offered benefit will be of critical importance going

forward, as will be the development of tools that are suitably

embedded in the clinical work-flow for routine clinical use.

Conclusions

HTP has demonstrated major progress over the past decade

and is rapidly gaining ground in practical clinical application.

Even when its limitations and ongoing development are

considered, HTP in its current form is already improving

treatment quality. HTP has demonstrated its usefulness in

the design of new heating equipment, in providing critical

understanding of the relative role of multiple conflicting

Figure 4. Combined use of segmentation, EM, and thermal solvers to generate initial temperature distributions in the pretreatment phase.
During treatment, the MR temperature imaging (MRTI) provides feedback to empirically determine patient-specific parameters, e.g. perfusion.
This information was used to steer the beam effectively to the target tumour on the right side of the leg and away from the muscle at the left of the
bone [67,155].
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treatment parameters, in guiding the development of updated

treatment protocols, and in the education and training of

technologists and physicians. Finally, the advent of non-

invasive measurement strategies is expected to be a strong

stimulant for improved accuracy of patient-specific simula-

tions and real-time treatment optimisation strategies.
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